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Abstract

In this study, we determine the isoparametric surfaces and we give the Gauss map of these
surfaces by semi symmetric matrix, in Lorentz space. Also we define any chord property
and we show that the surfaces which have the chord property corresponds to isoparametric
surfaces. Moreover, we consider the chord property locally and we give some examples in
the Euclidean space.

1. Introduction and preliminaries

Isoparametric surfaces, surfaces with constant principal curvatures, are studied in [1]-[3] in terms of the chord property and
helical points of the surface in the Euclidean space. In [4], the unit disk characterized by the following:

Lemma 1.1. The only bounded, smooth and simply-connected plane region whose Szegö kernel coincides with the Cauchy
kernel is the disc.

Kerzman and Stein [4] used complex analysis technics related with the chord of the curve and they proved the Lemma above.
Then, Boas [5] extended this idea to n− dimensional Euclidean space. Boas gave the following theorem, by the help of
Bochner-Martinelli kernel:

Theorem 1.2. Ball is the only bounded C1 domain in Rm such that given any two points of the boundary, the chord joining
them meets the normals at the two endpoints with equal angles.

Thus, in ([5], Proof of Theorem 2, pp. 277-278), the chord property idea of [4] extended to the hyperspheres. Moreover, Boas
[2], extended his study [5], to all isoparametric surfaces in the Euclidean space. He gave such a local characterization theorem
for hyperspheres and spherical cylinders and proved that these surfaces satisfy〈

x− y,
−→
∇ f (x)

〉
=
〈

y− x,
−→
∇ f (y)

〉
(1.1)

where x,y are points on surface and
−→
∇ f is the unit normal (gradient) vector field. Wegner [6], gave the short proof of ([2],

Local characterization theorem, p.120). In [1], in the light of [2, 5], the equation (1.1) considered on a hypersurface such that a
unit normal vector field G is naturally defined on the surface. Such G is called the Gauss map of surface. For any hypersphere,
the chord joining any two points on it meets the sphere at the same angle at the two points, that is, the sphere satisfies

〈y− x,G(x)+G(y)〉= 0 (1.2)
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In [1], the following question considered:

What are the hypersurfaces of Euclidean space that satisfy the (1.2)?

They used algebraic approaches and stated that Gauss map of surfaces which satisfy (1.2) is written as G(x) = Ax+b where A
is constant symmetric matrix, b is column vector. In [7], some special curves are defined and relations between these curves
and isoparametric surfaces are given in Lorentz-Minkowski space. In this study, we are looking for answers of the followings:

What are the hypersurfaces of Lorentz space that satisfy the (1.2)?

and

What are the hypersurfaces of Euclidean space that satisfy the (1.2) locally?

In Lorentz space, vectors have different causal characters such as if 〈u,u〉> 0 or u = 0, 〈u,u〉< 0 and 〈u,u〉= 0 (u 6= 0) then
u is called by spacelike, timelike and lightlike (or null) vector respectively. The number of timelike vectors of the orthonormal
basis of the vector space is called the index of space and usually denoted by ν . Through the [8], we give the followings:

Definition 1.3. Let X = (x1,x2, ...,xn) and Y = (y1,y2, ...,yn) be a two vector distinct from zero in n− dimensional real vector
space Rn. Following inner product,

〈X ,Y 〉=−x1y1 +
n

∑
i=2

xiyi

is called by Lorentzian inner product of X and Y , and 〈,〉 is called metric tensor of vector space. (Rn,〈,〉) is called Lorentz
space and denoted by Ln or Rn

1. If 〈u,v〉 = 0 implies that u=0 for all v where u,v ∈ TPRn, then 〈,〉 is called canonical
non-degenerated inner product with arbitrary index.

Norm of the vector u ∈ Rn
1 is given by ‖u‖=

√
|〈u,u〉|. Let the index of n−dimensional non-degenerated inner product space

of V be 1≤ ν ≤ n and its orthonormal base be {e1,e2, ...,en}. Then ε1 = ε2 = ...= εν =−1 and εν+1 = εν+2 = ...= εn = 1,
where εi = 〈ei,ei〉. Therefore, the diagonal matrix (δi jε j) is called by the sign matrix of V such that

δi j =

{
1, i = j
0, i 6= j , 1≤ i, j ≤ n

is Kronecker delta.

