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Abstract

This paper concerns with the oscillation of numerical solutions of a kind of nonlinear delay
differential equation proposed by Benjamin Gompertz, this equation usually be used to
describe the population dynamics and tumour growth. We obtained some conditions under
which the numerical solutions are oscillatory. The non-oscillatory behaviors of numerical
solutions are also analyzed. Numerical examples are given to test our theoretical results.

1. Introduction

In recent years, the studies on oscillation of the solutions of delay differential equations (DDEs) are developing rapidly (see
[1, 2]). This research has been applied to many fields including biology, physics, ecology and so on. Nonetheless there are few
papers have been published on the oscillation of numerical solutions of DDEs (see [3]-[6]). So we will consider numerical
oscillation for Gompertz equation with one delay in this paper. In the past few years, Gompertz equation has been generally
used to describe the population dynamics and tumour growth (see [7, 8]). In 1825, Benjamin Gompertz proposed the classical
Gompertz model[9]

V̇ (t) =−rV (t) ln
V (t)

K
, V (0) =V0 > 0.

In 1932, Winsor analyzed some analytical properties of a modified Gompertz model and pointed that it can be used to describe
empirically the deceleration of tumour growth[10]. In 2000, Ferrante et al. considered a stochastic version of the Gompertz
model to describe vivo tumor growth [11]. While to study the investigated phenomena better, some researchers prefer to
incorporate various equations with the time delays in different ways. In [12], four kinds of models were derived by introducing
the discrete delays into the classical Gompertz model. One of them, which occurs in the following form will be discussed in
the rest paper

V̇ (t) =−rV (t) ln
V (t− τ)

K
, t ≥ 0, (1.1)

with r,K ∈ (0,∞), where r is the growth rate, V is the number of individuals or cells and K is the plateau number of individuals
or cells. The time delay figures maturation period of the individuals in the context of population growth. While it may figure
the time lag during the course of tumor growth (or degradation) owing to the time which is required for the cells to identify and
accommodate to changes in the environment. The existence, uniqueness and asymptotic properties of the solutions of (1.1)
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were studied in [12]. In [13], the occurrence of period orbits owing to the Hopf bifurcation was analyzed. Meanwhile, the
existence of periodic solutions was confirmed and some results for the asymptotically stability of the periodic solutions were
given. Later, for the Gompetrz model with one delay, the stability and Hopf bifurcation were studied in [14]. However, to the
best of our knowledge, until now very few results dealing with the oscillation of solutions of (1.1) were found. Therefore,
from the viewpoint of analytically and numerically, our objective in this paper is to acquire some sufficient conditions for
oscillation of all positive solutions of (1.1) about the equilibrium. We also prove that every non-oscillatory solution will tend to
the equilibrium when the time approaches to infinity.

In the rest paper, we only study the solutions of (1.1) with initial condition of the form

V (t) = φ(t), −τ ≤ t ≤ 0,

where φ ∈ C([−τ,0], [0,∞)) and φ(0)> 0. By the method of steps one can prove that (1.1) has positive solutions for all t ≥ 0.

From [15], we know the difference equation

an+1−an +
l

∑
j=−k

q jan+ j = 0 (1.2)

is oscillatory if and only if the characteristic equation of (1.2) has no positive roots. So we introduce a useful theorem.

Theorem 1.1. [15] Consider the difference equation

an+1−an + pan−k = 0, (1.3)

where p ∈ R, k ∈ Z. Then every solution of (1.3) oscillates if and only if one of the following conditions holds:

1. k =−1 and p≤−1;
2. k = 0 and p≥ 1;
3. k ∈ {. . . ,−3,−2}∪{1,2, . . .} and p (k+1)k+1

kk > 1.

2. The oscillation of solutions

In this section, we will illustrate some sufficient conditions for oscillation of (1.1) about the equilibrium K analytically and
numerically.

Theorem 2.1. Every positive solution of (1.1) oscillates about K if

rτ >
1
e
. (2.1)

Proof. Set V (t) = Key(t), then V (t) oscillates about K if and only if y(t) oscillates about zero. So from (1.1) we find that

ẏ(t) =−ry(t− τ). (2.2)

Then by Theorem 2.2.3 in [15], we know that every solution of (1.1) oscillates if and only if (2.1) holds.

