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Abstract
We propose a mathematical model for investigating the efficacy of Countermeasure Com-
peting (CMC) strategy which is a method for reducing the effect of computer virus attacks.
Using the Centre Manifold Theory, we determine conditions under which a subcritical
(backward) bifurcation occurs at Basic Reproduction Number R0 = 1. In order to illus-
trate the theoretical findings, we construct a new Nonstandard Finite Difference Scheme
(NSFD) that preserves the bifurcation property at R0 = 1 among other dynamics of the
continuous model. Earlier results given by Chen and Carley [The impact of countermea-
sure propagation on the prevalence of computer viruses, IEEE Trans. Syst., Man, Cybern.
B. Cybern. 2004] show that the CMC strategy is effective when the countermeasure prop-
agation rate is higher than the virus spreading rate. Our results reveal that even if this
condition is not met, the CMC strategy may still successfully eradicate computer viruses
depending on the extent of its effectiveness.
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1. Introduction
Electronic communications media have become major role players in our daily lives

because of their efficiency in exchanging information, processing transactions, capturing
biometric data etc, all of these can be done in real time. However, as impressive as all
this sounds, it comes at an enormous cost in the event of a serious cyber attack such as
denial of service, unauthorised access, financial fraud, theft or even loss of proprietary
information from mobile devices and other vulnerable sources, theft or loss of customer
data, malware etc; see [7].

Several organisations minimise the risk of these attacks by putting in place a combina-
tion of countermeasure strategies such as antivirus and antispyware software, application
level firewalls, encryption of data, vulnerability and patch management tools, web or URL
filtering etc. The report [7] suggests that all these efforts are still far from being adequate,
and thus cyber security remains a cause for concern.

In this paper we develop a mathematical model to further investigate the impact of
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CMC strategy on the spread of computer viruses. The CMC strategy assumes, among
other things, that the propagation rates of countermeasures and viruses are different;
see [6] for a detailed description. Inspired by the models found in mathematical epi-
demiology and the striking analogy between human and computer virus attacks [19], we
formulate a compartmental model; see for instance [4]. This approach is not new, refer to
[13, 18, 20, 23, 24] etc. Our approach is motivated by the fact that epidemiological models
have a disease progression or nonprogression threshold which is known as the basic repro-
duction number [13,15,16,21], and is usually denoted by R0 > 0. In general if R0 < 1, then
the disease dies out in the long run, whereas if R0 > 1 then the disease becomes endemic
in the population. On the other hand, if the model undergoes a backward bifurcation at
R0 = 1, the disease might persist even when R0 < 1. In order to control the disease in the
latter case, R0 has to be reduced until it is much smaller than one.

In a mathematical model by [24], four potential equilibria were determined and anal-
ysed. Their results suggested that CMC is effective, but did not make any mention of the
degree of efficacy of the countermeasure strategy. On the other hand, in [5] the authors
were more specific in their findings that the CMC strategy reduces the scale of virus attack
significantly when the countermeasure propagation rate is higher than the virus spreading
rate.
It is worth mentioning that, in mathematical epidemiology, the term ‘backward bifurca-
tion phenomenon’ is very prominent, and is understood to refer to the region whereby a
stable disease-free equilibrium, a small endemic equilibrium, and a large endemic equi-
librium co-exist while R0 < 1. This terminology is mostly found in scholarly articles,
see for instance [5] and [9], and seldomly in standard texts of dynamical systems. In the
interest of local analysis and the Centre Manifold Theory upon which the main Theo-
rem in [6] is predicated, we will use the following nomenclature: subcritical(backward)
and supercritical(forward) bifurcations instead. The main objectives of this paper are as
follows:

(i) To show that even in a case whereby the virus spreading rate is higher than the coun-
termeasure propagation rate, the virus can still be eradicated if the countermeasures
are effective enough (i.e. they suppress the infection rate adequately).

(ii) To construct a new NSFD scheme which preserves the bifurcation property at R0 = 1.
(iii) To illustrate our results using numerical simulations.
By using the Centre Manifold Theory [5], [22], we will prove the existence of a subcritical
bifurcation whereby a disease might persist even though R0 < 1 and make recommenda-
tions thereafter.

The rest of the paper is organised as follows: Section 2 deals with formulation of the
model, while model analysis is done in Section 3. Bifurcation analysis is found in Section
4. Section 5 is devoted to numerical simulations and discussion. We conclude this work
in Section 6.

