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A Survey on Tube Surfaces in Galilean 3-Space 

 

Highlights 

❖ The Clairaut’s theorem can be expressed for geodesic movement on tube surface defined in a coordinate system adapted 

to one parameter group of symmetries  

❖ The specific energy and the angular momentum can be given on tubular surfaces in Galilean 3-space 

❖ The conditions of being geodesic on the tubular surface can be given  with the help of Clairaut’s theorem 

 

Graphical Abstract 

In this paper, the tube surfaces generated by the curve defined in Galilean 3-space are examined and some certain results of 

describing the geodesics on the surfaces are also given. Furthermore, the conditions of being geodesic on the tubular surface are 

obtained with the help of Clairaut’s theorem, which allows us to constitute the specific energy. The physical meaning of the specific 

energy and the angular momentum is of course related with the physical meaning itself. Our results show that the specific energy 

and the angular momentum obtained on tubular surfaces can be expressed using arbitrary geodesic curve in Galilean space. In 

addition, some characterizations are given for these surfaces, with the obtained mean and Gaussian curvatures. 

 

Aim 

We consider the tube surfaces in Galilean 3-space to express specific kinetic energy and angular momentum on surfaces. 

 

Design & Methodology 

We indicate physical concepts on tube surface. Considering differential geometry formulas, we express them in Galilean 3-space. 

 

Originality 

All findings in the paper are original. 

 

Findings 

We define the tube surfaces using the arbitrary curve in Galilean 3-space. We calculate the specific kinetic energy and angular 

momentum on tube surface. Also, we give the geodesic equations on this surface. 

 

Conclusion  

The tubular surface and some certain results of describing the geodesics given on the surfaces are examined. Furthermore, we 

have explored the conditions of being geodesic, in which the curve can be chosen to be the curve defined in G3, which allows us to 

constitute the specific energy, our results show that the specific energy and the angular momentum obtained on tubular surfaces 

can be expressed using arbitrary geodesic curve in Galilean space. 
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 ABSTRACT 

In this study, the tube surfaces generated by the curve defined in Galilean 3-space are examined and some certain results of 

describing the geodesics on the surfaces are also given. Furthermore, the conditions of being geodesic on the tubular surface are 

obtained with the help of Clairaut’s theorem, which allows us to constitute the specific energy. The physical meaning of the specific 

energy and the angular momentum is of course related with the physical meaning itself. Our results show that the specific energy 

and the angular momentum obtained on tubular surfaces can be expressed using arbitrary geodesic curve in Galilean space. In 

addition, some characterizations are given for these surfaces, with the obtained mean and Gaussian curvatures.  

Keywords: Galilean space, tube surface, geodesic curve, specific kinetic energy, specific angular momentum. 

3-Boyutlu Galilean Uzayında Tüp Yüzeyler Üzerine 

Bir Araştırma 

ÖZ 

Bu çalışmada, Galilean 3-uzayında tanımlanan eğri tarafından üretilen tüp yüzeyleri incelenmiş ve yüzeyler üzerindeki 

jeodeziklerin açıklanmasının bazı sonuçları da verilmiştir. Ayrıca, tüp yüzeyde jeodezik olma koşulları, spesifik enerjiyi oluşturmak 

için Clairaut's teoremi yardımıyla elde edildi. Spesifik enerjinin ve açısal momentumun fiziksel anlamı elbette ki fiziksel anlamın 

kendisiyle ilişkilidir. Sonuçlarımız tüp yüzeylerde elde edilen spesifik enerjinin ve açısal momentumun Galilean uzayında keyfi 

jeodezik eğri kullanılarak ifade edilebildiğini göstermektedir. Ayrıca, elde edilen ortalama ve Gauss eğrilikleri elde edilerek, bu 

yüzeyler için bazı karakterizasyonlar verildi.  

Anahtar Kelimeler: Galilean uzay, tüp yüzeyi, jeodezik eğri, spesifik kinetik enerji, spesifik açısal momentum.