Definition 1.4. [8] Let n≥ 2 and 0≤ ν ≤ n,

(1) The pseudosphere of radius r > 0 in Rn+1
ν is the hyperquadric

Sn
ν(r) =

{
P ∈ Rn+1

ν | 〈P,P〉= r2
}

with dimension n and index ν .

(2) The pseudohyperbolic space of radius r > 0 in Rn+1
ν+1 is the hyperquadric

Hn
ν(r) =

{
P ∈ Rn+1

ν+1 | 〈P,P〉=−r2
}

with dimension n and index ν .

Definition 1.5. Let M be a hypersurface in the Minkowski space and −→n be a unit normal vector field of M. If 〈−→n ,−→n 〉< 0,
(〈−→n ,−→n 〉> 0) then M is said to be spacelike (timelike) surface.

Lemma 1.6. [8] Let S be a shape operator (Weingarten map) and v be a tangent vector on M. S(v) = −∇v
−→n and for all

P ∈M, linear operator of S is self-adjoint on TPM. Here ∇ is Levi-Civita connection on M in Rn
1space.

2. Linear operators and isoparametric surfaces

An integral operator in complex space Cn is given by

ζ ( f ,x) =
b∫
a

f (x)K(t,x)dt
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such that K(t,x) is continuous according to parameter t and it is called the kernel of the operator ζ . Suppose that B is a
bounded smooth domain in the complex plane. The Cauchy kernel represents holomorphic functions f in B in terms of the
boundary values on γ. Here γ is the boundary of the domain B. Cauchy integral operator on any B domain whose bounded by
the curve γ in complex plane is given by

ζ (z,w) =
1

2πi

∫
z∈γ

f (z)
z−w

·
γ(z)dσ(z)

where w ∈ C is on γ . Here dz =
·
γ(z)dσ , z = γ(s) unit speed curve and dσ is Lebesgue measure (arc lenght). Hence, Cauchy

kernel of the ζ operator is
1

2πi
1

z−w
·
γ(z). Similarly the S (z,w) Szegö integral operator is given by

ζ (z,w) =
1

2πi

∫
z∈γ

f (z)S (z,w)dσ(z)

where the kernel is considered the orthogonal projection of S : L 2(γ,dσ)→H 2(γ). Here H 2(γ) is closed subspace of
L 2(γ,dσ) of boundary values of holomorphic functions in B. It is easy to see that Sζ = ζ holds identically and the curve γ

satisfy

〈γ(t)− γ(s),T (t)−T (s)〉= 0 (2.1)

where T is the unit tangent normal vector field of the curve. It follows from the definitions above and (2.1) that γ is non-null
hyperbolic curve in Lorentz plane.
Now we extend the chord idea to the surfaces in the high dimensions and we give some characterizations about these surfaces
by the help of Gauss map itself, in terms of [1] and [7], in Lorentz space. Throughout this chapter, the metric tensor will be
considered as a Lorentzian unless otherwise mentioned. Let us give the following definition first.

Definition 2.1. Let M be a non-null hypersurface and G is Gauss map of M. If

〈Q−P,G(P)+G(Q)〉= 0

for all P,Q ∈M then, M is called by G−hypersurface.

Theorem 2.2. Let M be a G−hypersurface. Gauss map of this surface is given by

G(x) = Ax+b

where A is the semi-symmetric matrix and b ∈ En
1 column vector.

Proof. Let the hypersurface M fully lies in space and consider the points y0,y1, ...,yn on M such that
{

y j−y0 | 1≤ j ≤ n
}

spans Rn
1. Similar to [1], we find

AT = ε

(
B jA−1

j

)
ε (2.2)

where ε = diag(−1,1, ...,1) is the sign matrix, A j and B j are the n×n matrices that accepts the y j−y0 and G(y j)−G(y0) as

j−column respectively. Also b =
n
∑

k=1
bkαk such that bk is given by


〈α1,α1〉 〈α1,α2〉 ... 〈α1,αn〉

〈α2,α1〉
. . . 〈α2,αn〉

...
. . .