2. Formulation of the model
Without causing any confusion among computer scientists and others in related fields,

we will use the term virus for all malware. “Internal computers for computers already
connected in the internet network, External computers for computers not connected to
the internet network”. The model state variables are given in Table 1 while Table 2 displays
parameters.

2.1. The model
Model (2.1) looks very similar to the model in [24] at first glance, but their dynamics

are quite different. In our model the assumption that computers with countermeasures
may be infected by the virus without becoming susceptible first is key. In most cases,
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Table 1. State variables

State Number of Computers at time t

Susceptible: S(t) that have no countermeasures at all
(i.e. a set of external computers connecting to the network
for the first time, together with internal computers
that have been infected and cured).

Infectious: I(t) that have acquired the virus and are capable
of infecting other computers in the network.

Countermeasured: C(t) that are uninfected, have
acquired countermeasures, and are also
capable of disseminating or propagating
countermeasures to all the internal computers
(i.e. both S and I). These computers have much reduced
measure of vulnerabilty to infection due to acquired
countermeasures.

S I C
β1 β2

σβ1γ1

β2

µ µ

µπ

1

Figure 1. Schematic diagram for the
model.

computers with countermeasures are usually considered to be relatively safe from virus
attacks and receive little attention until such time as they show symptoms of infection.
The fraction σ of computers that resist the virus attack is very critical in the efficacy of the
CMC strategy, and this will be elucidated in the results of this paper. External computers
get connected to the network through the S class at the rate π and are all susceptible
to the virus attack. Soon thereafter, they are equipped with some form of antivirus and
proceed to the C class at the rate β2. The computers in class C are also capable of
disseminating countermeasures to I and S at the rate β2. The infected computers I are
patched and fixed at the rate γ1 and join the S class, and remain there until they receive
countermeasures again.

Ṡ = π − β1SI − β2SC + γ1I − µS,
İ = β1SI − β2CI − (γ1 + µ)I + σβ1CI,
Ċ = β2CI + β2SC − σβ1CI − µC,

(2.1)

where {S(0), I(0), C(0)} ∈ R3
+.

3. Model analysis
Let

N(t) = S(t) + I(t) + C(t) (3.1)
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Table 2. Model parameters

π recruitment rate of external computers into the network
µ disconnection rate of internal computers
β2 countermeasure propagation rate
β1 infection rate
σ infection rate suppressant which depends on countermeasure effectiveness
γ1 recovery rate of infectious computers

be the total number of internal computers at time t. Upon adding up the equations in (2.1)
and in view of Eq. (3.1), we obtain

Ṅ = π − µN, (3.2)

which is a linear first order ordinary differential equation (ODE) with the property that

lim
t→∞

N(t) = π

µ
. (3.3)

The model (2.1) is well-posed in the practically feasible domain

D =
{

(S, I, C) ∈ R3|S > 0, I ≥ 0, C ≥ 0, 0 < N ≤ π

µ

}
.

Theorem 3.1. Suppose that (S(0), I(0), C(0)) ∈ D, then system (2.1) has a unique solu-
tion that exists and remains in D for all t ≥ 0.

Proof. The right hand side of system (2.1) is locally Lipschitz in D, so a unique solution
exists. Since S +I +C = N ≤ π

µ
, we have Ṡ + İ + Ċ ≤ 0. According to (2.1) if C = 0, then

Ċ = 0. Similarly, if S = 0, then Ṡ ≥ 0. Moreover, according to the analytical solution of
(3.2) and in view of equation (3.3), if N(t) > 0 at t = 0, then N(t) > 0 for all t > 0. We
therefore conclude that the set D is positively invariant. �

In order to simplify analysis of model (2.1), we consider the following equivalent system
whereby S is replaced by N − I − C:

Ṅ = π − µN,
İ = β1I(N − I − C) − β2CI − (γ1 + µ)I + σβ1CI,
Ċ = β2CI + β2C(N − I − C) − σβ1CI − µC.

(3.4)

3.1. The disease-free equilibrium (DFE)
The DFE point is a steady state solution of system (3.4) that is virus-free. Setting the

right hand side of system (3.4) to zero, we obtain the following equilibria:
E1 = (N∗

1 , I∗
1 , C∗

1 ) =
(

π

µ
, 0, 0

)
,

E2 = (N∗
2 , I∗

2 , C∗
2 ) =

(
π

µ
, 0,

πβ2 − µ2

µβ2

)
.

