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Traveling Wave Solutions For Two Physical Models via Extended Modified Kudryashov Method 

Şerife Müge EGE1* 

ABSTRACT: In this paper, we propose the extended modified Kudryashov method (EMKM) for 

solving the Biswas-Milovic equation and Gerdjikov-Ivanov equation which are commonly special cases 

of Schrödinger equation in mathematical physics. We received many new extended traveling wave 

solutions when the special values of the parameters are taken for these equations which are pointed out 

by rational function, exponential function and hyperbolic function forms.  The results show that EMKM 

is advantageous mathematical technique for solving nonlinear partial differential equations. 

Keywords: Biswas-Milovic equation, Gerdjikov-Ivanov equation, extended modified Kudryashov 

method. 

Genişletilerek Düzenlenmiş Kudryashov Yöntemi ile İki Fiziksel Modelinin Hareketli Dalga Çözümleri 

ÖZET:  Bu makalede, matematiksel fizikte yer alan Schrödinger denkleminin özel durumları olan 

Biswas-Milovic denklemi ve Gerdjikov-Ivanov denklemini çözmek için genişletilerek düzenlenmiş 

Kudryashov yöntemini (EMKM) öneriyoruz. Bu denklemler için parametrelerin özel değerleri 

alındığında rasyonel fonksiyon, üstel fonksiyon ve hiperbolik fonksiyon formları ile gösterilen birçok 

yeni genişletilmiş dalga çözümü elde edildi. Sonuçlar, EMKM'nin doğrusal olmayan kısmi diferansiyel 

denklemleri çözmek için etkili bir yöntem olduğunu göstermektedir. 

Anahtar Kelimeler: Biswas-Milovic denklemi, Gerdjikov-Ivanov denklemi, genişletilerek 

düzenlenmiş Kudryashov yöntemi. 
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INTRODUCTION 

It is well known that many natural phenomena in science and engineering such as physics, 

chemistry, biology, image processing, signal propagation, fluid dynamics, quantum theory etc. are 

related to nonlinear partial differential equations (NPDEs). Different analytical and numerical 

approaches are used in literature for exploring the precise solutions of NPDEs. Some of the commonly 

used techniques are exp(−𝜙(𝜉)) function method (Mirzazadeh et al., 2017; Arshed., 2018; Raza et al., 

2018), exp-function method (Kadkhda and Jafari, 2017; Hosseini et al., 2018), first integral method 

(Taghizadeh et al., 2011), trial equation method (Biswas et al., 2018, Biswas et al., 2018), hyperbolic 

function method (Hosseini and Zabihi et al. 2018), 𝐺′/𝐺- expansion method (Mirzazadeh et al., 2015; 

Mirzazadeh et al., 2017) and so on (Ege and Misirli, 2012; Hosseini and Samadani et al., 2018).  

Nonlinear Schrödinger equation (NLSE) with any angular momentum provides significant 

applications in many areas of physics that work up models enhanced to labor quantum mechanical 

systems (Taghizadeh et al., 2011; Triki et al., 2011; Eslami and Neirameh, 2018; Hosseini et al., 2018; 

Hosseini et. al. 2018). Recently, Biswas and Milovic have proposed to NLSE a general model that 

explains some of the defects in fiber during long distance transmission of these pulses. These involve 

superficial changes in the temporal development of the pulse or fiber diameter errors. This model is 

usually discoursed as the Biswas-Milovic equation (BME). More recently, Biswas and Milovic 

(Mirzazadeh et al., 2015; Najafi and Arabi, 2016; Sayed et al., 2016; Zhou et al., 2016; Zayed and Al-

Nowehy, 2017; Raza et al., 2018) discussed special cases of the Kerr law with constant coefficients and 

the law of nonlinear power in generalized NLSE. 

Many natural phenomena such as weak nonlinear distribution wave fields, quantum field theory 

and nonlinear optics in science can be modeled and defined by the Gerdjikov-Ivanov equation (GIE), 

which is called derivative of Schrödinger's equation. Due to the various applications in science, more 

and more studies are emerging in literature (Triki et al., 2017; Arshed, 2018; Biswas et al., 2018). 