1. INTRODUCTION 

In recently, many researchers have begun to examine the 

curves and surfaces in Galilean space and afterwards 

pseudo-Galilean space. Geodesics have mostly studied in 

Riemannian geometry, metric geometry and general 

relativity by a lot of mathematicians. More surely, a 

curve on a surface is called to be geodesic if its geodesic 

curvature is zero. The geodesic equations are given by 

constant of motion due to energy, many approaches that 

reflect important use of energy idea are introduced in 

many books according to concerned topics. However, it 

seems attractive to use the relativistic energy in defining 

the central force problem. Furthermore, the equation of 

motion including the energy and angular momentum are 

a natural topic using by many applications. 

In [3], the differential features of tubular surfaces were 

given by the author. In [5], the definition of parallel 

surface was given in Galilean space, the first and the 

second fundamental forms of parallel surfaces and 

connection between the curvatures of the parallel 

surfaces in Galilean space was also determined by the  

authors. In [6], the Darboux vectors of ruled surfaces 

were investigated and relationships between Darboux 

and Frenet vectors of each type of ruled surfaces were 

obtained by C. Ekici and M. Dede in pseudo-Galilean  

space. In [7], the problem of constructing a family of  

surfaces was analyzed from a given spacelike (or 

timelike) geodesic curve by the authors taking the Frenet 

frame of the curve in Minkowski space and they 

expressed the family of surfaces as a linear combination 

of the components of this frame and the necessary and 

sufficient conditions were also given. In [9], the twisted 

surfaces according to the supporting plane and type of 

rotations in pseudo-Galilean were investigated. In [10], 

the rotation surfaces in 4-dimensional pseudo-Euclidean 

spaces were studied by the authors. Also, the description 

of rotational surfaces in 4-dimensional (4D) Galilean 

space was expressed by the authors using a curve and 

matrices in 4G , [1]. In [11], the weighted mean and 

weighted Gaussian curvatures of surfaces of revolution 

in Galilean 3-space with density were expressed by the 

authors. In [15], the characterizations of helix for a curve 

with respect to the Frenet frame were obtained by authors 

in 3G . In [16], the authors investigated some curves in 

plane and in Galilean plane 2G . Furthermore, they 

defined the slant helix and gave the some characterization 

of slant helices in Galilean space 3G . In [18], the author 

studied surfaces of revolution in 3G  and characterized 

surfaces of revolution in 
3

1G  as to the position vector 

field and Gauss map. Furthermore, some studies and 
*Sorumlu Yazar  (Corresponding Author)  
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results about surfaces in 3G  were given by the authors in 

[3,8,13,23]. In [24], the author established Frenet-Serret 

frame of a curve in the 
4G  and he obtained the mentioned 

curve's Frenet-Serret equations. Also, he proved that 

tangent vector of a curve in  
4G  satisfing a vector 

differential equation of fourth order. 

The mass  m   of the particle whose motion traces out a 

geodesic path is unconnected in this problem, these 

physical features as energy and momentum that they 

include the mass as well proportioned factor will instead 

by changed by the “specific” features supplied by 

dividing out the mass. Therefore, since the kinetic energy 

is 2/2mWE = , the specific kinetic energy 

( )2/2WE =  is divided by the mass m . Hence, both 

the specific energy and speed are constant for an affine 

parametrization of the geodesic. In [21,22], the system of 

two second order geodesic equations it is expressed that 

a standard physics technique of partially integrating them 

can be used and so reducing them to two first order 

equations by taking two constants of the movement that 

it expose from the equations of movement and in these 

references some conclusions in a constant energy (and in 

a constant angular momentum and rotational symmetry) 

are given according to time translation. Therefore, we can 

say that the specific energy of the particle is constant 

because of the point of view of its motion in space as the 

physical approach according to references [21,22], it is 

only accelerated perpendicular to the surface. If a force is 

accountable for this acceleration, that is to say the normal 

force which supplies the particle on the surface, since it 

is perpendicular to the velocity of the particle. Hence, we 

can say that its energy and specific energy E must be 

constant. Resembling the speed must be constant along a 

geodesic according to this cause, the existence of this 

constant is a result of the one parameter rotational group 

of symmetries of the surface, as a constant of the 

movement introduces a new thing since the surface is 

invariant under any 1-parameter group of symmetries. 

