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1. Introduction 

Neuronal action potentials are the basic units of brain 

activity but how millions of neurons adjust their 

interactions remains an open problem. Different patterns 

of synchronization behavior have been observed by the 

excitable cells after an applied stimulation or during 

spontaneous activity [1-3]. These synchronizations have 

been observed in different sensory tasks including visual 

[4], auditory [5] as well as in the motor system [6]. Some 

pathological conditions in brain activity are related to the 

disturbance of the synchronization patterns [7]. Once the 

dynamics of the synchronization changes, the pattern 

activity between neurons change mostly due to the 

communication between the ion channels. However, the 

effects of the ion channels on the information transfer are 

still unclear. We approach this question with a statistical 

measure called transfer entropy.  

Transfer entropy is a non-parametric statistical measure 

capable of capturing nonlinear source-destination relations 

between multi-variate time series [8-9]. Data recorded 

from neurons involve generally one or more variables and 

the interactions between these variables are highly 

nonlinear. So, applying the transfer entropy method is fit 

to analyze these types of neuronal data. Directed 

information methods like transfer entropy reveal an 

analytical difference between the direction of the 

information flow between the neurons in a network. We 

perform the TE analysis on the two-neuron conductance-

based Hodgkin-Huxley (HH) neuronal network to obtain 

how their connectivity changes due to conductances. 

It has been shown that the relationship between the 

parameters including ionic conductances, applied current, 

or coupling constant of a neuron affects the pattern of 

synchronization [10-11]. However, analyzing the roles of 

intrinsic ionic conductances in information transfer is 

limited. Most neurons involve voltage-gated currents 

together with background ‘passive’ currents and we will 

be focusing on their influence on information flow [12]. 

To the best of our knowledge there have been no works 

detailing how ionic conductances can tune the direction of 

information flow between the neurons in a neuronal 

network. 

Conductance-based models have been used to generate 

the spiking activity of electrically excitable cells including 

heart cells, pancreatic-beta cells and neurons and it has 

proved itself as a very successful tool to mimic the spiking 

activity and analyze the systems deeply [13-15]. 
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Mathematical models of the neurons can contain many free 

parameters that drive the activity pattern such as the 

maximal conductances of the different ionic currents, 

applied current, the coupling constant, or noise strength 

[16]. These parameters should be determined either by 

experimental measurements or by simulations of complex 

optimization problems until the model performs truly. 

However, conductances of real neurons are not constant 

parameter, they can change with the changing activity of 

the cell according to the intrinsic dynamics of the currents 

[17]. We focus on the effects of the maximal conductances 

in a coupled Hodgkin-Huxley neuronal network that we 

defined.  In our model, the coupling is defined from 

Neuron 1 to Neuron 2 and in the system, while Neuron 1 

is spiking due to the applied current, Neuron 2 is spiking 

due to the coupling from Neuron 1. In this network, there 

are two negative feedback variables for each neuron. The 

activation of a K+ current (n) responsible for the upstroke 

of an impulse together with the inactivation of the Na+ 

currents (h) provides negative feedback to the system. On 

the other hand, Na+ current activation (m) responsible for 

starting the spiking activity provides positive feedback for 

each neuron in our network model.  

Here, we explore the activities of voltage-gated Na+, K+ 

channels, and passive leak ion channels using a Hodgkin-

Huxley-type model network. For a coupled HH model, we 

show that the activities due to the changes in the 

conductance parameters of these channels manifest 

themselves as variations of the synchrony of the action 

potentials and the spike intervals of the coupled system. 

Due to these changes, the roles of the affecting and the 

affected neurons can easily switch, causing a change of 

direction in coupling. In order to explore this phenomenon 

from data, we propose the utilization of transfer entropy, 

which is a non-parametric information theoretic quantity 

used to detect the direction of the statistical interactions 

between two variables, even if they are nonlinearly 

dependent as in this application. We show that we can 

detect any change in the direction between the affected and 

the affecting neurons and demonstrate this as a function of 

changing conductance values. 