In this work, in special, we will find the traveling wave solutions of the Biswas-Milovic and the 

Gerdjikov-Ivanov equations by extended Kudryashov method. While wave parameters obtained by 

many existing methods have the same values, parameter values vary in this method. So, the aim of this 

study is to achieve larger and faster wave solutions by increasing the parameters. 

MATERIALS AND METHODS 

Extended Modified Kudryashov Method 

A given nonlinear partial differential equation (NPDE) is written in several independent variables 

as:   

𝑃(𝜃, 𝜃𝑡 , 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 , 𝜃𝑥𝑦, 𝜃𝑦𝑧 , 𝜃𝑥𝑧 , … ) = 0                                                                                                (1) 

where P is some function, 𝜃 = 𝜃(𝑥, 𝑦, 𝑧, , … , 𝑡) is a dependent variable or unknown function to be 

determined and the subscript indicates partial derivative.  

First, we investigate the traveling wave solutions of Equation 1. of the form: 

𝜃(𝑥, 𝑦, 𝑧, , … , 𝑡) = 𝜃(𝜎), 𝜎 = 𝜅(𝑥 + 𝜗𝑡) or  𝜎 = 𝑥 − 𝜗𝑡                                                                      (2) 

where 𝜅 and 𝜗  are arbitrary constants. Then Equation 1. degrades to a nonlinear ordinary differential 

equation in the form: 

Ο(𝜃, 𝜃𝜎 , 𝜃𝜎𝜎 , 𝜃𝜎𝜎𝜎 , … ) = 0.                                                                                                                    (3) 
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Then, we assume that the analytic solutions of Equation 3. can be formed as in the form: 

𝜃(𝜎) = ∑ 𝑏𝑘𝜓𝑘(𝜎)𝑀
𝑘=1                                                                                                                            (4) 

where 𝜓 =
1

√1∓𝑒2𝜎
 and the function  𝜓 is the solution of 

𝜓𝜎 = 𝜓3 − 𝜓.                                                                                                                                         (5) 

In compliance with the method, we suppose that the solution of Equation 3. can be stated as in the form: 

𝜃(𝜎) = 𝑏𝑀𝜓𝑀 + ⋯.                                                                                                                               (6) 

For the purpose of determining the value of the pole order for general solution of Equation 3., we balance 

the highest order nonlinear terms 𝜃𝑚(𝜎)𝜃𝑛(𝜎) and (𝜃𝑚(𝜎))𝑝 in Equation 3. then we have 

𝑀 =
2(𝑛−𝑝𝑚)

𝑝−𝑚−1
.                                                                                                                                          (7) 

Lastly, substituting Equation 4. into Equation 3. and equating the coefficients of 𝜓𝑘 to zero, we obtain 

a system of algebraic equations. By solving this algebraic system, we obtain the analytic solutions of 

Equation 3.  

RESULTS AND DISCUSSION 

Biswas-Milovic Equation  

We first apply the method to Biswas Milovic equation in the form: 

𝑖(𝑞𝑚)𝑡 + 𝛼(𝑞𝑚)𝑥𝑥 + 𝛽𝐹(|𝑞|2)𝑞𝑚 = 0,                                                                                                (8) 

where 𝛼 and 𝛽 are constants and 𝑞 is the function of (𝑥, 𝑡). For the solutions, we can choose the wave 

transformation as follows: 

𝑞(𝑥, 𝑡) = 𝜃(𝜎)𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜑),  𝜎 = 𝑥 − 𝜗𝑡                                                                                             (9) 

where 𝜅, 𝜔, 𝜗 ≠ 0 are Equation 9. into Equation 8. and seperating it into imaginary and real parts yields 

𝜗 = −2𝑚𝛼𝜅 and  

𝛼(𝜃𝑚)′′ − (𝑚𝜗 + 𝛼𝑚2𝜅2)𝜃𝑚 + 𝛽𝐹(𝜃2)𝜃𝑚 = 0.                                                                               (10) 

We will consider the following two forms of nonlinearty. 