Mathematically, this is a constant obtained by Clairaut 

for geodesic movement on surface defined in a 

coordinate system adapted to this 1-parameter group of 

symmetries, [17]. 

In this study, we try to express specific energy and 

specific angular momentum on tube surfaces in Galilean 

space and that the speed is constant along a geodesic is 

shown according to Clairaut's theorem. Furthermore, 

using some parameters, the geodesic formulaes are given. 

 

2. PRELIMINARIES 

The scalar product of the vectors ),,( 321 uuuU = ,   

),,( 321 vvvV =  in 3G  is expressed as 

.
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The cross product of Galilean space is given as 
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[12]. 

Let  3R: GI →  be an unit speed curve given 

by ))(),(,()( xzxyxx = , where x is a Galilean 

invariant parameter. The vectors of the Frenet-Serret 

frame are defined as  

tx❖x1,y❖x, z❖x;

nx

❖❖
x


❖❖
x


1
x

0,y❖❖x, z❖❖x;

bxtxnx 1
x

0,z❖❖x,y❖❖x,

 

where the real valued functions )()( xtx =  and 

)()( xnx =  are curvatures of the curve  . The 

curvature and torsion of the curve   are defined by 

( ).)(),(),(det
)(

1
)(

;)()(

2
xxx

x
x

xx








=

=

 

For the curve in 3G , Frenet-Serret equations are written 

as follows  

. , , nbbnnt  −===                     (3) 

The equation of a surface ),( v=  in 3G  is given 

by 

)).,(),,(),,((),( vzvyvxv  =        (4) 

Then the unit isotropic normal vector field   on 

),( v  is given by 

,
v

v




=




                         (5) 

where the partial differentiations with respect to   and 

v  will be denoted as follows  

.
),(

 ,
),(

v

vv
v




=




=






          (6) 
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On the other hand, the isotropic unit vector   on the 

tangent plane of the surface is defined as 

,
w

xx vv −
=


                        (7) 

where 



 

= ),( vxx , v

vx

vx 

= ),(
 and .vw =   

Let us define 

2,1, ;

 ; ;

 ; , ,

21

21

==

==

===
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x
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x
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jiijv
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        (9) 

where 
  and 

 v  are the projections of the vectors 

  and v  onto the yz  -plane, respectively, and the 

first fundamental form 
2ds  of the surface ),( v  is 

given by 

( )

( ),2 2

2212

2

11

2

21

2

2

2

1

2

dvhdvdhdh

dvgdgdsdsds

+++

+=+=




       (10) 

[12]. In this case, the coefficients of  
2ds  are denoted by 



ijg . That is, the function can be represented in terms of 

ig  and ijh  as follows 

.2 11

2

2122122

2

1

2 hghgghgw +−=          (11) 

The Gaussian curvature and the mean curvature of a 

surface are defined by means of the coefficients of the 

second fundamental form ijL , which are the normal 

components of  )2,1,( = jiij . So that, 

,
2

ijk

k

ijij L+=                 (12) 

where 
k

ij  is the Christoffel symbols of the surface and 

L ij  are given by 
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1

,
1

22
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from this, the Gaussian curvature K and the mean 

curvature H of the surface are given as 

 ,
2

 

,

2

2

22
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1122111
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2
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122211

w
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w
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+−
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−
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(14) 

[19]. 

Definition 1.   Let ))(,0),(()( shss  =  be a regular 

parametrized plane curve with 

)( ,0)( shzsx ==  . Then, the surface of 

revolution is created by rotating the curve   around the 

z  axis yielding a surface parametrized by 

,20,

 ));(,sin)(,cos)((),(







=

vIu

uhvuvuvu
 

[12, 17]. 

Definition 2. Let MI → R:  be a curve given 

by  

( ) ( ) ( )( ),)(),(,)(),(,)(),()( svszsvsysvsxs  =      

          (15) 

which is an arc length parametrized geodesic on a surface 

of revolution. We need the differential equations satisfied 

by ( ))(),( svs . Denote the differentiation with respect 

to s  by an overdot. From the Lagrangian: 

,
2.