Our findings are important in terms of understanding the 

changes in channel activation/inactivation properties as a 

result of changes in channel densities which can reveal the 

physiological or pathological situations affecting the 

neuronal network activity in the way neurons respond to 

changes in conductances. 

 

2. Methods 

In this work, we focus on the analysis of a network of 

two coupled neurons using the HH model system and 

apply the transfer entropy method to this model with 

changing maximal conductances. We studied the effects of 

varied potassium, sodium, and leak conductances on 

transfer entropy in two populations of conductance-based 

model neurons. 

2.1 Transfer Entropy 

An effective mathematical modeling of a physical 

phenomenon is of utmost importance to better understand 

and describe the factors and their relationships causing it. In 

statistics and machine learning, many methods, such as 

regression and neural networks, have been utilized in science 

and engineering for this purpose. In addition to modeling, 

information theory has let us to quantify the interactions 

between different variables and/or model parameters using 

data. In particular, Shannon entropy is an information 

theoretical quantity to describe the average uncertainty of a 

system, model or a parameter and it is defined by the 

following equation: 

𝐻(𝑉) = − ∑ 𝑝(𝑣) log(𝑝(𝑣)).              (1)𝑣∈𝑉   

 

where H denotes the entropy of a random variable “V” and 

p(v) represents its probability density function (pdf). Using 

this main concept, other information theoretical quantities, 

like the Shannon entropy, Mutual Information (MI), 

Kullback-Leibler divergence and Transfer Entropy (TE), are 

defined in the literature [18-19]. Among these, MI is used to 

quantify the "amount of information" obtained about one 

random signal through observing the other random signal, 

which can be expressed by the following equation: 

 

𝑀𝐼(𝑉1, 𝑉2) = ∑ ∑ 𝑝(𝑣1, 𝑣2)𝑣2∈𝑉𝑣1∈𝑉 log
𝑝(𝑣1,𝑣2)

𝑝(𝑣1)𝑝(𝑣2)
,   (2)  

 

where 𝑀𝐼(𝑉1, 𝑉2)  denotes the mutual information between 

random variables 𝑉1 and 𝑉2. Above, it is observed that this 

quantity is defined in terms of the pdf of random variables 

and becomes zero for the statistical independence case, i.e. 

p (𝑣1, 𝑣2) =p( 𝑣1 )p( 𝑣2 ). MI can be utilized to identify 

nonlinear relationships among random variables, whereas 

the correlation coefficient ρ is optimal as long as there is a 

linear relationship. MI between two variables can also be 

expressed as a summation of Shannon entropies as shown 

below: 

𝑀𝐼(𝑉1, 𝑉2) = 𝐻(𝑉1) + 𝐻(𝑉2) − 𝐻(𝑉1, 𝑉2),         (3) 

 

where 𝐻(𝑉1, 𝑉2) is the joint Shannon entropy. Here, we note 

that 𝑀𝐼(𝑉1, 𝑉2) =  𝑀𝐼(𝑉2, 𝑉1) , meaning that MI is a 

symmetric measure. Therefore, if we would like to identify 

the direction of information flow from one variable to 

another, MI is not a sufficient approach. Instead, Schreiber 

[19] proposed another information theoretical quantity, 

called Transfer Entropy, which is capable of detecting the 

direction, i.e. either 𝑉1  effects 𝑉2 , or 𝑉2effects 𝑉1 , for two 

variables. In the literature, the affecting variable is generally 

known as the “source” and the affected variable is known as 

the “target” variable. The TE in two directions are calculated 

from data by using the following equations: 
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𝑇𝐸𝑉1𝑉2
= 𝑇 (𝑉2(𝑖+1)|𝑽𝟐(𝑖)

(𝑘)
, 𝑽𝟏(𝑖)

(𝑙)
) =

∑ 𝑝 (𝑣2(𝑖+1), 𝒗𝟐(𝑖)

(𝑘)
, 𝒗𝟏(𝑖)

(𝑙)
) log2

𝑝(𝑣2(𝑖+1)|𝒗𝟐(𝑖)
(𝑘)

,𝒗𝟏(𝑖)
(𝑙)

)

𝑝(𝑣2(𝑖+1)|𝒗𝟐(𝑖)