Next, we transfer to discuss the numerical case. Applying the linear θ -method to (2.2), one has

yn+1 = yn−hθryn+1−m−h(1−θ)ryn−m, (2.3)

where 0≤ θ ≤ 1, h = τ/m is stepsize and m is a positive integer. yn+1 and yn+1−m are approximations to y(t) and y(t− τ) at
tn+1, respectively. Let yn = ln(Vn/K), then (2.3) reads

ln
Vn+1

K
= ln

Vn

K
−hθr ln

Vn+1−m

K
−h(1−θ)r ln

Vn−m

K
= ln

[
Vn

K

(
K

Vn+1−m

)hθr( K
Vn−m

)h(1−θ)r
]
,

that is

Vn+1 =VnKhr 1
V hθr

n+1−m

1

V h(1−θ)r
n−m

. (2.4)

It is obvious that Vn is oscillatory about K if and only if yn is oscillatory. In the following we seek the conditions under which
(2.4) is oscillatory.
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Lemma 2.2. The characteristic equation of (2.3) is given by

λ = R(−hrλ
−m), (2.5)

where R(x) = (1+(1−θ)x)/(1−θx) is the stability function of the linear θ -method.

The proof of this Lemma can be given directly and we omit it.

Lemma 2.3. Under the condition (2.1), (2.5) has no positive roots for 0≤ θ ≤ 1/2.

Proof. Let P(λ ) = λ −R(−hrλ−m). From [16], we have

R(−hrλ
−m)≤ exp(−hrλ

−m), λ > 0, 0≤ θ ≤ 1/2.

Further, we will prove Q(λ ) = λ − exp(−hrλ−m) > 0 for λ > 0. Assume there is a λ0 > 0 such that Q(λ0) ≤ 0, then
λ0 ≤ exp(−hrλ

−m
0 ), and λ m

0 ≤ exp(−rτλ
−m
0 ). Thus

rτe≤ rτλ
−m
0 exp(1− rτλ

−m
0 ).

So we have

• If 1− rτλ
−m
0 = 0, then rτe≤ 1, which contradicts to (2.1).

• If 1− rτλ
−m
0 6= 0, since ex < 1/(1− x) for x < 1 and x 6= 0, we get rτe≤ 1, which also contradicts to (2.1).

Therefore, for λ > 0, P(λ ) = λ −R(−hrλ−m)≥ λ − exp(−hrλ−m) = Q(λ )> 0, which suggests that (2.5) has no positive
roots.

Next we consider the case 1/2 < θ ≤ 1 under the assumption m > 1.

Lemma 2.4. Under the conditions (2.1) and 1/2 < θ ≤ 1, (2.5) has no positive roots for h < h0, where

h0 =

{
∞, rτ ≥ 1,
τ(1+ lnrτ), rτ < 1.

(2.6)

Proof. It can be noted that R(−hrλ−m) is an increasing function for θ when λ > 0, then

R(−hrλ
−m) =

1−h(1−θ)rλ−m

1+hθrλ−m ≤ 1
1+hrλ−m .

Next, we will illustrate that λ −1/(1+hrλ−m) is positive under some conditions. Actually

λ − 1
1+hrλ−m =

λ−m+1

1+hrλ−m S(λ ),

we need to prove S(λ ) = λ m−λ m−1+hr > 0 for each λ > 0. Obviously, S(λ ) is the characteristic polynomial of the difference
equation

wn+1 = wn−hrwn−m+1.

According to Theorem 1.1, S(λ ) has no positive roots if and only if

hr
mm

(m−1)m−1 > 1,

equivalently

lnrτ +(m−1) ln
(

1+
1

m−1

)
> 0. (2.7)

If rτ ≥ 1, then (2.7) holds. If rτ < 1 and h < τ(1+ lnrτ), from the fact ”ln(1+ x)> x/(1+ x) holds for x >−1 and x 6= 0”
we have

lnrτ +(m−1) ln
(

1+
1

m−1

)
> lnrτ +

m−1
m

> 0.

Thus we find
P(λ ) = λ −R(−hrλ

−m)≥ λ −1/(1+hrλ
−m)> 0,

which implies that (2.5) has no positive roots.
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In view of Lemmas 2.3, 2.4 and Theorem 2.1, we get the following theorem.

Theorem 2.5. Under the condition (2.1), (2.4) is oscillatory for

h <

{
∞, for 0≤ θ ≤ 1/2,
h0, for 1/2 < θ ≤ 1,

where h0 is defined in (2.6).

3. Non-oscillatory solutions

In this section, we study the asymptotic behavior of non-oscillatory solutions of (1.1) and (2.4).

Theorem 3.1. Let V (t) be a positive solution of (1.1), which does not oscillate about K, then lim
t→∞

V (t) = K.

Proof. Since V (t) = Key(t) we only need to prove that lim
t→∞

y(t) = 0. Assume that y(t) ≥ 0 for sufficiently large t (the case

y(t)< 0 is similar and will be omitted). Then from (2.2) we have ẏ(t)≤ 0. So y(t) is decreasing and

lim
t→∞

y(t) = Y ∈ [0,∞), (3.1)

we prove Y = 0 by contradiction. Assume Y > 0 and (2.2) produces

lim
t→∞

ẏ(t) =−r lim
t→∞

y(t− τ) =−rY < 0.