2

2.

vL  +=                          (16) 

we obtain the Euler-Lagrange equations 
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        (17) 

so that is a constant of the motion, [12, 17]. 

Definition 3. A vector ),,( 321 vvvv =  is said to be a 

non-isotropic if 01 v . If 01 =v , the vector 

),,( 321 vvvv =  is said to be isotropic and all unit 

isotropic vectors are denoted as  ),,1( 32 vvv = , [12]. 

Theorem 1. (Clairaut's Theorem) Let   be a geodesic 

on a surface of revolution S , let   be the distance 

function of a point of S  from the axis of rotation, and let 

  be the angle between    and the meridians of S . The 

 sin  is constant along  . Conversely, if  sin  is 

constant along some curve   on the surface, and if no 

part of   is part of some parallel of S , then   is a 

geodesic, [17].  
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3.  THE MATHEMATICAL APPROACH ON 

TUBE SURFACE IN 3G  

In this section, we try to express the tube surfaces 

generated by the position vector ( )  of an arbitrary 

curve according to mathematical approach in 3G . 

Let us denote by the vector   connecting the point from 

the parametrized curve )(  from the surface. Also, the 

position vector of a point on the surface is given as 

 += )(R , since   lies in the Euclidean normal 

plane of the curve )( , the points at a distance A  from 

a point of  )(  form a Euclidean circle in 3G . Thus, it 

is easy to write that 

),sin(cos
→→

+= bvnvA                 (18) 

where A  is a constant radius of a Euclidean circle of the 

Galilean frenet frame, v  is the Euclidean angle between 

the isotropic n


 and , [4]. Combining R  and (18), we 

can define a tubular surface with constant radius A  in 

term of the Galilean Frenet frame as  

),sin(cos)(),(
→→

++= bvnvAv     (19)                                           

where n


 is the unit isotropic normal vector of the surface 

along a curve )( . 

 

3.1. Clairaut's Theorem on Tubular Surfaces in 

Galilean 3-Space 

In this subsection, we use the position vector )(  of an 

arbitrary curve in 3G  (see [2]) and using the Clairaut's 

theorem in ,3G  the tube surface generated by this curve 

are characterized. 

Theorem 2. In [2], the position vector )(  of an 

arbitrary curve with curvature )(  and torsion )(  

in the Galilean space 3G  is computed from the natural 

representation form 

( )( )
( )( )

.

)(sin)(

,)(cos)(

,

)(





















=












ddd

ddd  

Theorem 3.  Let 3R: GI →  be a regular 

isotropic curve with curvatures 0)(   in 3G  and let 

),( v  be the tubular surface generated by the position 

vector )(  of an arbitrary curve in 3G . Then, the 

following statements hold: 

 

1) The tubular surface is given by 

( )( )
( ) ,)sin(

cos),(

bvAdg

nvAdftv
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++=







 

where ( )f  and ( )g  are the differential functions.  

2) The Gaussian curvature K  and the mean curvature 

H  of the surface   are given by  
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and this family of the tube surface has constant mean 

curvature. 

3) The first fundamental form for the surface   is given 

by 

I 
d2 0

0 d2
A2dv 2

.

 

4) The curve )(  is a geodesic on the surface ),( v  

if and only if the following parameters hold  

,
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and sin
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where  

( ) ( ) ,)(cos)(  ddf =  

gsin d d; ci,di  ▪ 0 .  

Proof. The tube surface generated by the position vector 

)(  of an arbitrary curve in 3G  is parametrized by 

),sin(cos)(),( bvnvAv


++=       (20)                         

where v  is angle between the isotropic vectors n


 and 

A


 and using the following the curve 

( )( )
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,
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,)(cos)(,
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we can write the tubular surface as 
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( )( )
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where  
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Then, we get partial derivatives of ),( v  with respect 

to   and v  as follows 
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Also, for these vectors, the vector cross product is found 

as 

A

bvAnvA

v

v
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−−=






sincos

         (24) 

and from previous equations, by using (24), the unit 

isotropic normal vector   of ),( v  is found as  

 ,sincos bvnv


−−=                      (25) 

furthermore, from (7), we can write that 


v

A
A sinv n Acosv b ,

 

since n


 and b


 are the isotropic vectors, we can find 
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If we substitute (26) and (27) into (10), the coefficients 

of the first fundamental form of the special tube surface 

with the Galilean Frenet frame in 3G , and for isotropic 

vectors since  ,1=  are obtained as  

( )
.2 222

2222

dvAdI

dvAddI
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Moreover, to compute the second fundamental form of 

