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Abstract

We have given a simple contact Hamiltonian description of a system with exponentially
vanishing (or zero) potential under a friction term that is quadratic in velocity. We have
given two applications: to cavity solitons and to a free body under air friction.

1. Introduction

Hamiltonian mechanics is done in phase space which is a symplectic manifold. Symplectic mainfolds are even dimensional
mainfolds equipped with a symplectic 2-form ω . On the other hand, contact geometry is carried on odd dimensional manifolds
equipped with a contact 1-form η . η is a contact form if η ∧dη ∧·· ·∧dη 6= 0 (in a 2n+1 dimensional contact manifold, the
term dη is wedge-multiplied n times). For more information on contact manifolds, the reader is referred to [1] and to [2] for
the relation between contact geometry and the Huygens’ Principle.

Recently, Hamiltonian mechanics has been generalized to work in contact manifolds with the addition of extra parameter S [3].
Ref. [4] studied variational aspects of contact Hamiltonian mechanics and ref. [5] applied contact geometric methods to a
theory of gravity called shape dynamics [6–8] (see ref. [9] for a review of shape dynamics). Also in ref. [3] time-dependent
contact Hamiltonians are introduced. In our study, we will use time-independent contact Hamiltonian mechanics in 1D. So the
variables we have are q, p,S. In this variables the equations of motion derived from the contact Hamiltonian (H) read as [3]:

q̇ =
∂H
∂ p

,

ṗ = −∂H
∂q
− p

∂H
∂S

,

Ṡ = p
∂H
∂ p
−H.

The organization of the paper is as follows: in Section 2 we introduce the contact Hamiltonian we use, in Section 3 we give
a solution of the equations of motion derived from the contact system, in Section 4 we give two applications where our
description can be used and finally in Section 5 we conclude the paper.
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2. Contact Hamiltonian description

It is known in the literature (see ref. [3]) that the contact Hamiltonian H = p2/2m+V (q)+γS describes a system with frictional
force linear in velocity for an arbitrary potential term V (q). In this study we make a minor change in the last term and use the
following contact Hamiltonian:

H =
p2

2m
+V (q)+ γ pS.

The equations of motion that follow are as:

q̇ =
p
m
+ γS, (2.1)

ṗ = −V ′(q)− γ p2, (2.2)

Ṡ =
p2

2m
−V (q). (2.3)

When we take the time derivative of Equation (2.1) we obtain:

q̈ =
ṗ
m
+ γ Ṡ,

= − 1
m
(V ′(q)+ γ p2)+ γ

(
p2

2m
−V (q)

)
,

mq̈ = −V ′(q)− γ

2
p2−mγV (q). (2.4)

Using Equation (2.1) we can write p = mq̇−mγS. As an ansatz let us assume S = α q̇ for some α . Then we get p = m(1−γα)q̇.
If we put this form of p into Equation (2.4) we obtain:

mq̈+
m2γ

2
(1− γα)2q̇2 =−V ′(q)−mγV (q). (2.5)

On the other hand, when we use the ansatz S = α q̇ in Equation (2.3) we obtain:

α q̈ = Ṡ =
m
2
(1− γα)2q̇2−V (q). (2.6)

In order to be consistent, Equation (2.5) and Equation (2.6) must give the same answer. So we must have the following:

m2

2α
(1− γα)2q̇2− m

α
V (q) =−m2γ

2
(1− γα)2q̇2−V ′(q)−mγV (q).

Equating the terms in front of q̇2 on both sides gives us α =−1/γ . There appears a condition on the potential V (q):

V ′(q) =−2mγV (q). (2.7)

So with the ansatz we put, arbitrary potentials are not allowed. The solution of Equation (2.7) is elementary:

V (q) = Aexp(−2mγq),

for some constant A. Now we have determined α in S = α q̇ as α = −1/γ . As a consistency check let us put this in
Equation (2.1) and obtain p = 2mq̇. On the other hand we have ṗ =−V ′(q)− γ p2 from Equation (2.2). This yields:
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2mq̈ =− ∂

∂q
(Aexp(−2mγq))− γ p2,

and

mq̈+2γm2q̇2 = Amγ exp(−2mγq).

Comparing this Equation with Equation (2.6) we see that there is no inconsistency. So the consistent equation of motion is as
follows:

mq̈+ γnq̇2 =− ∂

∂q
Ane−γnq/m, (2.8)

where γn (new γ) is given through γn = 2m2γ and An (new A) is An = A/2.

3. Solution of the equation of motion

In this Section, we will solve the equation of motion of the system given by Equation (2.8). Let us define Q = γnq/m. So we
have:

Q̈+ Q̇2 =
Anγ2

n

m3 e−Q.

We now define F via Q = logF . Then we get:

F̈
F
− Ḟ2

F2 +
Ḟ2

F2 =
Anγ2

n

m3
1
F
.

The second and third terms cancel out with each other and we obtain F̈ = Anγ2
n/m3. Making changes of variables in the reverse

order, one obtains:

q(t) =
m
γn

log
(

Anγ2
n

2m3 t2 + c1t + c2

)
,

where c1 and c2 are two constants of integration.

4. Possible applications

The equation of motion (see Equation (2.8)) derived from the contact Hamiltonian, H = p2/2m+V (q)+(γn/2m2)pS, is:

mq̈+ γnq̇2 =− ∂

∂q
Ane−γnq/m,

where γn,An are some constant parameters. In this Section, we give two possible applications of our choice of contact
Hamiltonian. The first one is cavity solitons with friction quadratic in velocity, and the other one is air friction with quadratic
dependency on velocity.

4.1. Cavity solitons

Recently Ref. [10] put forward that cavity solitons (for a review see Ref. [11]) may be modeled with an effective potential of
the form −K2e−r/R with the strength K and the range R. Our potential term is V (q) = Ane−γnq/m. So if we choose A =−K2

and γn = m/R we can model cavity solitons. But our model has a quadratic friction term: γnq̇2 = (m/R)q̇2. It may be possible
that our contact Hamiltonian can model cavity solitons with an exponentially decreasing force and a friction term that is
quadratic in velocity.
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4.2. Air friction

It is well known in literature that for large bodies, air friction can be modelled with frictional force that has quadratic
dependency on the velocity. Therefore our contact Hamiltonian may also model a free particle under air friction if An = 0 or
with a driving force equal to (Anγn/m)e−γnq/m.

5. Conclusion

Recently contact Hamiltonian mechanics has gained some interest [3–5]. In this paper we used a simple contact Hamiltonian
to account for quadratic dependence on velocity. As we mentioned in Section 4 this description may be useful for modelling
cavity solitons with a quadratic friction term or air friction for free particles. We note that our work is only an initial step
towards giving a contact Hamiltonian description of a system with an arbitrary potential under a friction that is quadratic in
velocity.
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