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Abstract
The first aim of this paper is to define the dual spacelike Mannheim partner curves in Dual

Lorentzian Space ]Dl3 , the second aim of this paper is to obtain the relationships between the

curvatures and the torsions of the dual spacelike Mannheim partner curves with respect to each
other and the final aim of this paper is to get the necessary and sufficient conditions for the dual

spacelike Mannheim partner curves in [D13 .
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IDﬁ > DE DUAL SPACELIKE MANNHEIM EGRIi CiFTLERI UZERINE

Ozet

Bu ¢alismanin amact: ilk olarak dual Lorentz uzayinda dual spacelike Mannheim egri ¢iftini
tanimlamak, ikinci olarak dual spacelike Mannheim egri ¢iftinin birbirlerine gore egrilik ve
burulmalari arasindaki bagmtilar1 vermek ve son olarak da ID13 dual Lorentz uzayinda verilen

bir egri ¢iftinin dual spacelike egri olmasi igin gerek ve yeter sartlar1 elde etmektir.

Anahtar kelimeler: Manheim egri, Dual Lorentzian uzay, egrilme, burulma

1.INTRODUCTION

As is well-known, a surface is said to be “ruled” if it is generated by moving a straight
line continuously in Euclidean space (O’Neill, 1997). Ruled surfaces are one of the simplest
objects in geometric modeling. One important fact about ruled surfaces is that they can be
generated by straight lines. A practical application of this type surfaces is that they are used in
civil engineering and physics (Guan et al., 1997).

Since building materials such as wood are straight, they can be considered as straight
lines. The results is that if engineers are planning to construct something with curvature, they
can use a ruled surface since all the lines are straight (Orbay et al., 2009).

In the differential geometry of a regular curve in the Euclidean 3 - space [E it s
well-known that one of the important problem is the characterization of a regular curve. The

curvature functions kl and k2 of a reguler curve play an important role to determine the shape

and size of the curve (Kuhnel, 1999; Do Carmo, 1976). For example, If k, =k, =0, the
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curve is geodesic. If kl # O(constant ) and k, =0, then the curve is a circle with radius

l/k1 dfk # O(Consl‘ant) and k, #0 (constant) , then the curve is a helix in the space.

Another way to classification and characterization of curves is the relationship between
the Frenet vectors of the curves. For example Saint Venant proposed the question whether upon
the surfaces generated by the principal normal of a curve, a second curve can exist which has
for its principal normal the principal normal of the given curve. This question was answered by
Bertrand in 1850; he showed that a necessary and sufficient condition for the existence of such
a second curve is that a linear relationship with constant coefficients exists between the first and
second curvatures of the given original curve. The pairs of curves of this kind have been called
Conjugate Bertrand curves, or more commonly Bertrand Curves. There are many works related
with Bertrand curves in the Euclidean space and Minkowski space. Another kind of associated
curves are called Mannheim curve and Mannheim partner curve. If there exists a corresponding

relationship between the space curves @ and [ such that, at the corresponding points of the
curves, principal normal lines of & coincides with the binormal lines of £, then & is called a

Mannheim curve, and  Mannheim partner curve of ¢ .

In recent studies, Liu and Wang (2007, 2008) are curious about the Mannheim curves
in both Euclidean and Minkowski 3- space and they obtained the necessary and sufficient
conditions between the curvature and the torsion for a curve to be the Mannheim partner curves.
Meanwhile, the detailed discussion concerned with the Mannheim curves can be found in
literature (Wang and Liu, 2007; Liu and Wang, 2008; Orbay et al., 2009; Ozkald: et al., 2009;
Azak, 2009) and references therein.

Dual numbers had been introduced by W.K. Clifford (1849 - 1879) as a tool for his
geometrical investigations. After him E. Study used dual numbers and dual vectors in his
research on line geometry and kinematics. He devoted special attention to the representation of
oriented lines by dual unit vectors and defined the famous mapping: The set of oriented lines in

an Euclidean three— dimension space [E ? is one to one correspondence with the points of a

dual space ID’ of triples of dual numbers.
In this paper, we study the dual spacelike Mannheim partner curves in dual Lorentzian

space ID13 .

2. PRELIMINARY
By a dual number A4, we mean an ordered pair of the form (a,a*) for all a,a* elR.

Let the set IRXIR be denoted as ID. Two inner operations and an equality on

[Dz{(a,a*)
(i)®:IDxID —ID for A=(a,a’), B=(b,b") defined as
A@Bz(a,a*)@(b,b*):(a+b,a*+b*)
is called the addition in ID .
(ii)©: IDxID — ID for A=(a,a"), B=(b,b") defined as

AOB:(a,a) ( ) (bab +ab)

a,a’ e [R} are defined as follows:
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is called the multiplication in ID .
(iii) If a=b, a =b" Az(a,a*), Bz(b,b*), A and B are equal, and it is
indicated as 4 =B.