Kerr law nonlinearity 

𝐹(𝜃) = 𝜃 

so that the Equation 8. collapses to 

𝑖(𝑞𝑚)𝑡 + 𝛼(𝑞𝑚)𝑥𝑥 + 𝛽(|𝑞|2)𝑞𝑚 = 0.                                                                                                 (11) 

In this case, Equation 10.  simplifies to 

𝛼𝑚(𝑚 − 1)(𝜃′)2 + 𝛼𝑚𝜃𝜃′′ − (𝑚𝜔 + 𝛼𝑚2 + 𝜅2)𝜃2 + 𝛽𝜃4 = 0.                                                      (12) 

We employ the balance principle by, 
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𝜃(𝜎) = ∑ 𝑏𝑘𝜓𝑘(𝜎)

𝑀

𝑘=1

 

where 𝜓 =
1

√1∓𝑒2𝜎
 and the function 𝜓 is the solution of 

𝜓𝜎 = 𝜓3 − 𝜓   . Then we find that 𝑀 = 2. 

Thus we have 

𝜃(𝜎) = 𝑏0 + 𝑏1𝜓(𝜎) + 𝑏2𝜓2(𝜎)                                                                                                         (13) 

and substituting derivatives of 𝜃(𝜎) with respect to 𝜎 in Equation 13. we obtain 

𝜃′(𝜎) = 2𝑏2𝜃4(𝜎) + 𝑏1𝜃3(𝜎) − 2𝑏2𝜃2(𝜎) + 𝑏1𝜃(𝜎), 

     (14) 

𝜃′′(𝜎) = 8𝑏2𝜃6(𝜎) + 3𝑏1𝜃5(𝜎) − 12𝑏2𝜃4(𝜎) − 4𝑏1𝜃3(𝜎) + 4𝑏2𝜃2(𝜎) + 𝑏1.                               

Substituting Equation 13. and Equations 14. into Equation 12. we have a system of algebraic equations. 

By solving this algebraic system, we find the following solutions of Equation 11. as follows: 

Case 1: When 𝑏0 = 0, 𝑏1 = 0, 𝑏2= −
2√𝑚𝜔

√4𝛽−𝛽𝜅2
,   𝛼 = −

4𝑚𝜔

𝜅2−4
, 

then 

𝑞(𝑥, 𝑡) = −√
𝜅2−4𝛼

4𝛽−𝛽𝜅2

𝑒
𝑖(−𝜅𝑥+

(𝜅2−4)𝛼
4𝑚

𝑡+𝜑)

𝑠𝑖𝑛ℎ(2𝑥−2𝜗𝑡)+2𝑐𝑜𝑠ℎ2(𝑥−𝜗𝑡)
. 

Case 2: When 𝑏0 = 0,    𝑏1 = 0,   𝑏2=
2√𝑚𝜔

√4𝛽−𝛽𝜅2
,    𝛼 = −

4𝑚𝜔

𝜅2−4
, 

then 

𝑞(𝑥, 𝑡) = √
𝜅2−4𝛼

4𝛽−𝛽𝜅2

𝑒
𝑖(−𝜅𝑥+

(𝜅2−4)𝛼
4𝑚

𝑡+𝜑)

𝑠𝑖𝑛ℎ(2𝑥−2𝜗𝑡)+2𝑐𝑜𝑠ℎ2(𝑥−𝜗𝑡)
. 

 

Figure 1.  The solution 𝑞(𝑥, 𝑡) for  𝑚 = −
1

2
, 𝜔 = 1,   𝛽 = −

1

3
 ,   𝜅 = 1,   𝛼 = −

2

3
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Case 3: When 𝑏0 = −
2√−(2+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,  𝑏1 = 0,     𝑏2 = 2√

−(2+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,      𝛼 = −

4𝑚𝜔

𝜅2−4
,  

then 

𝑞(𝑥, 𝑡) = −
1

2
√

𝛼

𝛽
(𝑡𝑎𝑛ℎ(𝑥 − 𝜗𝑡) + 1)𝑒𝑖(−𝜅𝑥+

(𝜅2−4)𝛼

4𝑚
𝑡+𝜑)

. 