),( v , we have to calculate the following equations 
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From (13) and (29), the coefficients of the second 

fundamental form are calculated as  
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Thus, the Gaussian curvature K and the mean curvature 

H are expressed as  
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Also, the first fundamental form has two variable 

parameters with 012 =h . Moreover, it is important to 
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note that, the coordinates of parametrization are 

orthogonal and since the first fundamental form is 

diagonal. Therefore, that means this surface has an 

orthonormal basis, thus is possible to generate Clairaut's 

theorem to it. So, for the isotropic vectors since ,1=  

we have the Lagrangian equation 

LvALvdAd =+=+
2.

2

2.
222 2or  2      (33)                   

and a geodesic on the surface ),( v  is given by the 

Euler-Lagrangian equations 
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which means that 
.

22 vA  is constant along the geodesic 

and we have 

.
2

22

2 ds
A

c
v +=                       (35) 

Let )(  be a geodesic on the surface ),( v , it is 

given by ))(),(( svs  and also let   be the angle 

between 
.

  and a meridian, where N  is the vector 

pointing along meridians of   and vN  is the vector 

pointing along meridians of  . Hence, we can say that 

},{ vNN  is a orthonormal basis and hence a unit vector 

.

  tangent to  ),( v  can be written as 

.

sincos

..

...

v

vv

ANvN

vNN

+=

+=+=








 

We see that sin
.

=vA , hence we can write 

sin22
.

2 AvA =  being a constant along ).(  On 

the contrary, )(  is a curve with sin22
.

2 AvA =  

in 3G  which is a constant, the second Euler-Lagrange 

equation is satisfied, differentiating L  and substituting 

this into the second equation yields the first Euler 

Lagrange equation. Hence, we obtain  

.
sin

ds
A

v


=                             (36) 

Furthermore, for ,14

1 ds
c

+=  we have 
4

.
1c

=  is 

constant along the geodesic and we see that  cos
.

= , 

hence we can write as  cos44
.

=  being a constant 

along ).(  On the contrary, )(  is an curve with 

cos4  that is a constant, the first Euler Lagrange 

equation is supplied, differentiating L  and substituting 

this into the second equation yields the second Euler 

Langrange equation. So, we get 

, cosor  cos 8cdsds +==       (37)                      

where  .R, ii dc  

Theorem 4. The general equations of geodesics on the 

tube surfaces generated by the isotropic position vector 

)(  of an arbitrary curves in 3G  are given by 

1) For the parameter 
22 2

2 dsv
A

c
+= or ,sin1 dsv

A
=  







sin2

sin
 

or 
2

4

2

2

3

2

−
=

−
=

LA

dv

d

c

cLAA

dv

d

                (38a) 

2) For the parameter  14

1 ds
c

+= or ,cos ds =   









cos

cos2
 

or 8
2

2

4

1

A

L

d

dv

cL
Acd

dv

−
=

−=

                 (38b) 

where  0R, ii dc . 

Proof. In order to obtain the general equation of 

geodesics, we should consider the Euler Lagrange 

equations in (17). 

1) For 
22 2

2 dsv
A

c
+=  or ,sin1 dsv

A
=  we explain 

the equation of geodesic, from the solving of the 

differential equations in ( )
v
LL

s
s
v 



 =


 , we obtain  

2

2

2

.

A

c
v =  or .sin

.

A
v =  If we put the value of 

.

v  at 

,2
2.

2

2.

