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Abstract

The main purpose of this study is to characterize some matrix classes from classical sequence
spaces into a newly introduced space and find the norm of some special matrix operators.
Also, we give certain geometric properties of this space.

1. Introduction

The matrix transformations in sequence spaces have been studied by many authors over years. Since the most general linear
operators from a sequence space to another one can be given by an infinite matrix, the theory of matrix transformations has
been of great importance in the study of sequence spaces. For the relevant literature consult to [1]-[6].

In the recent times, the interest in investigating geometric properties of sequence spaces with topological properties have
increased. Over years several papers on the geometric properties of various spaces have appeared. For instance, Mursaleen et
al. [7] examined the geometric properties of Euler sequence space. More information about the relevant literature can be found
in [8]-[14].

The main purpose of this work is to characterize some matrix classes on a newly introduced sequence space and find the norm
of certain bounded linear matrix operators. Also, we prove that the resulting space is of type p Banach-Saks and it has the
weak fixed point property. Finally, we investigate the strictly convexity and uniformly convexity of this space.

2. Preliminaries and notations

A sequence space is a linear subspace of the space of all real valued sequences ω . `∞,c,c0 and `p (1≤ p < ∞) are the sequence
spaces of all bounded, convergent, null sequences and absolutely p-summable sequences, respectively.

Given any sequence spaces X and Y and an infinite matrix T = (ti j), T is called a matrix mapping from X into Y if for every
sequence x = (x j) ∈ X , T x = (Ti(x)) with

Ti(x) =
∞

∑
j=1

ti jx j

is in Y and the series is convergent for each i ∈ N= {1,2, ...}. Then, T x is called the T -transform of x.
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The set

XT = {x = (x j) ∈ ω : T x ∈ X}

is called the matrix domain of T in the space X and it is also a sequence space.

Let ϕ : N→ N be the Euler function defined as

ϕ(i) =
i

∑
j=1,( j,i)=1

1,

where ( j, i) is the greatest common divisor of j and i. That is, ϕ(i) gives the number of positive integers less than i which are
coprime with j.

The Euler function ϕ satisfies the following properties:

1. i = ∑ j|i ϕ( j) holds for every i ∈ N.
2. ϕ(i) = i∏p|i(1− 1

p ), where p is the prime divisor of i.
3. ϕ(i j) = ϕ(i)ϕ( j) holds for (i, j) = 1.

Let i = pα1
1 pα2

2 ...pαl
l . The Möbius function µ : N→{−1,0,1} is defined as

µ(i) = (−1)l if α1 = α2 = ...= αl = 1

µ(i) = 0 if αk 6= 1 for at least one k ∈ {1,2, ..., l},

where p1, p2, ..., pl are non-equivalent prime numbers and pα1
1 pα2

2 ...pαl
l is the prime factorization of i > 1. Also,

µ(1) = 1

and for i 6= 1

∑
p|i

µ(p) = 0

holds.

Φ-summability was introduced by Schoenberg [15] in order to study the Riemann integrability of a generalized Dirichlet
function in [0,1]. It is said that a sequence x = (x j) is ϕ-convergent to l if

lim
i→∞

1
i ∑

j|i
ϕ( j)x j = l.

Let Φ = (φi j) be the matrix defined as

φi j =

{
ϕ( j)

i , if j | i,
0 , if j - i.

The regularity of this special matrix is also observed by Schoenberg [15]. This means that the matrix Φ maps c into c and the
limit is preserved.

In [16], by using this matrix, the sequence spaces

`p(Φ) =

{
x = (xi) ∈ ω : ∑

i

∣∣∣∣∣1i ∑
j|i

ϕ( j)x j

∣∣∣∣∣
p

< ∞

}
(1≤ p < ∞)

and

`∞(Φ) =

{
x = (xi) ∈ ω : sup

i

∣∣∣∣∣1i ∑
j|i

ϕ( j)x j

∣∣∣∣∣< ∞

}
are introduced and proved that these spaces are Banach spaces with the norms

‖x‖`p(Φ) =

(
∑

i

∣∣∣∣∣1i ∑
j|i

ϕ( j)x j

∣∣∣∣∣
p)1/p

(1≤ p < ∞)
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and

‖x‖`∞(Φ) = sup
i

∣∣∣∣∣1i ∑
j|i

ϕ( j)x j

∣∣∣∣∣ ,
respectively.

Unless otherwise stated, x̃ = (x̃i) will be the Φ-transform of a sequence x = (xi), that is,

x̃i = Φi(x) =
1
i ∑

j|i
ϕ( j)x j (2.1)

for all i ∈ N.