(𝑘)
)𝑣2(𝑖+1),𝒗𝟐(𝑖)

(𝑘)
,𝒗𝟏(𝑖)

(𝑙) ,   

(4) 

 

𝑇𝐸𝑉2𝑉1
= 𝑇 (𝑉1(𝑖+1)|𝑽𝟏(𝑖)

(𝑘), 𝑽𝟐(𝑖)
(𝑙)) =

∑ 𝑝 (𝑣1(𝑖+1), 𝒗𝟏(𝑖)

(𝑘)
, 𝒗𝟐(𝑖)

(𝑙)
) log2

𝑝(𝑣1(𝑖+1)|𝒗𝟏(𝑖)
(𝑘)

,𝒗𝟐(𝑖)
(𝑙)

)

𝑝(𝑣1(𝑖+1)|𝒗𝟏(𝑖)
(𝑘)

)
,

𝑣1(𝑖+1),𝒗𝟏(𝑖)
(𝑘)

,𝒗𝟐(𝑖)
(𝑙)          (5) 

 

where (𝑖 +  1) is an index for the leading time instant and 

(𝑖)  is an index for the current time. Above, 𝒗𝟏(𝑖)

(𝑘)
=

{𝑣1(𝑖)
, … , 𝑣1(𝑖−𝑘+1)

} shows the vector including the value of 

𝑉1  at time instant (𝑖) and its values at (𝑘 − 1) preceeding 

time instants. Similarly, 𝒗𝟐(𝑖)

(𝑙)
= {𝑣2(𝑖)

, … , 𝑣2(𝑖−𝑙+1)
} 

denotes the vector including the value of 𝑉2 at time instant 

(𝑖) and its values at (𝑙 − 1) leading time instants. Here, 𝑉1   

shows the k-th order and 𝑉2  shows the l-th order Markov 

processes. In the literature, 𝑘 and 𝑙 are also referred as the 

embedding dimensions. In our simulations, one past value of 

each signal is taken into consideration by assuming 𝑘 =

 𝑙 =  1  during TE analysis. In this case, TE can be estimated 

by the marginal and joint Shannon entropies as follows: 

 

𝑇𝐸𝑉2𝑉1
= 𝑇 (𝑉1(𝑖+1)|𝑽1(𝑖)

, 𝑽2(𝑖)
) = 𝐻 (𝑉1(𝑖)

, 𝑉2(𝑖)
) −

𝐻 (𝑉1(𝑖+1)
, 𝑉1(𝑖)

, 𝑉2(𝑖)
) + 𝐻 (𝑉1(𝑖+1)

, 𝑉1(𝑖)
) − 𝐻 (𝑉1(𝑖)

)  

(6) 
 

In order to analyze the effect of change in conductance 

parameters, we utilize TE as defined above. In these 

equations, we note that the pdf’s of variables need to be 

estimated from data first. Here, utilized histogram based 

estimations to infer the multivariate pdf’s given above. To do 

this, both source and target data are separated into certain 

number of bins and the frequency of data in each volume 

element is used as the pdf estimate [20-21]. As an example, 

we illustrate the joint probability density estimate , 

�̂� (𝑉1(𝑖)
, 𝑉2(𝑖)

), of two action potential data, using 10 and 

100 bins for the marginal and joint histograms, respectively, 

in Figure 1.In order to judge if the estimated values are 

significant, we utilize a surrogate data testing with a p-value 

of 0.05. 

The rest of the approach proceeds as follows: The 

probability density function of each term in (6) is estimated 

by the illustrated histogramming given above and the 

following entropy terms are obtained using (1) and its 

multivariate versions: 

𝐻 (𝑉1(𝑖)
, 𝑉2(𝑖)

) , 𝐻 (𝑉1(𝑖+1)
, 𝑉1(𝑖)

, 𝑉2(𝑖)
) , 𝐻 (𝑉1(𝑖+1)

, 𝑉1(𝑖)
), 

𝐻 (𝑉1(𝑖)
) . Finally, TE from 𝑉2𝑡𝑜 𝑉1  is computed by the 

substitution of these in (6). The procedure is shown in the 

Figure 2. 