Case 4: When 𝑏0 = √
2(−4+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,     𝑏1 = 0,     𝑏2 = −√

−(2+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,       𝛼 = −

4𝑚𝜔

𝜅2−4
, 

then 

𝑞(𝑥, 𝑡) = (
(𝜅−2)√(𝜅+2)𝛼

√2𝛽(𝜅−4)
−

𝑖√𝛼

2√𝛽(sinh(2𝑥−2𝜗𝑡)+2𝑐𝑜𝑠ℎ2(𝑥−𝜗𝑡))
) 𝑒𝑖(−𝜅𝑥+

(𝜅2−4)𝛼

4𝑚
𝑡+𝜑)

. 

Case 5: When 𝑏0 = −√
2(−4+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,       𝑏1 = 0,   𝑏2 = √

−(2+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,     𝛼 = −

4𝑚𝜔

𝜅2−4
,  

then 

𝑞(𝑥, 𝑡) = (−
(𝜅−2)√(𝜅+2)𝛼

√2𝛽(𝜅−4)
 + 

𝑖√𝛼

2√𝛽

1

𝑠𝑖𝑛ℎ (2𝑥−2𝜗𝑡)+2𝑐𝑜𝑠ℎ2(𝑥−𝜗𝑡)
) 𝑒𝑖(−𝜅𝑥+

(𝜅2−4)𝛼

4𝑚
𝑡+𝜑)

. 

Case 6: When 𝑏0 = √
2(−4+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,    𝑏1 = 0,   𝑏2 = −√

8(−4+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,    𝛼 = −

𝑚𝜔

𝜅2+2
, 

then 

𝑞(𝑥, 𝑡) = 𝑖√
2𝛼

𝛽
(𝑡𝑎𝑛ℎ(𝑥 − 𝜗𝑡) + 1)𝑒𝑖(−𝜅𝑥+

(𝜅2+2)𝛼

4𝑚
𝑡+𝜑)

. 

Case 7: When  𝑏0 = −√
2(−4+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
, 𝑏1 = 0,   𝑏2 = √

8(−4+𝜅2)𝑚𝜔

𝛽(𝜅4−2𝜅2−8)
,       𝛼 = −

𝑚𝜔

𝜅2+2
 

then 

𝑞(𝑥, 𝑡) = 𝑖√
2𝛼

𝛽
(𝑡𝑎𝑛ℎ(𝑥 − 𝜗𝑡) + 1)𝑒𝑖(−𝜅𝑥+

(𝜅2+2)𝛼

4𝑚
𝑡+𝜑)

. 

Power law nonlinearity 

For power law nonlinearity 

𝐹(𝜃) = 𝜃𝑛 

so that Equation 8. subsides to 

𝑖(𝑞𝑚)𝑡 + 𝛼(𝑞𝑚)𝑥𝑥 + 𝛽(|𝑞|2𝑛)𝑞𝑚 = 0.                                                                                               (15) 
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The parameter 𝑛 enunciates law nonlinearity of the power in Equation 15. In this case, Equation 11. 

reduces to 

𝛼𝑚(𝑚 − 𝑛)(𝜏′)2 + 𝛼𝑚𝑛𝜏𝜏′′ − (𝑚𝜔 + 𝛼𝑚2𝜅2)𝑛2𝜏2 + 𝛽𝑛2𝜏4 = 0                          (16) 

where 𝜃 = 𝜏
1

𝑛 . Then, we employ the balance principle and find that 𝑀 = 2 then we can write the solution 

of Equation 16. in the form: 

𝜏(𝜎) = 𝑏0 + 𝑏1𝜓(𝜎) + 𝑏2𝜓2(𝜎)                                                                                                         (17) 