(3.5)

The DFE point E1 is of no interest to us because C∗
1 = 0. The point E2 is the DFE of

interest and only exists (meaning that it is nonnegative) if

πβ2 > µ2. (3.6)

In the rest of this paper we assume that Eq. (3.6) holds.
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3.2. The basic reproduction number (R0)
The basic reproduction number is defined in [4] as the average number of secondary

infections arising from a single infectious individual during his or her infectious period in
a population of susceptible. To calculate R0, we use the next generation matrix method
by [21]. We consider equations representing the rate of change of Infectious classes which
is only İ in system (3.4). We rewrite the equation for İ as a difference of two components
F(N, I, C) and V(I, C) as

İ = F(N, I, C) − V(I, C), (3.7)
where

F(N, I, C) = β1I(N − I − C) + σβ1CI,

is the rate of appearance of new infections in the Infectious class and
V(I, C) = β2CI + (γ1 + µ)I,

is the transfer rate of computers out of the Infectious state. Then,

R0 =

∂F

∂I
∂V

∂I

∣∣∣∣∣∣∣∣
E2

= σπβ1β2 + (1 − σ)β1µ2

πβ2
2 + µγ1β2

.

3.3. Local stability analysis of the DFE
We linearise system (3.4) at the generalised DFE : (N∗, 0, C∗) to obtain the Jacobian

matrix

J =

 −µ 0 0
0 σβ1C∗ − β1C∗ + β1N∗ − β2C∗ − (γ1 + µ) 0

β2C∗ −σβ1C∗ −β2C∗

 . (3.8)

In order to determine the local stability of E1, we evaluate J at E1 to obtain the matrix
J1 with the following eigenvalues

λ1 = −µ, λ2 = πβ2 − µ2

µ
, λ3 = πβ1 − µγ1 − µ2

µ
. (3.9)

Since λ2 > 0 by the assumption of Eq. (3.6), E1 is unstable.
Similarly, for E2, we obtain the matrix J2 whose eigenvalues are

λ1 = −µ, λ2 = −
(

πβ2 − µ2

µ

)
, λ3 = (µβ2γ1 + πβ2

2)(R0 − 1)
µβ2

. (3.10)

Theorem 3.2. The DFE E2 is locally asymptotically stable (LAS) if R0 < 1 and unstable
if R0 > 1.

Remark 3.3. If R0 = 1, then λ3 = 0. This is a bifurcation point because there is a
qualitative change of E2 from being LAS to unstable and vice-versa.

3.4. The endemic equilibrium
A steady state solution of the system (3.4) whereby the virus persists in the network

is called the endemic equilibrium. A direct calculation reveals that there are endemic
equilibria given by

E3 = (N∗
3 , I∗

3 , C∗
3 ) =

(
π

µ
,

(µγ1β2 + β2
2)(1 − R0)

µβ1(1 − σ)(σβ1 − β2)
,
πβ2 − µ2

µβ2

)
,

E4 = (N∗
4 , I∗

4 , C∗
4 ) =

(
π

µ
,
πβ1 − µ(γ1 + µ)

µβ1
, 0
)

.

(3.11)

Similar to the DFE case, E4 is of no interest in this study because C∗
4 = 0.
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Theorem 3.4. If one of the following statements holds

(i) R0 > 1 and σ <
β2
β1

,

(ii) R0 < 1 and σ >
β2
β1

,

then all components of E3 are positive.

It is quite clear from Theorem 3.4, that model (3.4) can undergo a subcritical bifurcation
at R0 = 1. In order to fully understand the dynamics in the neighbourhood of R0 = 1, we
investigate the bifurcation direction by applying the Centre Manifold Theory.

3.5. Elementary bifurcation
In this subsection we briefly introduce relevant bifurcation theory of continuous and

discrete systems. Consider a dynamical system

ż = H (z, ϕ) , z ∈ Rn, ϕ ∈ R, (3.12)

depending on a parameter ϕ, where H is sufficiently smooth.

Definition 3.5. A point E∗∗ = (z∗, ϕ∗) such that

H(E∗∗) = 0 (3.13)

is called an equilibrium point of system (3.12).