...
〈αn,α1〉 〈αn,α2〉 ... 〈αn,αn〉




b1
b2
...

bn

=


c1
c2
...

cn


where α j = y j− y0 and c j = 〈G(y0) ,y0〉−

〈
G(y j) ,y j

〉
. Hence we write

c j =
〈
α j,α1

〉
b1 +

〈
α j,α2

〉
b2 + · · ·+

〈
α j,αn

〉
bn. (2.3)

It follows from (2.2) and (2.3) that

G(x) = Ax+b.
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We note that A is constant matrix (see [1]). Now we prove that A is semi-symmetric matrix. Let X ,Y ∈ TxM be a tangent vector.
Due to Lemma 1.6

∇X G(X) = AX =−S(X) (2.4)

and

〈S(X),Y 〉= 〈X ,S(Y )〉 . (2.5)

It follows from (2.4) and (2.5) that

〈−AX ,Y 〉= 〈X ,−AY 〉 ⇔ 〈AX ,Y 〉= 〈X ,AY 〉

⇔
〈
X ,(εAT ε)Y

〉
= 〈X ,AY 〉

⇔ A = εAT ε

which is intended.

Theorem 2.3. Let us assume that hypersurface M have diagonalized shape operator. For non-null hypersurface M, the
following statements are equivalent:

i) M is the G-hypersurface.

ii) M is an isopametric surface.

iii) M is the open part of non-null hyperplane, pseudosphere, pseudohyperbolic space, pseudospherical cylinder or pseudohy-
perbolic cylinder.

Proof. Let M be a G−hypersurface and {E1,E2, ...,En−1} orthonormal frame on surface such that Ei,1 ≤ i ≤ n− 1 are
characteristic vectors corresponding to characteristic values µi of the shape operator. Hence, S(Ei) = µiEi for all i. Due to
Theorem 2.2, G(x) = Ax+b where A is semi-symmetric matrix. It follows from (2.4) that

AE j(x) =−S(E j(x)) =−µ j(x)E j(x)

and

(A+µ jI)E j(x) = 0.

In order to the existence of non-zero characteristic vectors

det(A+µ jI) = 0. (2.6)

From equation (2.6), it is obvious that µi is constant. Therefore, M is an isoparametric surface.
Let M be an isoparametric surface. Let us define

f (x) = 〈Ax+b,Ax+b〉 (2.7)

where f : Rn
1→ R and M ⊂ f−1(±1). It follows from (2.7) that

f (x) =
〈
x,A2x

〉
+2〈x,Ab〉+ 〈b,b〉 .

By straightforward calculations we get
−→
∇ f (x) = 2A(Ax+b). Since the gradient of f and Gauss map G is linear dependent

A(Ax+b) = λ (x)(Ax+b), x ∈M (2.8)

for some real valued λ (x) functions. It follows from (2.8) that (A−λ (x)I)(Ax+b) = 0 and det(A−λ (x)I) = 0. Obviously
λ (x) is constant. Let us consider V = {Ax+b | x ∈M} as a characteristic space that corresponding to λ (x) = λ and Sp{V} is
normal space at x ∈M. Let us determine the surface M depends on the norm of V.
a) Let ‖V‖= 1. In this case G(x) = b is constant and M is the open part of non-null hyperplane.

b) If ‖V‖ = n then V = Im(A). For some r > 0 and λ = ±1
r

we have A |V= ±
1
r

I such that G(x) = ±1
r

x+ b. Depends on

causal character of Sp{V}, we get pseudosphere of Sn−1
1 or pseudohyperbolic space of Hn−1

1 .
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c) Let ‖V‖ = p,2 ≤ p ≤ n−1. Dimension of V⊥ orthogonal complement is n− p and V⊥ ⊆ TxM. In the neighborhood of
x0 ∈M, we choose {E1(x),E2(x), ...,En−1(x)} orthonormal frame such that E1,E2, ...,En−p are constant in V⊥., we write

V = Sp
{

En−p+1(x),En−p+2(x), ...,En−1(x),G(x)
}

The tangent subspace spanned by
{

En−p+1(x),En−p+2(x), ...,En−1(x)
}

is integrable and integral submanifold of M1 through
the point x0 is given as M1 = M∩ (x0 +V ) . Hence Rn−p

1 = V⊥ and M = M1×Rn−p
1 where M1 is hypersurface in Rp

1 and
Gauss map of M1 satisfy the G1(x) = G(x). Besides, A1 = A |V satisfy

G1(x) = A1x+b. (2.9)

It follows from (2.8) and (2.9) that A1 = ±
1
r

I. So M1 is pseudosphere of Sp−1
1 (r) or pseudohyperbolic space of Hp−1

1 (r).