LvA =+  we can write 

,2

2

2

2

L
ds

dv
A

ds

dv

dv

d
=








+







 
             (39) 

we can obtain the general equation of geodesics on 

( )v,  as  .
2

4

2

3
2

c

cLAA

dv

d −
=
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2) For ds cos=  or 14

1 ds
c

+= , from the solving 

of the differential equations in  ( )
 



 =





LL
s

s

, we obtain 

.cos ;
.

4

.
1  ==

c
 If we put the value of 

.

  at the 

lagrangian equation, we get 

.2

2

2

2

L
ds

d

d

dv
A

ds

d
=








+







 




              (40) 

Hence, we obtain the general equation of geodesics on 

( )v,2   as .
1

482

Ac

cL

d

dv −
=


 Also, for the parameters 

,sin
.

A
v =  cos

.

=  and the equations of geodesics are 

given by  

,
cos

cos2
;

sin2

sin 22









A

L

d

dvLA

dv

d −
=

−
=  

Where .R, ii dc  

 

4.  THE PHYSICAL APPROACH ON SPECIAL 

TUBE SURFACES GALILEAN 3-SPACE  

In this section, we try to explain physically, thinking 

tracing out a geodesic by becoming clear the affine 

parameter ( )s  with the time, so that the figure is now 

of a point particle setting out on the surface, following a 

path called the trajectory of the particle. Suppose that 

( ) ( )),( svs  is a parametrized curve on the surface as 

follows 

( ) ( ) ( )
( )( )

( )

( )( )

( )
.

sin

cos
),(

b
svA

dsg

n
svA

dsf
tssvs














+


+










+


+=






  (41) 

Also, the tangent vector of the geodesic curve is called 

as the velocity defined by 

( ) ( )

.

 ;
),(

2/1









=

+=


=

ds

dy

ds

dy
gW

WW
ds

svsd
W

ji

ij

v

v




 (42)  

If we want to calculate the derivative of this tangent 

vector along the curve on the surface, we have to need 

the product and chain rules. Hence, using the chain rule, 

the tangent vector of the curve   can be taken down as  

( ) ( ) ( ) ( )
v

ds

sdv

ds

sd

ds

svsd
+=




 ),(
     (43)                      

.

sincos

..

...

v

vv

ANvN

vNN

+=

+=+=








     (44)            

We think that 
 WW

1

2
−

=


,cosW=  which is 

the first axis, is the radial velocity while 
vW  is the 

horizontal angular velocity and 

sinWAWW vv ==


, which is the second axis, is 

also the horizontal component of the velocity vector. The 

velocity can be symbolized in respect of polar 

coordinates in the tangent plane to do clear its norm and 

slope angle according to the radial direction on the 

surface. The role of the changeable is played by the speed 

in this velocity plane, while the angle   express the side 

of the velocity according to the side 


 in this plane, 

the direction of the velocity with respect to the direction 

N  is given by the angle  . Also, we can say that the 

speed is constant along the geodesic for affinely 

parametrized geodesics and the mass m of the point 

particle that its movement follows a geodesic path is 

insufficient in this matter, physically these features which 

are defined as energy and momentum which necessitates 

the mass as a proportionality element will in place of the 

specific features found by partitioning out the mass. 

Thus, the specific kinetic energy is given as follows 

( ) ( )

( )






















+








=

+=

=
+

=

2

2

2

2222

2
22

2
2

1

sincos
2

1

22

sin2cos2

ds

dv
A

ds

d

WW

WEE
E







 

using the right side of the previous equations we can say 

that both the specific energy and speed are constant along 

geodesic. 

Theorem 5. Let ),( v be the tube surface generated 

by the isotropic position vector )(  of an arbitrary 

curves in 3G . Then, if )(  is a geodesic on the surface 

),( v , the following statements hold: 

1) For the parameter 22 2
2 dsv
A

c
+=  (or 

dsv
A

sin1
= ), the specific angular momentum   is 

given by 

▪ AWsin
 

and the specific energy E  is given by 
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.
sin2

 

 )cos2(
2

1
)2(

2

1

22

2

2

2
2

2

22






A

AAds

d
E





=

+=+







=

 

2) For the parameter ds cos= (or  14
1 ds

c
+= ), 

the specific angular momentum   is given by 

▪ 
1

2
Wcos

 

and the specific energy E  is given by 

( )

.
cos

or  sin8
2

1
8

2

1

2

222

2

22









=

+=





















+=









E

A
ds

dv
AE

 

Proof. )1  For the equations 
22 2

2 dsv
A

c
+=  or 

,sin1 dsv
A

=  we can define as in the case of circular 

movement around an axis with Radius AR =


 or 

R Ae1 , that is to say the velocity 
vV 

ds
dvA in the 

angular side multiplied by the radius A  of the circle. 