 
Figure 1. Probability density estimation from neuron action 

potential data using histograms. 

 

 
Figure 2. The block diagram of the proposed approach. 

 

2.2 Model 

Neurons are electrically excitable cells and responsible for 

the information transfer in our body through electrical 

signals called action potentials or spikes. Hodgkin and 

Huxley (HH) defined a first mathematical model that 

explains the generation of spikes using a nonlinear 

differential equation system [22]. K+ and Na+ ions together 

with the Cl- ions are mainly responsible for the electrical 

behavior of the HH system. We consider a Hodgkin-Huxley 

type model describing the activity of two coupled neuronal 

network with coupling corresponds to that of an electrical 

synapse as shown in Figure 3. Electrical synapses are 

specific sites where gap junction channels bridge the plasma 

membrane of two neurons. Gap junction is a gap between the 

pre- and post-synaptic neurons and impulse in here are 

transmitted in both directions [23]. So we define the coupling 

is proportional to the difference between the pre-synaptic and 

postsynaptic membrane potentials.  



 

 

 
Figure 3. Model configuration for two-neuron Hodgkin-Huxley 

network 

 

The differential equations for the rate of change of voltage 

𝑉1  and 𝑉2 for these neurons are given as follows: 

𝐶𝑚

𝑑𝑉1

𝑑𝑡
= 𝐼𝑎𝑝𝑝 − 𝐼𝑁𝑎,1 − 𝐼𝐾,1 − 𝐼𝐿,1,                 (7) 

𝐶𝑚

𝑑𝑉2

𝑑𝑡
= −𝐼𝑁𝑎,2 − 𝐼𝐾,2 − 𝐼𝐿,2 − 𝑘(𝑉1 − 𝑉2)     (8) 

 

where 𝐶𝑚 is the membrane capacitance, 𝐼𝑎𝑝𝑝 is the applied 

current. Here, 𝐼𝑁𝑎,𝑖  is the fast sodium current,  𝐼𝐾,𝑖  is the 

delayed rectifying potassium current and 𝐼𝐿,𝑖  is the leak 

current that all measured in  
𝜇𝐴

𝑐𝑚2  for 𝑖 = 1,2 . Coupling 

between the two neurons is simply defined by voltage 

difference as  𝑘(𝑉1 − 𝑉2)  and coupling strength is 𝑘.  

In our HH network model, ionic currents for each neuron 

𝑥 = 1,2 are defined as follows: 

𝐼𝑁𝑎,𝑥 = 𝑔𝑁𝑎,𝑥̅̅ ̅̅ ̅̅ ̅𝑚3ℎ(𝑉𝑥 − 𝑉𝑁𝑎) ,                        (9) 

𝐼𝐾,𝑥 = 𝑔𝐾,𝑥̅̅ ̅̅ ̅𝑛4(𝑉𝑥 − 𝑉𝐾)     ,                        (10) 

𝐼𝐿,𝑥 = 𝑔𝐿,𝑥̅̅ ̅̅ ̅(𝑉𝑥 − 𝑉𝐿)     .                           (11) 

 

𝑉𝑁𝑎, 𝑉𝐾, 𝑉𝐿 are the reversal potentials associated with the 

currents. Here m represents the Na+ activation and h 

represents the inactivation of the channel. n is the activation 

variable of the K+ current. Here 𝑔𝑥̅̅ ̅ denotes the maximal 

conductances. Gating functions of the ion channels defined 

with activation and inactivation dynamics and changing with 

time according to the differential equations below:  

𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉) − 𝑥

𝜏𝑥(𝑉)
  ,      𝑥 = 𝑚, ℎ, 𝑛.           (12) 

 

The equilibrium activation and inactivation functions are 

defined as follows;  

𝑥∞(𝑉) =
𝛼𝑥(𝑉)

𝛼𝑥(𝑉) + 𝛽𝑥(𝑉)
,    𝑥 = 𝑚, ℎ, 𝑛,         (13) 

 

where (𝜏𝑥) shows the time that the channel needs to reach the 

equilibrium. Time constants in our network model are 

defined as: 

𝜏𝑥(𝑉) =
1

𝛼𝑥(𝑉) + 𝛽𝑥(𝑉)
,   𝑥 = 𝑚, ℎ, 𝑛.          (14) 

Table 1 contains the information on the transition rates 𝛼𝑥  

and 𝛽𝑥  and the parameter values used to simulate the 

network. 