Hence M is the open part of Sp−1
1 (r)×Rn−p or Hp−1

1 (r)×Rn−p, respectively.
Let us consider isometric immersion f1 : M→ Rn

1 with respect to [x1,x2, ...,xn] rectangular coordinate system. Let us give

f1(x1,x2, ...,xn) = a1x1 +a2x2 + ...+anxn = c

where ai,1≤ i≤ n are constant coefficients, x = (x1,x2, ...,xn) ∈M and c is real number. The Gauss map of this immersion is
given by

G(P) :=
−→
∇ f 1∥∥∥−→∇ f 1

∥∥∥ |P= 1
m
(−a1,a2, ...,an) |P

where P ∈M and m =
√∣∣−a2

1 +a2
2 + ...+a2

n
∣∣. It can be easily seen that

〈Q−P,G(P)+G(Q)〉= 0

where P,Q ∈ f1. By Definition 1.4, pseudosphere with center x0 and radius r is given by

Sn−1
1 (r) =

{
x ∈ Rn

1 : 〈x− x0,x− x0〉= r2} .
Without loss of generality, we can consider x0 = (0,0, ...,0) and x = (x1,x2, ...,xn). In this case,

f2(x1,x2, ...,xn) =−x2
1 + x2

2 + ...+ x2
n = r2

where f2 : Sn−1
1 → Rn

1 is an isometric immersion. The Gauss map of this immersion is given by

G(P) :=
−→
∇ f 2∥∥∥−→∇ f 2

∥∥∥ |P= 1
r
(x1,x2, ...,xn) |P .

By straightforward calculations we get

〈Q−P,G(P)+G(Q)〉= 0

where P,Q ∈ f2. Therefore, Sn−1
1 (r) is G−hypersurface (similarly Hn−1

1 (r) is G−hypersurface). Moreover, we consider

−x2
1 + x2

2 + ...+ x2
p = r2, xp+1 = up+1,xp+2 = up+2, ...,xn = un

where ui are real variables such that p+1≤ i≤ n. By the help of natural Lorentz projection πL : Rp
1 ×Rn−p

1 →Rp
1 ↪→Rn

1 onto
Sp−1

1 we get

G(P) =
1
r
(x1,x2, ...,xp,0, ...,0) |P .

Hence,

〈Q−P,G(P)+G(Q)〉= 0

where P,Q ∈ Sp−1
1 (r)×Rn−p. Proof is similar for Hp−1

1 (r)×Rn−p.
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3. Local isoparametric surfaces in Euclidean space

Chord property of isoparametric surfaces are examined locally and globally in [2, 5]. Our point of view to localization is totally
different from previous studies. Let us give the following definition and results.

Definition 3.1. Let M be a hypersurface in Euclidean space and 〈,〉 be the metric tensor of the space. If some points such
P,Q ∈M satisfy

〈Q−P,G(P)+G(Q)〉= 0

then, M is called as local isoparametric surface.

Theorem 3.2. The helicoid surface given by

Φ(s, t) = (0,0,bs)+ t (coss,sins,0) , b 6= 0

is local isoparametric surface if and only if

p1 = q1 or p2 =−q2

where ϕ(p1, p2) = P, ϕ (q1,q2) = Q, ϕ : U ⊆ R2→Φ and (p1, p2) , (q1,q2) ∈U.