By differentiating 𝜏(𝜎) in Equation 17. two times with respect to 𝜎, we obtain 𝜏′(𝜎) and 𝜏′′(𝜎). Then 

putting the terms 𝜏, 𝜏′ and 𝜏′′ into Equation 16. we have an algebraic equation system and solving this 

system, we find the following results: 

Case1: When 

𝑏0 = √
2(8+𝜅2𝑚(3+2𝑚)2)𝑚𝜔

𝛽(2+𝜅2𝑚3)(8+𝜅2𝑚(3+2𝑚)2)
,  𝑏1 = 0,   𝑏2 = −√

8(8+𝜅2𝑚(3+2𝑚)2)𝑚𝜔

𝛽(2+𝜅2𝑚3)(8+𝜅2𝑚(3+2𝑚)2)
,  𝛼 = −

𝑚2𝜔

𝜅2𝑚3+2
,  𝑛 = 𝑚, 

then 

𝑞(𝑥, 𝑡) = 𝑒
𝑖(−𝜅𝑥−

(2+𝜅2𝑚3)𝛼

𝑚2 𝑡+𝜑)
(√

2(8+𝜅2𝑚(3+2𝑚)2)𝑚𝜔

𝛽(2+𝜅2𝑚3)(8+𝜅2𝑚(3+2𝑚)2)
tanh (𝑥 − 𝜗𝑡))

𝑛

. 

Case2: When 

𝑏0 = −√
2(8+𝜅2𝑚(3+2𝑚)2)𝑚𝜔

𝛽(2+𝜅2𝑚3)(8+𝜅2𝑚(3+2𝑚)2)
 , 𝑏1 = 0,  𝑏2 = √

8(8+𝜅2𝑚(3+2𝑚)2)𝑚𝜔

𝛽(2+𝜅2𝑚3)(8+𝜅2𝑚(3+2𝑚)2)
,  𝛼 = −

𝑚2𝜔

𝜅2𝑚3+2
 , 𝑛 = 𝑚, 

then 

𝑞(𝑥, 𝑡) = 𝑒
𝑖(−𝜅𝑥−

(2+𝜅2𝑚3)𝛼

𝑚2 𝑡+𝜑)
(−√

2(8+𝜅2𝑚(3+2𝑚)2)𝑚𝜔

𝛽(2+𝜅2𝑚3)(8+𝜅2𝑚(3+2𝑚)2)
tanh (𝑥 − 𝜗𝑡))

𝑛

. 

Case 3: When 

𝑏0 = 0,     𝑏1 = 0,     𝑏2 = −√
8𝑚𝜔

𝛽(8+𝜅2𝑚(3+2𝑚)2)
,  𝛼 = −

(3+2𝑚)2𝑚𝜔

𝑚(8+𝜅2𝑚(3+2𝑚)2)
,   𝑛 =

1

2
(3 + 2𝑚) , 

then 

𝑞(𝑥, 𝑡) = −𝑒
𝑖(−𝜅𝑥−(

8𝛼

(3+2𝑚)2+𝜅2𝑚𝛼)𝑡+𝜑)
√

8𝑚𝜔

𝛽(8+𝜅2𝑚(3+2𝑚)2) sinh(2𝑥−2𝜗)+cosh(2𝑥−2𝜗)+1
. 
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Case 4: When 

𝑏0 = 0,     𝑏1 = 0,    𝑏2 = √
8𝑚𝜔

𝛽(8+𝜅2𝑚(3+2𝑚)2)
 , 𝛼 = −

(3+2𝑚)2𝑚𝜔

𝑚(8+𝜅2𝑚(3+2𝑚)2)
, 𝑛 =

1

2
(3 + 2𝑚), 

then 

𝑞(𝑥, 𝑡) = −𝑒
𝑖(−𝜅𝑥−(

8𝛼

(3+2𝑚)2+𝜅2𝑚𝛼)𝑡+𝜑)
√

8𝑚𝜔

𝛽(8+𝜅2𝑚(3+2𝑚)2) sinh(2𝑥−2𝜗)+cosh(2𝑥−2𝜗)+1
. 