Definition 3.6. A point z∗ ∈ Rn is called a permanent equilibrium point if E∗ = (z∗, ϕ)
is an equilibrium point for all ϕ.

Let JH = DzH(z, ϕ) be the Jacobian matrix of the right hand side of system (3.12).
Furthermore, let λi = λi(ϕ) (i = 1, 2, · · · , n) be parameter dependent eigenvalues of the
matrix JH(E∗). As the parameter ϕ is varied, it may happen that at least one of the
eigenvalues crosses the imaginary axis. The point ϕ = ϕc at which the real part of the
eigenvalue is equal to zero (i.e. Re(λi(ϕc)) = 0 for some i) is called the critical value of the
parameter. If this happens, then the equilibrium point E∗c = (z∗, ϕc) is nonhyperbolic.

Remark 3.7. If an equilibrium point is nonhyperbolic, then linearisation technique fails
to give a conclusive result regarding local asymptotic stability of nonlinear dynamical
systems; see for instance [5] and [22]. In this case, the alternative mathematical tool is
the centre manifold theory (CMT). CMT involves use of appropriate transformation to
express the space Rn as a direct sum of the centre subspace Rc, stable subspace Rs and
unstable subspace Ru as follows:

Rn = Rc ⊕ Rs ⊕ Ru where n = c + s + u, (3.14)

and c, s and u are positive integers; see [11] and [22] for details.

This paper is concerned with the case where the matrix JH(E∗c) has exactly one zero
eigenvalue and all other eigenvalues have negative real parts. To determine local asymp-
totic stability of such a nonhyperbolic equilibrium point we consider the following theorem:

Theorem 3.8. [22] There exists a smooth centre manifold for Eq. (3.12). The dynamics
of Eq. (3.12) restricted to the centre manifold is, for u sufficiently small, given by the
following 1-dimensional ODE

{
u̇ = f(u, h(u, ϕ), ϕ), (u, h(u, ϕ), ϕ) ∈ R × Rn−1 × R,
ϕ̇ = 0.

(3.15)
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Remark 3.9. Theorem 3.8 implies that the dynamics of system (3.12) near (z, ϕ) =
(z∗, ϕc) are topologically equivalent to the dynamics of Eq. (3.15) near (u, ϕ) = (u∗, ϕc)
where u∗ is a permanent equilibrium point of system (3.15).

In order to gain insight into the qualitative features of the equilibrium point E∗c, we
consider the following two restrictions of system (3.15):

u̇ = f (u, ϕc) on Bδ(u∗) (3.16)

and
u̇ = f (u, ϕ) on Bδ(u∗) × (ϕc − ϵ, ϕc + ϵ) =: Uδ,ϵ(u∗, ϕc). (3.17)

Definition 3.10. [22] An equilibrium point (u∗, ϕ) is said to undergo a bifurcation at
ϕ = ϕc if there exist δ > 0 and ϵ > 0 such that the qualitative features of the equilibrium
point (u∗, ϕ) of system (3.17) are not the same as those of the equilibrium point (u∗, ϕc)
of system (3.16).

Remark 3.11. In many applications of dynamical systems it happens that the asymptotic
stability of an equilibrium point changes due to bifurcation, but the equilibrium solution
remains; see for instance [8].

Definition 3.12. Let u∗ ≥ 0 be a permanent equilibrium point of system (3.15). If the
following statements hold,

(i) u∗ = 0 is locally asymptotically stable for ϕ < ϕc and unstable for ϕ > ϕc,
(ii) for ϕ > ϕc, there exists a curve u = u(ϕ) > 0 of locally asymptotically stable

equilibrium points,
then the bifurcation at the equilibrium point (u∗, ϕc) is supercritical (forward).

Definition 3.13. If statement (i) of Definition 3.12 holds and for ϕ < ϕc, there exists a
curve u = u(ϕ) > 0 of unstable equilibrium points, then the bifurcation at the equilibrium
point (u∗, ϕc) is subcritical (backward).

There are some similarities between the bifurcation theory of continuous and discrete
dynamical systems. In what follows we briefly point out some important aspects of the
discrete case. Consider a discrete dynamical system

zn+1 = F (zn, ϕ) , zn ∈ Rn, ϕ ∈ R, (3.18)

depending on a parameter ϕ, and F is sufficiently smooth.

