Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 69, Number 1, Pages 993-994 (2020) DOI: 10.31801/cfsuasmas.688995 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

ERRATUM TO: " (θ, μ, τ) -NEIGHBORHOOD FOR ANALYTIC FUNCTIONS INVOLVING MODIFIED SIGMOID FUNCTION" [COMMUN. FAC. SCI. UNIV. ANK. SER. A1 MATH. STAT., 68(2) (2019), 2161-2169]

HALIT ORHAN AND MURAT ÇAĞLAR

We draw attention to some corrections in the section of "Applications of Jack's Lemma" which appear in the above-mentioned paper. Our results have changed due to the lack of the $\frac{1}{\tau(s)}$ factor on the left side of equation (in page 2166, line 24). So, we correct them in the following:

- In page 2166, line 19: $\cdots < 2\mu \cdots$ should be $\cdots < 2\mu\tau(s) \sqrt{2(1-\cos\theta)}$.
- In page 2166, line 22: $\cdots < \mu + \cdots$ should be $\cdots < \mu \tau(s) + \sqrt{2(1-\cos\theta)}$.

• In page 2166, line 24:
$$\frac{f_{\tau}(z)}{z} - \dots = \dots \text{ should be}$$

$$\frac{1}{\tau(s)} \left(\frac{f_{\tau}(z)}{z} - e^{i\theta} \frac{g_{\tau}(z)}{z} - (1 - e^{i\theta}) \right) = \mu w(z).$$

- In page 2167, line 2: $|f'_{\tau}(z) e^{i\theta}g'_{\tau}(z)| = \cdots$ should be $\frac{1}{\tau(s)}|f'_{\tau}(z) e^{i\theta}g'_{\tau}(z)| = \cdots$.
- In page 2167, line 4: $\cdots < 2\mu \cdots$ should be $\cdots < 2\mu\tau(s) \sqrt{2(1-\cos\theta)}$.
- In page 2167, line 9: $\cdots = \left| \frac{1}{\tau(s)} (1 e^{i\theta}) + \cdots \right|$ should be $\cdots = \left| (1 - e^{i\theta}) + \mu \tau(s) e^{i\theta} (1 + k) \right|.$
- In page 2167, line 10: $\geq \mu(1+k) \cdots$ should be $\geq \mu \tau(s)(1+k) |1-e^{i\theta}|$.
- In page 2167, line 11: $\geq 2\mu \cdots$ should be $\geq 2\mu\tau(s) \sqrt{2(1-\cos\theta)}$.
- In page 2167, line 15: $\cdots = \left| \frac{1}{\tau(s)} (1 e^{i\theta}) + \cdots \right|$ should be $\cdots = \left| (1 - e^{i\theta}) + \mu \tau(s) w(z) \right|.$
- In page 2167, line 16: $\leq \frac{1}{\tau(s)} |1 e^{i\theta}| + \cdots$ should be $\leq |1 e^{i\theta}| + \mu \tau(s) |w(z)|$.
- In page 2167, line 17: $< \mu + \cdots$ should be $< \mu \tau(s) + \sqrt{2(1-\cos\theta)}$
- In page 2167, line 20: $\cdots < 2\mu \frac{\sqrt{2}}{\tau(s)}$ should be $\cdots < 2\mu\tau(s) \sqrt{2}$.

Received by the editors: January 13, 2020; Accepted: May 09, 2020. 2020 Mathematics Subject Classification. 30C45.

Key words and phrases. Neighborhoods, sigmoid function, analytic funcions, Jack's Lemma.

- In page 2167, line 22: $\cdots < \mu + \frac{\sqrt{2}}{\tau(s)}$ should be $\cdots < \mu \tau(s) + \sqrt{2}$
- In page 2168, line 2: $\cdots > \frac{1}{\tau(s)}(1-\cos\theta) \frac{3\mu}{4}$ should be $\cdots > (1-\cos\theta) \frac{3\mu}{4}$
- In page 2168, line 4: $\cdots > \frac{1}{\tau(s)}(1-\cos\theta) \frac{\mu}{2}$ should be $\cdots > (1-\cos\theta) \frac{\mu}{2}$
- In page 2168, line 6: $\frac{f_{\tau}(z)}{z} \cdots = \cdots$ should be
- $\frac{1}{\tau(s)} \left(\frac{f_{\tau}(z)}{z} e^{i\theta} \frac{g_{\tau}(z)}{z} (1 e^{i\theta}) \right) = \mu \frac{w(z)}{1 w(z)}$.
- In page 2168, line 8: $\cdots = \frac{1}{\tau(s)}(1 e^{i\theta}) + \cdots$ should be $\cdots = (1 e^{i\theta}) + \mu \tau(s) \frac{w(z)}{1 w(z)} + \mu \tau(s) \frac{zw'(z)}{(1 w(z))^2}.$
- In page 2168, line 14: $\cdots = \operatorname{Re}\left(\frac{1}{\tau(s)}(1-e^{i\theta}) + \cdots\right)$ should be

$$\cdots = \operatorname{Re}\left((1 - e^{i\theta}) + \mu \tau(s) \frac{e^{i\theta}}{1 - e^{i\theta}} + \mu \tau(s) \frac{k e^{i\theta}}{(1 - e^{i\theta})^2} \right).$$

- In page 2168, line 15: $=\frac{1}{\tau(s)}(1-\cos\theta)-\cdots$ should be $= (1 - \cos \theta) - \frac{\mu}{2} \tau(s) - k\mu \tau(s) \frac{1}{2(1 - \cos \theta)}.$
- In page 2168, line 16: $\leq \frac{1}{\tau(s)}(1-\cos\theta) \cdots$ should be $\leq (1-\cos\theta) \cdots$ $\frac{\mu}{2}\tau(s) - \frac{\mu}{4}\tau(s)$.
- In page 2168, line 17: $=\frac{1}{\tau(s)}(1-\cos\theta)-\frac{3\mu}{4}$ should be $=(1-\cos\theta)-\frac{3\mu}{4}\tau(s)$. In page 2168, line 23: $\cdots>\frac{1}{\tau(s)}(1-\cos\theta)-\frac{\mu}{2}$ should be $\cdots>(1-\cos\theta)-$
- $\frac{\mu}{2}\tau(s)$

- In page 2169, line 1: $\cdots > \frac{1}{\tau(s)} \frac{3\mu}{4}$ should be $\cdots > 1 \frac{3\mu}{4}\tau(s)$. In page 2169, line 2: $\cdots > \frac{1}{\tau(s)} \frac{3\mu}{4}$ should be $\cdots > 1 \frac{\mu}{2}\tau(s)$. In page 2169, line 3: $\cdots > \frac{1}{\tau(s)} \frac{3(1-\beta)}{2}$ should be $\cdots > 1 \frac{3(1-\beta)}{2}\tau(s)$. In page 2169, line 4: $\cdots > \frac{1}{\tau(s)} + \beta 1$ should be $\cdots > 1 + (\beta 1)\tau(s)$.

Current address: Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey

E-mail address: horhan@atauni.edu.tr

ORCID Address: https://orcid.org/0000-0001-5993-6258

Current address: Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, Turkey

E-mail address: mcaglar25@gmail.com

ORCID Address: https://orcid.org/0000-0001-8147-0343