 

Case 5: When 

𝑏0 =
2√𝑚𝜔(4+2𝜅2𝑚3)

16𝛽+𝜅2𝛽𝑚(18+𝑚(3+2𝑚)(8+𝜅2𝑚2(3+2𝑚)))
,  𝑏1 = 0,   𝑏2 −

2√𝑚𝜔(4+2𝜅2𝑚3)

16𝛽+𝜅2𝛽𝑚(18+𝑚(3+2𝑚)(8+𝜅2𝑚2(3+2𝑚)))
,   

𝛼 = −
𝑚2𝜔

𝜅2𝑚3+2
, 𝑛 =

1

2
(3 + 2𝑚), 

then 

𝑞(𝑥, 𝑡) = 𝑒
𝑖(−𝜅𝑥−(

8𝛼

(3+2𝑚)2+𝜅2𝑚𝛼)𝑡+𝜑) 2√𝑚𝜔(4+2𝜅2𝑚3)

(16𝛽+𝜅2𝛽𝑚(18+𝑚(3+2𝑚)(8+𝜅2𝑚2(3+2𝑚))))𝑐𝑜𝑠ℎ(𝑥−𝜗𝑡)
 . 

Case 6: When 

𝑏0 = −
2√𝑚𝜔(4+2𝜅2𝑚3)

16𝛽+𝜅2𝛽𝑚(18+𝑚(3+2𝑚)(8+𝜅2𝑚2(3+2𝑚)))
 ,  𝑏1 = 0, 𝑏2 =

2√𝑚𝜔(4+2𝜅2𝑚3)

16𝛽+𝜅2𝛽𝑚(18+𝑚(3+2𝑚)(8+𝜅2𝑚2(3+2𝑚)))
 , 

𝛼 = −
𝑚2𝜔

𝜅2𝑚3+2
 ,  𝑛 =

1

2
(3 + 2𝑚), 

then 

𝑞(𝑥, 𝑡) = −
2√𝑚𝜔(4+2𝜅2𝑚3)𝑒

𝑖(−𝜅𝑥−(
8𝛼

(3+2𝑚)2+𝜅2𝑚𝛼)𝑡+𝜑)

(16𝛽+𝜅2𝛽𝑚(18+𝑚(3+2𝑚)(8+𝜅2𝑚2(3+2𝑚))))𝑐𝑜𝑠ℎ(𝑥−𝜗𝑡)
. 

Gerdjikov-Ivanov Equation 

𝑖𝑞𝑡 + 𝛼𝑞𝑥𝑥 + 𝛾𝑞𝑥𝑡 + 𝛽|𝑞|4 = 𝑖(𝜍𝑞2𝑞𝑥 + 𝛼𝑞𝑥 + 𝜆(|𝑞|2𝑞)𝑥) + Θ(|𝑞|2)𝑥𝑞.                                       (18) 

The dependent variable  𝑞(𝑥, 𝑡) which is a complex function, indicates wave profile. Indicates the 

distance along the fiber x, which is the independent variable and the independent variable t indicates the 

time dimensionlessly. In Equation 18. the first term indicates linear temporal evolution and the second 

term refers the scattering of velocity group, on the left hand side of the equation the third term 

exemplifies spatio-temporal scattering and and finally the fourth term is accountable for qunitic-

nonlinearity. On the right side, α is the scattering between the modal, the coefficient λ is the self-

correcting term and Θ indicates nonlinear scattering. The equilibrium between nonlinearity and speed 

distribution causes a soliton. 
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By considering the traveling wave transformation: 

𝑞(𝑥, 𝑡) = 𝜃(𝜎)𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜑), 𝜎 = 𝑥 − 𝜗𝑡 

where 𝜗 is the solution velocity, 𝜅 is the solution frequency, 𝜔 is the soliton wave number and 𝜑 is the 

phase constant. 