Table 1. Transition rates and parameter values for the coupled two-

neuron network model. 
 

Transition rates (ms-1) 

𝛼𝑚 0.1(40 + 𝑉)/(1 − exp(−(55 + 𝑉)/10) 

𝛽𝑚 4 exp(−(65 + 𝑉)/18) 

𝛼ℎ 0.07 exp(−(65 + 𝑉)/20) 

𝛽ℎ 1/(1 + exp(−(35 + 𝑉)) 

𝛼𝑛 0.01(55 + 𝑉)/(1 − exp(−(10𝑉 + 55)) 

𝛽𝑛 0.125 exp(−(𝑉 + 65)/80) 

Parameter values 

𝐶𝑚   =  1 𝜇𝐹 𝑉𝑁𝑎  =   50 𝑚𝑉 𝑔𝑁𝑎  =   120 𝜇𝑆 

𝐼𝑎𝑝𝑝  =  8 𝑚𝐴 𝑉𝐾  =   −77 𝑚𝑉 𝑔𝐾  =   36 𝜇𝑆 

𝑘   =   0.25 𝑉𝐿  =   −54.4 𝑚𝑉 𝑔𝐿  =   0.3 𝜇𝑆 

 

2.3 Simulation:  

 Model network is solved by XPPAUT software [24] using 

a 4th order Runge-Kutta solver with a time step of 0.001ms 

and the application of the transfer entropy method is 

simulated by the MATLAB software. Initial values for the 

simulations are considered as: 𝑉1 = 𝑉2 = −65, 𝑚1 =

𝑚2 = 0.05, ℎ1 = ℎ2 = 0.6 and 𝑛1 = 𝑛2 = 0.317. 

 

3. Results 

Varying ionic conductances have an effect on the cell’s 

electrical activity and understanding the underlying reason is 

biologically crucial. Here, we investigate this by focusing on 

three conductances that are available in the Hodgkin-Huxley 

neuronal network model. Here, the defined coupled neurons 

show phase-locked spiking. By definition, the Neuron 1 is 

spiking due to applied current and the Neuron 2 is spiking 

due to the coupling from Neuron 1. So originally the 

direction of the information flow is defined from Neuron 1 

to Neuron 2 (1-to-2). We both independently change the 

conductances of each current separately and the same 

currents’ conductances simultaneously under the 

observation of the amount of information flow. For all cases, 

we simulate transfer entropy analysis over the ranges of 𝑔𝑥 

parameters for which the model network exhibits tonic 

spiking and analyzes whether the order of the information 

flow changes due to the strength of the maximal 

conductances or not. 

 

3.1 The effects of changing maximal potassium 

conductances in the model 

 Altering the kinetic properties of K+ current in the HH 

model is known to alter the spike duration and interspike 

interval [15]. And the maximal K+ conductances 𝑔𝐾1  and 

𝑔𝐾2 in our coupled two-neuron network model measures the 

amount of subtractive feedback to the system from each 

neuron. So here we ask whether the information flow 

changes the direction by changing the amount of subtractive 

feedback with altering the conductances separately (𝑔𝐾1 or 

𝑔𝐾2) and simultaneously (𝑔𝐾1 and 𝑔𝐾2).  
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Figure 4. Transfer entropy results with changing a) 𝑔𝐾1, maximal conductance of K+ current for Neuron 1 b) 𝑔𝐾2, maximal 

conductance of K+ current for Neuron 2 and c)  𝑔𝐾1 & 𝑔𝐾2, maximal conductances of K+ currents for Neuron 1 and Neuron 2 

simultaneously with the same ratio. 