Then lim
t→∞

y(t) =−∞, which is a contradiction to (3.1).

In the following, we will prove that the numerical solution Vn can inherit this property.

Theorem 3.2. Let yn be a solution of (2.3), which does not oscillate, then lim
t→∞

yn = 0.

Proof. Assume that yn > 0 for n sufficiently large (the case yn < 0 is similar and will be omitted). From (2.3) we know

yn+1− yn =−(hθryn+1−m +h(1−θ)ryn−m)< 0, (3.2)

then yn is decreasing. So there exists a constant Z such that

lim
n→∞

yn = Z ∈ [0,∞). (3.3)

We argue Z = 0 by contradiction. Suppose Z > 0, then there is N ∈N and ε > 0 such that 0 < Z−ε < yn < Z+ε for n−m > N,
hence yn−m > Z− ε and yn−m+1 > Z− ε . So (3.2) gives

yn+1− yn <−(hθrZ +h(1−θ)rZ),

which indicates that yn+1− yn < A, where A =−(hθrZ +h(1−θ)rZ)< 0. Thus yn→−∞ as n→ ∞, which contradicts to
(3.3).

Theorem 3.3. Let Vn be a positive solution of (2.4), which does not oscillate about K , then lim
n→∞

Vn = K.

4. Numerical examples

In this section we give two numerical examples to verify the previous results.

Firstly, in order to test Theorems 2.1 and 2.5, we consider the following equation

V̇ (t) =− 1
15

V (t) ln
V (t−13)

2
, t ≥ 0 (4.1)

with the initial condition
V (t) = 7, −13≤ t ≤ 0.

In (4.1), we have 1/e < rτ = 13/15 < 1, which implies that the solutions of (4.1) are oscillatory according to Theorem 2.1.
In Figure 4.1, we draw the figures of the analytic solutions and the numerical solutions with θ = 0.1≤ 1/2 and h = τ/m =
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Figure 4.1: The analytic solutions and the numerical solutions of (4.1) with h = 0.52, θ = 0.1.

0 50 100 150 200 250 300 350 400
1

2

3

4

5

6

7

t

V

 

 

V(t)
V

n

Figure 4.2: The analytic solutions and the numerical solutions of (4.1) with h = 0.65, θ = 0.9.



6 Fundamental Journal of Mathematics and Applications

0 50 100 150
2.5

3

3.5

4

4.5

5

t

V

 

 

V(t)
V

n

Figure 4.3: The analytic solutions and the numerical solutions of (4.2) with h = 0.4 and θ = 0.2.

13/25 = 0.52 <+∞. On the other hand, we set 1/2 < θ = 0.9≤ 1 and m = 20 in Figure 4.2. Then h0 = τ(1+ lnrτ)≈ 8.1140
and h = τ/m = 13/20 = 0.65 < h0. Therefore, according to Theorem 2.5, the numerical solutions of (4.1) are also oscillatory
for these two cases, which are all the same with Figures 4.1 and 4.2.

Next, we illustrate the validity of Theorems 3.1 and 3.2 in the second example. Consider the equation

V̇ (t) =− 1
10

V (t) ln
V (t− 4

5 )

3
, t ≥ 0 (4.2)

with the initial condition
V (t) = 5, −4

5
≤ t ≤ 0.

In (4.2), we have rτ = 0.08 < 1/e, which does not satisfy Theorem 2.1. So the analytic solutions and the numerical solutions
of (4.2) are non-oscillatory. In Figure 4.3, we draw the figures of the analytic solutions and the numerical solutions of (4.2).
From this figure, we can see that V (t)→ K = 3 as t→ ∞ and Vn→ K = 3 as n→ ∞. That is, the linear θ−method preserves
the asymptotic behavior of non-oscillatory solutions, which coincides with Theorems 3.1 and 3.2.

5. Conclusion

In this paper, numerical oscillation and asymptotic behavior for Gompertz equation with one delay are studied. Some sufficient
conditions are proposed. Numerical examples are provided to illustrate the validity of our results. In the future, we will
consider the multidimensional and stochastic case.
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[15] I. Györi, G. Ladas, Oscillation Theory of Delay Differential Equations: with Applications, Oxford University Press, 1991.
[16] M. H. Song, Z. W. Yang, M. Z. Liu, Stability of θ -methods for advanced differential equations with piecewise continuous arguments, Comput. Math.

Appl., 49 (2005), 1295-1301.


	Introduction
	The oscillation of solutions
	Non-oscillatory solutions
	Numerical examples
	Conclusion