Physically, the specific angular momentum   is given as 

following equation 

( ) ,sin.
33 AWWRe G ==


             (45) 

since 
vV ,sin2sin  EWA

ds
dv ===  we can 

write sin2 AWA
ds
dv = , and we say that the specific 

angular momentum is constant along a geodesic. 

Therefore, we have 

.sin2or  
2

2 EA
Ads

dv

ds

dv
A === 


    (46) 

This expression can be rewritten the changeable angular 

velocity dsdv /  in the specific energy formula E , the 

constant specific energy that is given according to the 

radial motion and another constant of the motion is given 

by  

)cos2(
2

1

)
2

(
2

1
)2(

2

1

2

2
2

2

2

5

2

22

A

A

c

Ads

d
E





+=

+=+







=





      (47) 

and from ,sin2 EA=  we find 

▪
2

2A2 sin2


E.

 

2) For the equation ds cos=  (or 14
1 ds

c
+= ) 

we write  cos
2

1
.

2

1 =  being a constant along 

)( and using this situation we explain in this physics 

language. Also, we can express as in the case of circular 

movement round an axis with radius 
2

1=R


 or 

,22

1 eR


−=  that is to say the velocity 
 WW

2

1=


  cos2cos 2

2

1 EW
ds

d ===  in the angular 

direction multiplied by the radius 
2

1  of the circle. The 

first geodesic equation is told that the specific angular 

momentum is constant along a geodesic as follows  

            cos)(
2

1
3 WWRe ==


                     (48) 

since ,cos
2

1  W
ds

d
=  we can write 


cos

2

1
2
1 W

ds

d
= , and we say that the specific angular 

momentum   is constant along a geodesic. 

So, we can write 







cosor 2

cos
2

1

2

1

E
ds

d

W
ds

d

==

==





               (49) 

and from ,cosE=  we find 

E  ▪

cos

2

.

 

Hence, this statement can be rewritten the changeable 

angular velocity dsd /  in the specific energy formula 

according to the constant angular momentum, the 

constant specific energy E  that is given according to the 

radial motion and another constant of the motion is given 

by 

( ).sin8
2

1

8
2

1

222

2

22

A

ds

dv
AE

+=






















+=





                   (50) 

 

 

6. CONCLUSION  

In putting forward consideration the mathematical 
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problem of geodesics on a surface, there is an important 

advantage in conceptual comprehending that results from 

taking the point of view of a physicist by explaining 

parametrized geodesics as the paths traced out in time by 

the motion of a point on the surface, recognizing the 

parameter as the time, this combination of the constants 

of the motion is of course also constant along a geodesic. 

The existence of this constant is a conclusion of the one 

parameter rotational group of symmetries of the tubular 

surface, like this a constant of the movement introduces 

a new thing when the surface is invariant under any one 

parameter group of symmetries, which is seen in the 

variational approximate to the geodesic equations easily. 

Mathematically, this quantity is a constant obtained by 

Clairaut for geodesic movement on surface defined in a 

coordinate system adapted to this one parameter group of 

symmetries [17]. Thinking about energy levels in an 

impact potential for the decreased movement then supply 

to be an extremely useful tool in studying the treatment 

and features of the geodesics.  

In this paper, the tubular surface and some certain results 

of describing the geodesics given on the surfaces are 

examined. Furthermore, we have explored the conditions 

of being geodesic, in which the curve can be chosen to be 

the curve defined in G3, which allows us to constitute the 

specific energy, our results show that the specific energy 

and the angular momentum obtained on tubular surfaces 

can be expressed using arbitrary geodesic curve in 

Galilean space. 
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