 

Figure 5. Pattern of spiking activity of Neuron 1 and Neuron 2 when A)  𝑔𝐾1=20, 𝑔𝐾2=36; B) 𝑔𝐾1=30, 𝑔𝐾2=36; C)  𝑔𝐾1=36, 𝑔𝐾2=20; D) 

𝑔𝐾1=36, 𝑔𝐾2=30; E)  𝑔𝐾1 = 𝑔𝐾2 = 20; F) 𝑔𝐾1 = 𝑔𝐾2 = 30. 

 

 Figure 4 shows the effects of changing 𝑔𝐾1  (panel A), 

changing 𝑔𝐾2(panel B), and changing 𝑔𝐾1 and 𝑔𝐾2 together 

(panel C) on information flow as a result of transfer entropy 

simulation. Information flow from Neuron 1 to Neuron 2 is 

shown as 1-to-2 and the information flow from Neuron 2 to 

Neuron 1 is shown as 2-to-1. Figure 5 shows the effect of the 

changing maximal conductances on the output signal in 

terms of the synchrony, spike duration, and interspike 

interval. We can see that, the direction of flow changes with 

the increasing 𝑔𝐾1 conductance in Figure 4A. Even though 

our coupling is defined as 1-to-2, before 𝑔𝐾1 around 27, the 

TE results of 2-to-1 is higher. This can be explained as the 

𝑔𝐾1 arranges the amount of the subtractive feedback and 

when the amount of subtractive feedback is high enough for 

Neuron 1, the frequency of Neuron 1 is decreasing by 

increasing the interspike interval as shown in Figures 5A and 

5B.   

 As a result, input coming to Neuron 2 from Neuron 1 

dominates the information flow and causes the change of the 

direction from 1-to-2 to 2-to-1 (Figure 4A). 

The characteristic of the TE curves for varying 𝑔𝐾2 does not 

cross each other meaning that the information flow does not 

change direction according to the strength of the subtractive 

feedback due to K+ current of Neuron 2 [25]. To be able to 

change the information flow in this coupled system, we 

should support Neuron 2, but increasing 𝑔𝐾2 will do the 

inverse and the phase locked system is not affected as 

illustrated in Figure 5C&5D.  

Once we start to increase the K+ conductance of each 

neuron together with the same ratio, we observe a similar 

effect of increasing the K+ conductance of Neuron 1. For 

lower values of maximal K+ conductances (𝑔𝐾1 and 𝑔𝐾2 ) 

information is transferred  from Neuron 2 to Neuron 1. But 

there is a threshold value around 𝑔𝐾1 = 𝑔𝐾2 = 28, that the 

information changes the direction to 1-to-2. Figure 5E and 

5F shows the spiking behavior and how the phase-locked 

system is affected by the changes of both K+ conductances.  
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Figure 6. Transfer entropy results with changing a) 𝑔𝑁𝑎1, maximal conductance of Na+ current for Neuron 1 b) 𝑔𝑁𝑎2, maximal 

conductance of Na+ current for Neuron 2 and c)  𝑔𝑁𝑎1 & 𝑔𝑁𝑎2, maximal conductances of Na+ currents for Neuron 1 and Neuron 2 

simultaneously with the same ratio. 

 

 
 

Figure 7. Pattern of spiking activity of Neuron 1 and Neuron 2 when A)  𝑔𝑁𝑎1=140, 𝑔𝑁𝑎2=120; B) 𝑔𝑁𝑎1=200, 𝑔𝑁𝑎2=120; C)  

𝑔𝑁𝑎1=120, 𝑔𝑁𝑎2=100; D) 𝑔𝑁𝑎1=120, 𝑔𝑁𝑎2=160; E)  𝑔𝑁𝑎1 = 𝑔𝑁𝑎2 = 120; F) 𝑔𝑁𝑎1 = 𝑔𝑁𝑎2 = 140. 

 

Since the system is highly nonlinear, forecasting the 

direction of the flow according to current strength is almost 

impossible without further analysis like we applied here with 

Transfer Entropy. 

 

3.2 The effects of changing maximal sodium 

conductances in the model 

 The activity pattern that our model network displays are 

also controlled by Na+ conductances 𝑔𝑁𝑎1  and 𝑔𝑁𝑎2 

providing positive feedback to the related neurons. 