Proof. Let us consider the surface ϕ(U) = Φ and ϕ : U →Φ differentiable map where U ⊆ R2. Let P,Q ∈Φ two points on
surface such that ϕ(p1, p2) = P and ϕ (q1,q2) = Q. By straightforward calculations we get

Φs(s, t) = (−t sins, t coss,b)

and

Φt(s, t) = (coss,sins,0)

Unit normal vector field Z of helicoid is given by

Z ◦ϕ =
Φs(s, t)×Φt(s, t)
‖Φs(s, t)×Φt(s, t)‖

=

(
− b√

b2 + t2
sins,

b√
b2 + t2

coss,− 1√
b2 + t2

t
)
.

Therefore,

G(P)+G(Q) = (α1,α2,α3) (3.1)

where

α1 =−
b√

b2 + p2
2

sin p1−
b√

b2 +q2
2

sinq1

α2 =
b√

b2 + p2
2

cos p1 +
b√

b2 +q2
2

cosq1

α3 =−
b√

b2 + p2
2

p2−
1√

b2 +q2
2

q2.

Besides,

Q−P = (q2 cosq1− p2 cos p1,q2 sinq1− p2 sin p1,bq1−bp1) . (3.2)

It follows from (3.1) and (3.2) that

〈Q−P,G(P)+G(Q)〉= b

 p2√
b2 + p2

2

+
q2√

b2 +q2
2

(sin(q1− p1)+(p1−q1)) .

Obviously 〈Q−P,G(P)+G(Q)〉 = 0 if and only if p1 = q1 or p2 = −q2. By Definition 3.1, Φ is local isoparametric
surface.
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Theorem 3.3. The hyperbolic paraboloid surface given by

Φ(u,v) = (u,v,
v2

b2 −
u2

a2 ), a,b ∈ R\{0}

is local isoparametric surface if and only if

a
b
=

∣∣∣∣ p1−q1

p2−q2

∣∣∣∣
where ϕ(p1, p2) = P, ϕ (q1,q2) = Q ,ϕ : U ⊆ R2→Φ and (p1, p2) , (q1,q2) ∈U.

Proof. By straightforward calculations we get

Z ◦ϕ =

− 2u

a2

√
1+

4u2

a4 +
4v2

b4

,
2v

b2

√
1+

4u2

a4 +
4v2

b4

,− 1√
1+

4u2

a4 +
4v2

b4


and

〈Q−P,G(P)+G(Q)〉=

(
−b2 (p1−q1)

2 +a2 (p2−q2)
2
)(√

1+
4p2

1
a4 +

4p2
2

b4 −
√

1+
4q2

1
a4 +

4q2
2

b4

)

a2b2

√
1+

4p2
1

a4 +
4p2

2
b4

√
1+

4q2
1

a4 +
4q2

2
b4

.

Hence 〈Q−P,G(P)+G(Q)〉= 0 if and only if

a
b
=

∣∣∣∣ p1−q1

p2−q2

∣∣∣∣
which is intended.

Let us give the following surface, in the light of [9].

Theorem 3.4. The Viviani ruled surface given by

Φ(u,v) = (
5
2
+

5
2

cosu,
5
2

sinv,5sin
u
2
)+4v(1+ cosu,sinu,2sin

u
2
)

is local isoparametric surface if and only if

p1 = q1 +4kπ, k ∈ Z

where ϕ(p1, p2) = P, ϕ (q1,q2) = Q ,ϕ : U ⊆ R2→Φ and (p1, p2) , (q1,q2) ∈U.

Proof. Similar to previous operations we get

Z ◦ϕ =


√

2sin3 u
2√

3+ cosu
,
−5cos

u
2
+ cos

3u
2

2
√

2
√

3+ cosu
,

√
2cos2 u

2√
3+ cosu


and

〈Q−P,G(P)+G(Q)〉= α sin2(
p1−q1

4
)

where α is non-zero constant. Hence 〈Q−P,G(P)+G(Q)〉= 0 if and only if

p1 = q1 +4kπ, k ∈ Z

and this completes the proof.
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4. Conclusion

In this study, we showed that the Gauss map of isoparametric surfaces is written by G(x) = Ax+b where A is semi-symmetric
matrix and b is column vector, in Lorentz space. Moreover, in the Euclidean space; we gave the definition of local isoparametric
surface, and we examined the some of them such as helicoid, hyperbolic paraboloid and Viviani ruled surface, by different
point of view from the previous studies.
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