Definition 3.14. A point (z∗, ϕ∗) such that

F (z∗, ϕ∗) − z∗ = 0 (3.19)

is called a fixed-point of system (3.18).

Remark 3.15. According to ([12, pp. 157]), “The bifurcation theory for fixed-points
of system (3.18) with eigenvalue 1 is completely analogous to the bifurcation theory for
equilibria of system (3.12) with eigenvalue 0". Indeed if we let

H(zn, ϕ) = F (zn, ϕ) − zn, (3.20)

then
H(z∗, ϕ) = 0 and DzH(z∗, ϕ) = DzF (z∗, ϕ) − In. (3.21)

It is clear from Eq. (3.21) that DzH(z∗, ϕ) will have a zero eigenvalue if DzF (z∗, ϕ) has
eigenvalue equal to one.
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4. Bifurcation analysis
4.1. A continuous setting

The analysis in this subsection is based on the result in [5] and here we only reproduce
part of it for convenience. Consider the continuous system of ODEs

ẋ = f (x, ϕ) , (4.1)

where the function f : Rn × R → Rn is sufficiently smooth and it is assumed x = 0 is an
equilibrium point of system (4.1) for all values of the parameter ϕ, that is

f(0, ϕ) ≡ 0 (4.2)

and

A = Dxf(0, 0), (4.3)
is the Jacobian matrix of the function f(x, 0) at the point x = 0.

Theorem 4.1. Assume the following:
A1: Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real
parts.
A2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v corresponding
to the zero eigenvalue such that wT · v = 1.
Let fk be the kth component of f and

a =
n∑

k,i,j=1
vkwiwj

∂2fk

∂xi∂xj
(0, 0) ,

b =
n∑

k,i=1
vkwi

∂2fk

∂xi∂ϕ
(0, 0) ,

(4.4)

where we assume that b > 0. Then the local dynamics of system (4.1) around x = 0 are
determined by the sign of the number a as follows:

(i) If a > 0, then the bifurcation at ϕ = 0 is subcritical.

(ii) If a < 0, then the bifurcation at ϕ = 0 is supercritical.

Theorem 4.2. The model (3.4) undergoes a subcritical bifurcation at R0 = 1 if σ >
µ

µ + γ1
.

Proof. Let

β∗
1 = πβ2 + γ1µβ2

σπβ2 + (1 − σ)µ2 , (4.5)

and β1 be the bifurcation parameter for model (3.4) such that if β1 = β∗
1 , then R0 = 1.

Upon evaluating the Jacobian matrix J in Eq. (3.8) at (E2, β∗
1) we obtain

J2|β1=β∗
1

=

 −µ 0 0
0 0 0

β2C∗ −σβ∗
1C∗ −β2C∗

 , (4.6)

whose eigenvalues are

λ1 = −µ, λ2 = −
(

πβ2 − µ2

µ

)
, λ3 = 0. (4.7)
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The right eigenvector w associated with the zero eigenvalue λ3 is given by

w =
(

0,
−w3β2

σβ∗
1

, w3

)T

, w3 ∈ R. (4.8)

We choose w3 = −1, because w2 corresponds to I∗
2 = 0 and thus has to be positive.

Consequently,

w =
(

0,
β2

σβ∗
1

, −1
)T

. (4.9)

The left eigenvector v associated with λ3 = 0 is given by
v = (0, v2, 0) , v2 ∈ R. (4.10)

In order to fulfill the condition wT · v = 1, we choose v2 = 1
w2

to obtain

v =
(

0,
σβ∗

1
β2

, 0
)

. (4.11)

To avoid very messy calculations of the coefficients a and b in Eq. (4.4) and to be consistent
with Theorem 4, we introduce the following notation{

N = x1, I = x2, C = x3,
f1(x1, x2, x3) = ẋ1, f2(x1, x2, x3) = ẋ2, f3(x1, x2, x3) = ẋ3.

(4.12)

Since v2 is the only non-zero component of v, we only evaluate the second order partial
derivatives of f2 at E = (E2, β1 = β∗

1) to obtain
∂2f2
∂x12 = 0; ∂2f2

∂x1∂x2
= β∗

1 ; ∂2f2
∂x1∂x3

= 0;
∂2f2

∂x3∂x2
= − (1 − σ)β∗

1 − β2; ∂2f2
∂x22 = −2β∗

1 ; ∂2f2
∂x32 = 0.