Additional Na+ conductance supports the neuron to act more 

profoundly to equivalent input current as we can see in 

Figure 7. 

  Increasing the Na+ current for Neuron 1 without 

increasing the K+ current can cause the model network to 

drive into a more depolarized state and that is why 

information transfer changes direction from 1-to-2 to 2-to-1 

(Figure 6A).  

 Once we compare the results of Na+ and K+ conductance 

effect on the TE as shown in the Figure 6A and Figure 4A, 

we observe an opposite behavior since they support the 

system adversely. On the other hand, increases in 𝑔𝑁𝑎2 

conductance only have an inverse effect against the 𝑔𝑁𝑎1 

results. The amount of information flow builds up from 

Neuron 1 to Neuron 2 and the direction of the information 

flow stays stable (Figure 6B). Increasing both Na+ currents 

by increasing the maximal conductances 𝑔𝑁𝑎1  and 𝑔𝑁𝑎2 

together have a similar effect in our coupled network and 

transfer entropy curves do not cross each other and the 

information flow stays the same. 

 The gating dynamics responsible for channel activations 

and inactivations are highly nonlinear especially for the Na+ 

conductance. Na+ channel simulates the dynamics with two 

gates; activation and inactivation. While the activation of the 

Na+ channel supports the system positively, inactivation of 

the channel provides negative feedback to the system [26].  
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Figure 8: Transfer entropy results with changing a) 𝑔𝐿1, maximal conductance of leak current for Neuron 1 b) 𝑔𝐿2, maximal 

conductance of leak current for Neuron 2 and c)  𝑔𝐿1&𝑔𝐿2, maximal conductances of leak currents for Neuron 1 and Neuron 2 

simultaneously with the same ratio. 
 

 
 

Figure 9: Pattern of spiking activity of Neuron 1 and Neuron 2 when A)  𝑔𝐿1=0.25, 𝑔𝐿2=0.3; B) 𝑔𝐿1=0.4, 𝑔𝐿2=0.3; C)  𝑔𝐿1=0.3, 

𝑔𝐿2=0.25; D) 𝑔𝐿1=0.3, 𝑔𝐿2=0.4; E)  𝑔𝐿1=𝑔𝐿2=0.25; F) 𝑔𝐿1=𝑔𝐿2=0.4. 

 

  So, our study reveals unexpected information transfer 

changes following changes in sodium conductance. 

 

3.3 The effects of changing maximal Leak conductances 

in the model 

Leak channels provide a background synaptic activity and 

how they influence the information flow for the coupled 

system is also important to analyze. Altering the leak 

conductance by changing the 𝑔𝐿  parameters also alter the 

intrinsic cell dynamics. However, it is not yet established if 

it changes the information flow. To analyze the change in 

information flow, we simply increase the maximal leak 

conductances of each neuron separately and together in the 

network model. 

   The presence of the added leak conductance for Neuron 1 

does not have any impact on the flow of information as we 

can see in Figure 5A. Transfer entropy results for both 

directions are not affected by the changes in 𝑔𝐿1. The phase-

locked system is not affected by the changes in 𝑔𝐿1 as shown 

in Figure 9A&9B that supports the stability in TE results. 

Neuron 2 does not have an applied input and excitability 

is due to the coupling from Neuron 1. So increasing or 

decreasing the leak conductance causes a corresponding 

increase/decrease in the frequency of action potentials 

affecting the direction of the information flow as we can see 

in Figure 9B and 9C.  

Interspike interval for Neuron 2 decreases as 𝑔𝐿2 increases 

and 2-to-1 coupling turns to the 1-to-2 coupling between 

neurons. During this change in the coupling, the direction of 

the information flow also changes. Similar results are 

observed once both the leak conductances are perturbed as 

shown in Figure 8C and Figure 9E&F. So conductance-

based networks can show both ways of information flow 

according to the strength of the leak conductance.  