3. Some matrix transformations and norms of matrix operators

In this part of the study, we firstly give the characterization of matrix classes (X , `p(Φ)), where X ∈ {`∞,c,c0, `1} and
1≤ p≤∞. For this aim, we give the following results, where F denotes the collection of all finite subsets of N. q is conjugate
of p; that is p−1 +q−1 = 1 with 1 < p,q < ∞.

Lemma 3.1. [17] Let 1≤ p < ∞.

(a) T = (ti j) ∈ (`∞, `p) = (c, `p) = (c0, `p) if and only if

sup
K∈F

∑
i

∣∣∣∣∣∑j∈K
ti j

∣∣∣∣∣
p

< ∞.

(b) T = (ti j) ∈ (`1, `p) if and only if

sup
j

∑
i

∣∣ti j
∣∣p < ∞.

(c) T = (ti j) ∈ (`∞, `∞) = (c, `∞) = (c0, `∞) if and only if

sup
i

∑
j

∣∣ti j
∣∣< ∞.

(d) T = (ti j) ∈ (`1, `∞) if and only if

sup
i, j
|ti j|< ∞.

Theorem 3.2. Let 1≤ p < ∞.

(a) T = (ti j) ∈ (`∞, `p(Φ)) = (c, `p(Φ)) = (c0, `p(Φ)) if and only if

sup
K∈F

∑
i

∣∣∣∣∣∑j∈K
∑
l|i

ϕ(l)
i

tl j

∣∣∣∣∣
p

< ∞.

(b) T = (ti j) ∈ (`1, `p(Φ)) if and only if

sup
j

∑
i

∣∣∣∣∣∑l|i ϕ(l)
i

tl j

∣∣∣∣∣
p

< ∞.

(c) T = (ti j) ∈ (`∞, `∞(Φ)) = (c, `∞(Φ)) = (c0, `∞(Φ)) if and only if

sup
i

∑
j

∣∣∣∣∣∑l|i ϕ(l)
i

tl j

∣∣∣∣∣< ∞.

(d) T = (ti j) ∈ (`1, `∞(Φ)) if and only if

sup
i, j

∣∣∣∣∣∑l|i ϕ(l)
i

tl j

∣∣∣∣∣< ∞.
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Proof. Given any infinite matrix T = (ti j) ∈ (`∞, `p(Φ)), define a new matrix T̂ = (t̂i j) by

t̂i j = ∑
l|i

ϕ(l)
i

tl j

for all i, j ∈ N. Then, for any x = (x j) ∈ `∞, the equality

∑
j

t̂i jx j = ∑
l|i

ϕ(l)
i ∑

j
tl jx j

means that T̂i(x) = Φi(T x) for all i ∈N. This implies that T x ∈ `p(Φ) for x = (x j) ∈ `∞ if and only if T̂ x ∈ `p for x = (x j) ∈ `∞.
Hence, we conclude from Lemma 3.1 (a) that

sup
K∈F

∑
i

∣∣∣∣∣∑j∈K
∑
l|i

ϕ(l)
i

tl j

∣∣∣∣∣
p

< ∞.

The other results follow with the same technique by using Lemma 3.1 (b), (c) and (d).

Now, we investigate the norm of the bounded linear matrix operators from `p(Φ) into `1(Φ) and `∞(Φ) for 1≤ p≤ ∞. Firstly,
we have a lemma which is essential for our investigation.

Lemma 3.3. Given any infinite matrix T = (ti j), the following statements hold:

(a) The norm of T ∈ B(`p, `∞) is defined by
‖T‖(`1,`∞) = sup

i, j
|ti j|

and
‖T‖(`p,`∞) = sup

i
∑

j
|ti j|q (1 < p≤ ∞).

(b) The norm of T ∈ B(`p, `1) is defined by
‖T‖(`1,`1) = sup

j
∑

i
|ti j|

and

‖T‖(`p,`1) = sup
K∈F

∑
j

∣∣∣∣∣∑i∈K
ti j

∣∣∣∣∣
q

(1 < p≤ ∞).

Theorem 3.4. Let T = (ti j) be an infinite matrix.

(a) If T ∈ B(`1(Φ), `∞(Φ)), then

A∞
1 = sup

i, j

∣∣∣∣∣∑j|l
µ( l

j )

ϕ(l)
j∑

k|i

ϕ(k)
i

tkl

∣∣∣∣∣
is finite. In this case, ‖T‖(`1(Φ),`∞(Φ)) = A∞

1 .

(b) Let 1 < p≤ ∞. If T ∈ B(`p(Φ), `∞(Φ)), then

A∞
p = sup

i
∑

j

∣∣∣∣∣∑j|l
µ( l

j )

ϕ(l)
j∑

k|i

ϕ(k)
i

tkl

∣∣∣∣∣
q

is finite. In this case, ‖T‖(`p(Φ),`∞(Φ)) = A∞
p .