(4.13)

We consider equations (4.9), (4.11), and (4.13), in view of Eq. (4.4), to obtain

a = 2β2(1 − σ)µ(γ1 + µ)
σ2πβ2 + σµ2(1 − σ)

(
σ − µ

µ + γ1

)
(4.14)

and
b = σπβ2 + µ2(1 − σ)

µβ2
> 0. (4.15)

The proof is complete. �

4.2. A discrete setting
We construct a nonstandard finite difference (NSFD) scheme and prove that the scheme

preserves the subcritical bifurcation property of the continuous model at R0 = 1.

4.2.1. NSFD scheme. The introduction of the NSFD schemes goes back about three
decades and is generally attributed to Mickens [17]. Many authors have, over the years,
published extensively on the NSFD schemes with varying focus areas; see for instance
[1–3,9–11,14].
In general, the continuous system

dz

dt
= H(z), z0 = z(t0) ∈ Rn, (4.16)

where H : U ⊆ Rn → Rn is sufficiently smooth on a compact set U , cannot be completely
solved by analytic techniques. Consequently, numerical methods are essential for gaining
useful insights into the solution of such differential equations.
We consider a difference equation

D∆tz
k = G∆t(H, zk), (4.17)
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which gives rise to a sequence {zk}∞
k=0 of approximations to the solution z(t) of (4.16) at

the discrete time steps {tk = t0 + k∆t}∞
k=0, where ∆t ≡ h is the step size,

z(tk) ≈ zk, D∆tz
k ≈ dz

dt

∣∣∣∣
t=tk

, (4.18)

and G∆t(H, zk) approximates the function H(z) in system (4.16). It is worth noting that
the algorithm in (4.17) enables one to find the discrete solution zk+1 at the time tk+1
whenever the solution zk is known at the time tk.

Definition 4.3. ([1]) The difference equation in (4.17) is called a NSFD scheme if at least
one of the following conditions is satisfied:

(i) In the first order discrete derivative D∆tz
k = zk+1 − zk

∆t
, the classical denominator

h = ∆t is replaced by a nonnegative function φ : (0, ∞) → (0, ∞) satisfying the
asymptotic relation

φ(∆t) = ∆t + O
(
[∆t]2

)
. (4.19)

(ii) In the expression G∆t(H, zk), some nonlinear terms are approximated in a nonlocal
manner. For example, a term like z2(tk) is approximated by zk+1zk instead of

(
zk
)2

.

In this work however, we only construct a NSFD scheme that preserves positivity,
elementary stability, and the bifurcation property at R0 = 1. Having these dynamics in
mind, we propose for system (3.4), the following NSFD scheme

Nn+1 − Nn

φ
= π − µNn,

In+1 − In

φ
= β1In

(
Nn+1 − In+1 − Cn+1

)
− β2Cn+1In − (γ1 + µ) In + σβ1Cn+1In,

Cn+1 − Cn

φ
= β2Cn+1In + β2Cn (Nn − In − Cn) − σβ1Cn+1In − µCn,

(4.20)
where φ = φ(∆t) = ∆t + O(∆t2) as ∆t −→ 0; see [17].
The scheme (4.20) may be expressed explicitly in the form

Nn+1 = φπ + (1 − φµ)Nn,

In+1 = φCn+1In (σβ1 − β2 − β1) + φβ1InNn+1 + [1 − φ(γ1 + µ)]In

1 + φβ1In
,

Cn+1 = φβ2Cn (Nn − In − Cn) + (1 − φµ)Cn

1 + φ(σβ1 − β2)In
.

(4.21)

For our purpose, we introduce the following denominator function

φ = 1 − e−q∆t

q
, q > max S1

⋃
S2, (4.22)

where

S1 =
{

γ1 + µ, µ + N∗
}

, S2 =
{ |λi|2

2|Reλi|
: i = 1, 2, 3 and Reλi ̸= 0

}
, (4.23){

λi : |J2 − λiI| = 0, i = 1, 2, 3
}
, (4.24)

N∗ is the upper bound of the total population, I is the 3×3 Identity matrix and J2 = J |E2 .

Remark 4.4. It is worth mentioning that in equation (4.22), the terms (γ1 + µ) and

(µ + N∗) guarantee nonnegativity of discrete solutions, while
(

max |λi|2

2|Reλi|
: i = 1, 2, 3

)
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ensures that local asymptotic stability properties of hyperbolic equilibria of system (3.4)
are preserved; see [11] and [14] for details.