If the operations of addition, multiplication and equality on D = IR x IR with set of real
numbers IR are defined as above, the set ID is called the dual numbers system and the

element (a,a*) of ID is called a dual number. In a dual number A = (a,a*) € ID, the real
number @ is called the real part of 4 and the real number a’ is called the dual part of 4. The

dual number 1=(1,0) is called the unit element of multiplication operation [D with respect to
multiplication and denoted by&. In accordance with the definition of the operation of

multiplication, it can be easily seen that £ = 0. Also, the dual number 4 = (a,a*) € ID can

be writtenas A =a+é&a .
The set [D:{A:a+ga*

a,a e IR} of dual numbers is a commutative ring according to the
operations,
(i)(a+.9a*)+(b+gb*) = (a+b)+g(a* +b*)
(ii)(a + ga*)(b + gb*) =ab+ g(ab* +ba*) :
The dual number 4 =a+&a’ divided by the dual number B =b+ eb’ provided b # 0 can
be defined as
é: a+ed _a.. ab—ab
B b+eb b b’
Now let us consider the differentiable dual function. If the dual function f expansions
the Taylor series then we have

f(a+5a*):f(a)+5a*f’(a)

where f' (a) is the derivation of f . Thus we can obtain

sin(a+5a*)=sina+5a* cosa
cos(a+8a*)=cosa—£a* sina.

The set of
D’ :{A ‘ A=a+ea ,a,a" eIR3}

is a module on the ring ID . For any A=a+ea , B=b+eb elID’ , the scalar or inner

product and the vector product of A and B are defined by, respectively,

(4.B)=(a.b)+2((ab")+(a"b))

2A§=5A5+g(;A5"+5*A5).
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Ifa#0 , the norm Hz_‘i of A=a+é&a’ is defined by

) - e

A dual vector 2 with norm 1 is called a dual unit vector. The set

s? :{Z:ZHJ' e’| 4] =(1.0);a,a" e]R3}

is called the dual unit sphere with the center Oin ID’.

Let a(t)=(a(t).a,(t),a;(t)) and B(t)=(B(¢).5(t). B (t)) be real

valued curves in JE> . Then gt (t) = a(t) +ea (t) is a curve in ID’ and it is called dual

space curve. If the real valued functions ¢, (t ) and a_* (l‘ ) are differentiable then the dual

space curve ONl(t ) is differentiable in /D’ . The real part a(t ) of the dual space curve

c~¥ = c~¥ (t ) is called indicatrix. The dual arc-length of the dual space curve & (l‘ ) from 7, to ¢

is defined by

5= jH?(r)Hdt =j]'Ho7(t)H dt+é&= j:<?,(07(t))r >dt =s+es’

where ¢ is unit tangent vector of the indicatrix & (l‘ ) which is a real space curve in IE .

From now on we will take the arc length § of 5 (t ) as the parameter instead of 7.

The Lorentzian inner product of dual vectors A , BelID® is defined by

(4.B)=(ab)+s((ab)+(a b))

with the Lorentzian inner product a= (al ,a,,a, ) and b= (b1 ,bz,b3) eIR’

<(3,I;> =-ab +a,b, +ab,.

Thus, ([D3 , <,>) is called the dual Lorentzian space and denoted by ]Dl3 . We call the

elements of [Dl3 as the dual vectors. For A% 0 , the norm HZ

of A is defined by

HZH = ‘<2,2>‘ . The dual vector 4 = Zl +¢ea’ is called dual spacelike vector if

<Z,Z> >0 or A=0, dual timelike vector if <Z, Z> <0 , dual lightlike vector if

<Z,2> =0 for A# 0. The dual Lorentzian cross-product of A , "BeID? is defined by
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AnB=anb+e(anb +a Ab)
where a Ab = (a3b2 —a,b,,a,b, —a,b,,a,b, - a2b1) ZI,B € IR’ i s the Lorentzian cross

product.