Appliying traveling wave transformation in Equation 16. and seperating it into real and imaginary 

parts, we obtain 

𝜗(1 − 𝛾𝜅) + 𝛼 + 2𝛼𝜅 − 𝛾𝜔 + 2Θ𝜃3 + (𝜍 + 3𝜆)𝜃2 = 0.                                                                   (19) 

Equating the coefficients of the linearly independent functions to zero gives 

𝜗 = −
𝛼 + 2𝛼𝜅 − 𝛾𝜔

(1 − 𝛾𝜅)
 

whereever 𝛾𝜅 ≠ 1 along with the constrait conditions Θ = 0 and 𝜍 + 3𝜆 = 0. 

 

The real part gives 

(𝛼 − 𝛾𝜗)𝜃′′ − (𝜔 + (𝛼 + 𝛾)𝜅2 + 𝛼𝜅)𝜃 + (𝜍 − 𝛾)𝜅𝜃3 + 𝛽𝜃5 = 0.                                                    (20) 

Balancing the highest order derivative and the nonlinear term in Equation 20. gives 𝑀 = 1. So, 

𝜃(𝜎) = 𝑏0 + 𝑏1𝜓(𝜎)                                                (21) 

Substituting the derivatives into Equation 20. and accumulating the coefficient of each power of 

𝜓𝑘 and setting each of coefficient to zero, then solving the resulting algebraic equation system we obtain 

the following solutions: 

Case 1: 𝑏0 = 0,      𝑏1 = − (
3𝛾𝜗−𝛼

𝛽
)

1

4
,     𝜔 = 𝛼 − 𝛾𝜗 − 𝛼𝜅 − 𝛼𝜅2 − 𝛾𝜅2,      𝜍 =

3𝜅−4√3𝛽(𝛾𝜗−𝛼)𝜆

3𝜅
  .                         

Inserting the above coefficients into Equation 21., we obtain the following solution of Equation 18.: 

𝑞(𝑥, 𝑡) = − (
3𝛾𝜗−𝛼

𝛽
)

1/4 𝑒𝑖(𝜅𝑥+(𝛼−𝛾𝜗−𝛼𝜅−𝛼𝜅2−𝛾𝜅2)𝑡+𝜑)

sinh(2𝑥−2𝜗)+cosh (2𝑥−2𝜗)
 . 

Case 2: 𝑏0 = 0,      𝑏1 = − (
3𝛾𝜗−𝛼

𝛽
)

1

4
,   𝜔 = 𝛼 − 𝛾𝜗 − 𝛼𝜅 − 𝛼𝜅2 − 𝛾𝜅2,     𝜍 =

3𝜅−4√3𝛽(𝛾𝜗−𝛼)𝜆

3𝜅
. 

Inserting the above coefficients into Equation 21., we obtain the following solution of Equation 18.: 

𝑞(𝑥, 𝑡) = (
3𝛾𝜗−𝛼

𝛽
)

1/4 𝑒𝑖(𝜅𝑥+(𝛼−𝛾𝜗−𝛼𝜅−𝛼𝜅2−𝛾𝜅2)𝑡+𝜑)

sinh(2𝑥−2𝜗)+cosh (2𝑥−2𝜗)
 . 
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Figure 2. The solution 𝒒(𝒙, 𝒕) for 𝜶 = 𝟏 

Remark 

Although the solitary wave solutions obtained by extended modified Kudryashov method, the 

increase values of the parameters may affect the wavelength and velocity of the wave. Increasing values 

of parameters may affect wave length and wave velocity. 

CONCLUSION 

In this study, the extended modified Kudryashov method has been proposed to construct analytic 

solutions of evolutionary equations with constant coefficients. Using the proposed method, we have 

achieved our goal that obtaining the analytical solutions of the Biswas-Milovic equation and Gerdjikov- 

Ivanov equation. The Kudryashov method yieleded more cases of traveling wave solutions. Moreover, 

changes in parameters affect both the wavelength and the velocity of the wave. The resulting solutions 

may be important for certain specific physical events. It can be concluded that this method is standard 

and effective, allows us to solve complex algebraic calculations. 
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