(c) If T ∈ B(`1(Φ), `1(Φ)), then

A1
1 = sup

j
∑

i

∣∣∣∣∣∑j|l
µ( l

j )

ϕ(l)
j∑

k|i

ϕ(k)
i

tkl

∣∣∣∣∣
is finite. In this case, ‖T‖(`1(Φ),`1(Φ)) = A1

1.

(d) Let 1 < p≤ ∞. If T ∈ B(`p(Φ), `1(Φ)), then

A1
p = sup

K∈F
∑

j

∣∣∣∣∣∑i∈K
∑
j|l

µ( l
j )

ϕ(l)
j∑

k|i

ϕ(k)
i

tkl

∣∣∣∣∣
q

is finite. In this case, ‖T‖(`p(Φ),`1(Φ)) = A1
p.
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Proof. Let T̃ = ΦT Φ−1. From Theorem 3 in [16], it is known that the spaces `p(Φ) and `p are linearly isomorphic, where
1≤ p≤ ∞. Hence, we deduce from the following diagram

`p(Φ)
T // X(Φ)

Φ

��
`p

Φ−1

OO

T̃=ΦT Φ−1
// X

that ‖T‖(`p(φ),X(Φ)) = ‖T̃‖(`p,X), where X ∈ {`∞, `1} and 1≤ p≤ ∞. Thus, the desired results follows from Lemma 3.3.

4. Certain geometric properties of `p(Φ)

In this part of the study, some geometric properties of the space `p(Φ) for 1 < p < ∞ is given. BX denotes the unit ball in a
normed space (X ,‖.‖).

It is said that a Banach space X satisfies the Banach-Saks property if every sequence (un) in X ∩ `∞ has a subsequence (tn)
such that the sequence (ak(t)) is convergent, where

ak(t) =
1

k+1
(t0 + t1 + ...+ tk); (k ∈ N).

It is said that a Banach space X satisfies the weak Banach-Saks property if there exists a subsequence (tn) of a given weakly
null sequence (un) in X such that the sequence (ak(t)) is strongly convergent to zero.

It is said that a Banach space satisfies the property Banach-Saks type p if every weakly null sequence (uk) has a subsequence
(uk j) such that for some C > 0, ∥∥∥∥∥ n

∑
j=1

uk j

∥∥∥∥∥<Cn1/p

for all n ∈ N. Note that n1/∞ = 1 for all n ∈ N ([18]).

Theorem 4.1. The space `p(Φ) is of type p Banach-Saks for 1 < p < ∞.

Proof. Let (δn) be a sequence such that δn > 0 for all n ∈ N and ∑n δn ≤ 1/2. Choose a weakly null sequence (un) in B`p(Φ).
Put t1 = un1 = u1. There exists m1 ∈ N such that∥∥∥∥∥ ∞

∑
i=m1+1

t i
1ε

i

∥∥∥∥∥
`p(Φ)

< δ1.

Since (un) is weakly null sequence implies un→ 0 coordinatewise, there is an n2 ∈ N such that∥∥∥∥∥m1

∑
i=1

ui
nε

i

∥∥∥∥∥
`p(Φ)

< δ1,

for all n≥ n2. Put t2 = un2 . Then, there exists an m2 > m1 such that∥∥∥∥∥ ∞

∑
i=m2+1

t i
2ε

i

∥∥∥∥∥
`p(Φ)

< δ2.

Again using the fact that un→ 0 coordinatewise, there exists an n3 > n2 such that∥∥∥∥∥m2

∑
i=1

ui
nε

i

∥∥∥∥∥
`p(Φ)

< δ2,

for all n≥ n3.

By continuing this process, we obtain two sequences (mi) with m1 < m2 < ... < mi < ... and (ni) with n1 < n2 < ... < ni < ...
such that ∥∥∥∥∥

m j

∑
i=1

ui
nε

i

∥∥∥∥∥
`p(Φ)

< δ j,
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for all n≥ n j+1 and ∥∥∥∥∥ ∞

∑
i=m j+1

t i
jε

i

∥∥∥∥∥
`p(Φ)

< δ j,

where t j = un j . It follows that∥∥∥∥∥ n

∑
j=1

t j

∥∥∥∥∥
`p(Φ)

=

∥∥∥∥∥ n

∑
j=1

(
m j−1

∑
i=1

t i
jε

i +
m j

∑
i=m j−1+1

t i
jε

i +
∞

∑
i=m j+1

t i
jε

i

)∥∥∥∥∥
`p(Φ)

≤

∥∥∥∥∥ n

∑
j=1

(
m j

∑
i=m j−1+1

t i
jε

i

)∥∥∥∥∥
`p(Φ)

+2
n

∑
j=0

δ j.