While the information flow occurs from Neuron 2 to 

Neuron 1 for smaller 𝑔𝐿 values, the direction oscillates with 

an increasing 𝑔𝐿2  value. These results suggest that the 

interaction between the coupled network dynamics critically 

changes by the effects of leak conductance by changing the 

interspike variability and as a result the direction of the 

information flow changes between the neurons.  

214 



 

 
4. Conclusion 

The objective of this study is to determine the effects of 

changing conductances on the two –neuron HH network 

by using the transfer entropy which is an information-

theoretical quantity. Our defined model involves two 

synchronized neurons due to the coupling defined from 

Neuron 1 to Neuron 2. Firstly, we observe a strong 

correlation between the maximal conductances of the ion 

channels 𝑔𝑁𝑎, 𝑔𝐾 and 𝑔𝐿, the action potential duration and 

interspike interval.  Once we perturb these parameters, the 

pattern of synchronization for the neuronal networks also 

changes dramatically. That is why it is crucial to analyze 

the ambiguity of the parameters in the network model. In 

order to understand the population behavior of neurons, we 

should understand the relations under the nonlinear 

dynamics involved in the AP network. Here, to understand 

how neural systems integrate, encode, and compute 

information, we use transfer entropy, which is capable of 

catching the nonlinear interactions between the variables. 

For the two-neuron HH network, the TE analysis reveals 

that information transfer changes direction with the 

maximum conductances against the coupling defined 

originally. This coupling between neurons is modeled by 

the nonlinear equation system of (7) and (8), where it is not 

obvious that the first neuron can also be affected by the 

second. However, using TE, we show that the latter 

statement can also come true as a result of changing 

conductances. For example, from Figure 2A, we can 

conclude that the direction of coupling (information flow) 

is from neuron 2 to neuron 1 for conductance levels up to 

𝑔𝐾1 ≅ 27  as the probability of predicting the current 

values of neuron 2’s action potential by using its own past 

values and the past values of neuron 1 is higher than the 

probability of the predictability of that of neuron 1 from its 

own past and neuron 2’s past. In other words, for this 

conductance zone, 𝑇𝐸𝑉2𝑉1
> 𝑇𝐸𝑉1𝑉2

. Similarly, we note 

that this directionality is reversed as the conductance 

values exceed 27 for this case.  

We observe these changes with each maximal 

conductance including the leak channel. Either having a very 

strong or very weak leak for Neuron 2 changes the 

information flow. We observe that there is an interval for 𝑔𝐿2 

that holds the network stable as is defined. On the other hand, 

Na+ channel activation provides a positive feedback to the 

network and once we increase the maximal conductance of 

the Neuron 1 there is a threshold that changes the information 

flow from 1-to-2 to 2-to-1 due to the strong positive feedback 

flows from Neuron 1 to Neuron 2. K+ channel activation, on 

the other hand, provides negative feedback to the system and 

we observe an opposite behavior once we perturb the K+ 

maximal conductance as we expect. This time, for lower 

values of the 𝑔𝐾1, information flow changes direction from 

1-to-2 to 2-to-1 due to the strong negative feedback flow 

from Neuron 1 to Neuron 2.  

Depending on the ion channels property, changing the 

maximal conductance of either each neuron separately or 

together, can change the amount of information flow against 

the coupling. This result highlights that since different data 

sets can closely optimize the experimental data and the flow 

of the direction changes with the changing maximal 

conductances, the chosen parameter set is matter even 

though it can mimic the data well.    

 The main effect of the perturbation of conductances is to 

change the synchrony with either changing the interspike 

interval or spike duration. According to the perturbed 

parameter we observe the disruption of the synchronized 

network. The TE analysis is defined for inspecting the 

information transfer between the signals. For neuronal spikes 

simulated by our defined network, TE analysis reveals useful 

information about the parameters of the involved ion 

channels.  Since the network is highly nonlinear, the effect 

of adding or subtracting a conductance can change the 

different intrinsic properties like the values of other 

parameters. That is why we need deeper analysis to better 

understand the underlying behavior of neuronal networks.  

 This work presents a complementary analysis to our 

previous effort on the full network investigation of a coupled 

two neuron HH model where the effects of additional noise 

are examined. 
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