4.2.2. Local stability analysis. Similar to the continuous setting, we linearise sys-
tem (4.21) at the DFE : (N∗, 0, C∗) to obtain the Jacobian matrix

JNS =

 1 − φµ 0 0
0 1 + φ (σβ1C∗ − β1C∗ + β1N∗ − β2C∗ − (γ1 + µ)) 0

φβ2C∗ −φσβ1C∗ 1 − φβ2C∗


= I + φJ,

(4.25)
where I is the 3 × 3 Identity matrix and J is defined in equation (3.8).
The eigenvalues of JNS , denoted by λNSi are given by

λNSi = 1 + φλi, i = 1, 2, 3, (4.26)

where λ1, λ2, λ3 are the eigenvalues of the matrix J . A detailed account of the general
schemes that are similar to scheme (4.21) can be found in [11].

Proposition 4.5. (i) If λi < 0, then |λNSi | < 1.

(ii) If λi > 0, then |λNSi | > 1.

(iii) If λi = 0, then |λNSi | = 1.

Bifurcation analysis of scheme (4.21) relies on the results in [3] and [11]. For ease of
reference, we reproduce it here. Consider a discrete dynamical system

zn+1 = F (zn, ϕ) , zn ∈ Rn, ϕ ∈ R, (4.27)

depending on a parameter ϕ, F is sufficiently smooth and z∗ is a fixed-point for all values
of ϕ.

Theorem 4.6. Assume that

(i) The Jacobian matrix D = DzF (0, 0), has 1 as a simple eigenvalue, and all the other
eigenvalues of D have modulus less than 1.

(ii) The matrix D has a nonnegative right eigenvector w and a left eigenvector v corre-
sponding to the eigenvalue 1 such that wT · v = 1.

Then the local dynamics of system (4.27) around the fixed-point z∗ = 0 are determined by
the signs of the numbers ã and b̃ given below

ã =
n∑

k,i,j=1
vkwiwj

∂2Fk

∂zi∂zj
(0, 0) ,

b̃ =
n∑

k,i=1
vkwi

∂2Fk

∂zi∂ϕ
(0, 0) .

(4.28)

Assuming that b̃ > 0, then
(i) If ã > 0, then the bifurcation at ϕ = 0 is subcritical.

(ii) If ã < 0, then the bifurcation at ϕ = 0 is supercritical.

Theorem 4.7. If the continuous model (3.4) undergoes a subcritical bifurcation at R0 = 1,
so does scheme (4.21).
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Proof. Similar to the proof of Theorem 4.2, β1 is a bifurcation parameter for scheme (4.20)
such that if β1 = β∗

1 , then R0 = 1. Upon evaluating the Jacobian matrix JNS at E∗ =
(E2, β1 = β∗

1) we obtain

JNS |E∗ =

 1 − φµ 0 0
0 1 0

φβ2C∗ −φσβ∗
1C∗ 1 − φβ2C∗

 , (4.29)

with eigenvalues

λ1 = 1 − φµ, λ2 = 1 − φ

(
πβ2 − µ2

µ

)
, λ3 = 1. (4.30)

The right and the left eigenvectors, w and v respectively, associated with λ3 = 1 are the
same as in the continuous setting. Similarly, we introduce the following notation{

Nn = z1, In = z2, Cn = z3,
F1(z1, z2, z3) = Nn+1, F2(z1, z2, z3) = In+1, F3(z1, z2, z3) = Cn+1.

(4.31)

We evaluate the second order partial derivatives of F2 at E = (E2, β1 = β∗
1) to obtain

∂2F2
∂z12 = 0; ∂2F2

∂z3∂z2
= (φ2β2C∗ − φ)(σβ∗

1 − β2 − β∗
1); ,

∂2F2
∂z1∂z3

= 0; ∂2F2
∂z32 = 0; ∂2F2

∂z1∂z2
= φ2β2C∗(σβ∗

1 − β2 − β∗
1),

∂2F2
∂z22 = − 2φ2C∗(σβ∗

1 − β2 − β∗
1)σβ∗

1 − 2φβ∗
1 .