Also, given any u ∈B`p(Φ), we have ‖u‖p
`p(Φ)

= ∑
∞
i=1
∣∣ 1

i ∑k|i ϕ(k)uk
∣∣p < 1. Therefore, we have that∥∥∥∥∥ n

∑
j=1

(
m j

∑
i=m j−1+1

t i
jε

i

)∥∥∥∥∥
p

`p(Φ)

=
n

∑
j=1

m j

∑
i=m j−1+1

∣∣∣∣∣1i ∑
k|i

ϕ(k)tk
j

∣∣∣∣∣
p

≤
n

∑
j=1

∞

∑
i=1

∣∣∣∣∣1i ∑
k|i

ϕ(k)tk
j

∣∣∣∣∣
p

≤ n.

Hence, we obtain ∥∥∥∥∥ n

∑
j=1

(
m j

∑
i=m j−1+1

t i
jε

i

)∥∥∥∥∥
`p(Φ)

≤ n1/p.

Since n1/p ≥ 1 holds for all n ∈ N and 1 < p < ∞, we have∥∥∥∥∥ n

∑
j=1

t j

∥∥∥∥∥
`p(Φ)

≤ n1/p +1≤ 2n1/p.

Hence, we conclude that `p(Φ) is of type p Banach-Saks for 1 < p < ∞.

Garcı́a-Falset [19] introduce the following coefficient:

R(X) = sup
{

liminf
n→∞

‖un−L‖ : (un) is a sequence in BX , un
w→ 0, L ∈BX

}
.

Here un
w→ 0 means that (un) is weakly convergent to zero. A Banach space X with R(X)< 2 has the weak fixed point property

([20]).

Remark 4.2. R(`p(Φ)) = R(`p) = 21/p since `p(Φ) is linearly isomorphic to `p.

Hence, we have the following result.

Theorem 4.3. The space `p(Φ) has the weak fixed point property for 1 < p < ∞.

Let SX = {u ∈ X : ‖u‖= 1}. The Gurarii’s modulus of convexity is

βX (δ ) = inf
{

1− inf
0≤λ≤1

‖λu+(1−λ )v‖ : u,v ∈SX ,‖u− v‖= δ

}
,

where 0≤ δ ≤ 2 ([21]).

Theorem 4.4. The inequality β`p(Φ)(δ )≤ 1− [1− ( δ

2 )
p]1/p holds, where 0≤ δ ≤ 2.

Proof. Let 0≤ δ ≤ 2. Consider the sequences

ũ =

((
1−
(

δ

2

)p)1/p

,
δ

2
,0,0,0, ...

)
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and

ṽ =

((
1−
(

δ

2

)p)1/p

,−δ

2
,0,0,0, ...

)
.

Set u = Φ−1ũ and v = Φ−1ṽ. By using the relation (2.1), we obtain that

‖u‖p
`p(Φ)

= ‖Φu‖p
`p
= ‖ũ‖p

`p
=

∣∣∣∣∣
(

1−
(

δ

2

)p)1/p
∣∣∣∣∣

p

+

∣∣∣∣δ2
∣∣∣∣p = 1

and

‖v‖p
`p(Φ)

= ‖Φv‖p
`p
= ‖ṽ‖p

`p
=

∣∣∣∣∣
(

1−
(

δ

2

)p)1/p
∣∣∣∣∣

p

+

∣∣∣∣−δ

2

∣∣∣∣p = 1.

Also, we have
‖u− v‖p

`p(Φ)
= ‖ũ− ṽ‖p

`p
= (|δ |p)1/p = δ .

Hence, we conclude that

β`p(Φ)(δ ) ≤ 1− inf
0≤λ≤1

‖λu+(1−λ )v‖`p(Φ)

≤ 1− inf
0≤λ≤1

‖λ ũ+(1−λ )ṽ‖`p

≤ 1− inf
0≤λ≤1

[∣∣∣∣∣λ
(

1−
(

δ

2

)p)1/p

+(1−λ )

(
1−
(

δ

2

)p)1/p
∣∣∣∣∣

p

+

∣∣∣∣λ δ

2
− (1−λ )

δ

2

∣∣∣∣p
]1/p

≤ 1− inf
0≤λ≤1

[
1−
(

δ

2

)p

+ |2λ −1|p δ

2

p]1/p

≤ 1−
[

1−
(

δ

2

)p]1/p

.

Corollary 4.5. If β`p(Φ)(δ ) = 1, then `p(Φ) is strictly convex.

Corollary 4.6. If 0 < β`p(Φ)(δ )≤ 1, then `p(Φ) is uniformly convex.
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