(4.32)

We consider equations (4.9), (4.31), and (4.32), in view of Eq. (4.28), to obtain

ã = φ
2β2(1 − σ)µ(γ1 + µ)
σ2πβ2 + σµ2(1 − σ)

(
σ − µ

µ + γ1

)
= φa

(4.33)

and
b̃ = φ

σπβ2 + µ2(1 − σ)
µβ2

> 0

= φb,
(4.34)

where a and b are defined in equations (4.14) and (4.15) respectively. The proof is complete.
�

5. Numerical simulations and discussion
We use numerical simulations to illustrate the existence of the supercritical and subcriti-

cal bifurcations at R0 = 1. Furthermore, their impact on computer virus control strategies
is discussed.

Example 5.1. We consider system (4.21) with parameters: γ1 = 0.02; π = 1; σ =
0.02; β2 = 0.0015; µ = 0.01; β1 = 0.1.

0.015 = β2
β1

< σ <
µ

γ1 + µ
= 0.333 and R0 = 5.0196 > 1. (5.1)

In Fig. 3, we illustrate the supercritical bifurcation at R0 = 1 of Fig. 2 by means of
the NSFD (4.21). It is not surprising that the virus persists and it approaches a huge
stable endemic equilibrium because R0 = 5.0196 which is quite big. In an ideal situation,
this means that a single infectious computer is capable of successfully infecting five more
computers. In this case a simple intervention is to reduce R0 to less than 1 by increasing
β2 (i.e. increasing the countermeasure propagation rate).
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Figure 2. This figure illustrates a
supercritical bifurcation at R0 = 1
for Example 5.1.

Figure 3. In this figure the Infec-
tious class steadily approaches the
endemic equilibrium. So, for the
data in Example 5.1, the disease per-
sists.

Example 5.2. We consider system (4.21) with parameters: γ1 = 0.7; π = 1; σ =
0.15; β2 = 0.01; µ = 0.01; β1 = 0.08.

0.0141 = µ

γ1 + µ
< 0.125 = β2

β1
< σ and R0 = 0.7459 < 1. (5.2)

In Fig. 5, we illustrate the subcritical bifurcation at R0 = 1 of Fig. 4. It is quite surprising
that the disease persists and it approaches a huge stable endemic equilibrium even though
R0 < 1. In this case virus control is much harder because R0 has to be decreased much
more.
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Figure 4. This figure illustrates a
subcritical bifurcation at R0 = 1 for
Example 5.2.

Figure 5. This diagram illustrates
that when the bifurcation at R0 =
1 is subcritical, there is an endemic
equilibrium even though R0 < 1.

Example 5.3. We consider system (4.21) with parameters: γ1 = 0.7; π = 1; σ =
0.019; β2 = 0.01; µ = 0.01; β1 = 0.08.

µ

γ1 + µ
= 0.0141 < σ < 0.125 = β2

β1
and R0 = 0.1356 < 1. (5.3)

In Fig. 7, we show that even though there is a subcritical bifurcation at R0 = 1 as
illustrated in Fig. 6, the virus can still be brought under control by decreasing σ (i.e. by
making sure that the control strategy is much more effective). It has to be noted that the
virus propagation rate (β1) is larger than the countermeasure propagation rate (β2), but
the virus can still be brought under control.

6. Conclusion
In this paper, we developed a new virus propagation mathematical model to study

the impact of countermeasure competing (CMC) strategy on computer virus propagation
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Figure 6. This figure illustrates a
subcritical bifurcation at R0 = 1 for
Example 5.3.

Figure 7. This diagram illustrates
that even in the presence of a subcrit-
ical bifurcation at R0 = 1, the virus
may still be brought under control or
eliminated.

through information sharing network. A nonstandard finite difference (NSFD) scheme
which preserves the bifurcation property of the continuous model at R0 = 1 is constructed.
Using the centre manifold theory, we established conditions under which the bifurcation
is (i) supercritical and (ii) subcritical. We demonstrated numerically that, if a subcritical
bifurcation occurs, reducing R0 below 1 might not be sufficient to bring the virus under
control.
The main conclusion of this study is that antivirus efficacy (1 − σ), virus propagation rate
(β1) and countermeasure propagation rate (β2) are all essential for effective CMC strategy.
More importantly, this study suggests that in cases where virus is propagated faster than
the countermeasures, a very effective antivirus assists the CMC strategy in mitigating the
impact of the virus on the network.
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