Dual number @ = ¢ + 6‘(p* is called dual angle between A ve B unit dual vectors.
Then we was

sinh (go +ep ) =sinh@+&p coshp and
cosh (go +ep ) =cosh@+ &g sinhg .
Let {T(S) ,N(S) ,B(S)} be the moving Frenet frame along the curve g{(s) . Then
T (S) N (S ) and B(S) are dual tangent, the dual principal normal and the dual binormal
vector of the curve gt (S) , respectively. Depending on the casual character of the curve gz ,

we have the following dual Frenet —Serret formulas:

If CN( is a dual spacelike curve with a dual timelike binormal B ;

T 0 x 0T
N|=|-x 0 || N @.1
B’ 0 = OB
where (T,T)=(N,N)=1,(B,B)=—L1(T,N)=(N,B)=(T,B) =0.
We denote by {V1 (S ) WV, (S) NA (S)} the moving Frenet frame along the curve ﬁ(s) Then
V,(s),V,(s) and V;(s) are dual tangent, the dual principal normal and the dual binormal
vector of the curve f3(s ), respectively. Depending on the casual character of the curve /3,
we have the following dual Frenet — Serret formulas:

If ,Z’ is a dual spacelike curve with a dual spacelike binormal V, ;

’

Wl (o P 0)(W
Vyi=|P 0 O]V, (2.2)
vy ) L0 0 o)y,

where (T,T)=(B,B)=1,(N,N)=-L1(T,N)=(N,B)=(T,B) =0.

If the curves are unit speed curve, then curvature and torsion calculated by,

N _det(T,T',T")
k= <T’T> T = <T',T'>

or
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det(Vl,Vl',V]")
p=nw). o=
o)

If the curves are not unit speed curve, then curvature and torsion calculated by,

det(a,gz,gt j

- 3 v 2

~1! ~1n

a Na

~1 ~n

a Nda

~1!

(24

or

B AR det(z,zf’,z"j
Pl 0=

P B rB

Definition 2.1. a) Dual Hyperbolic angle: Let A and B be dual timelike vectors in ID13.
]

b) Dual Central angle: Let A and B be spacelike vectors in ]Dl3 that span a dual timelike

Then the dual angle between A and B is defined by <2, §> =—

EH cosh @ . The dual

number @ = @+ &6 is called the dual hyberbolic angle.

vector subspace. Then the dual angle between A and B is defined by
<Z,§>=HZH EHCOSh(D.The dual number @ = @+ 0" s called the dual central angle.

¢) Dual Spacelike angle: Let A and B be dual spacelike vectors in ID13 that span a dual

spacelike vector subspace. Then the dual angle between A and E is defined by
<Z,§>= A E‘

a) Dual Lorentzian timelike angle: Let A4 be a dual spacelike vector and B be a dual

cos® . The dual number ® = @+ 6" is called the dual spacelike angle.

timelike vector in ]Dl3 . Then the dual angle between A and B is defined by
<Z,§>: Al (B

timelike angle.

‘sinhd). The dual number ® =@ +&6° s called the dual Lorentzian

3. DUAL SPACELIKE MANNHEIM PARTNER CURVE IN ID13

In this section, we define dual spacelike Mannheim partner curves in [D13 and we

give some characterization for dual spacelike Mannheim partner curves in the same space.
Using these relationships, we will comment again Shell’s and Mannheim’s theorems.
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Definition 3.1. Let a:l— ]Df, gt(s) = a(s)+ s’ (S) and
B v —)]Dl3 ,ﬁ(s) =,B(S)+€,B* (S) be dual spacelike curves. If there exists a

corresponding relationship between the dual spacelike curves with dual timelike binormal ¢

and the dual spacelike curves with dual spacelike binormal ﬁ such that, at the corresponding

points of the dual spacelike curves, the dual binormal lines of CNZ coincides with the dual

principal normal lines of IE, then & is called a dual spcelike Mannheim curve, and £ is

called a dual Mannheim partner curve of ¢ . The pair {&,E} is said to be dual spacelike
Mannheim pair.

Let {T, N,B} be the dual Frenet frame field along a= gﬂ(S) and let {Vl,V2,V3}

be the Frenet frame field along ﬁ = E(S ) . On the way @ =60 + g0 is dual angle between
T and V| , there is an following equations between the Frenet vectors;
4 cos® sin® 0\ T
v,|=| 0 0 1|N G.1)
|4 sin® —cos® 0)\ B

Theorem 2.1. The distance between corresponding dual points of the dual spacelike Mannheim
partner curves in [D13 is constant.

Proof: From the definition of dual spacelike Mannheim curve, we can write

B(s)= a(s)+A(s)B(s) (3.2)
By taking the derivate of this equation with respect to § and applying the Frenet formulas, we
get

*

v TN B (3.3)
ds

where the superscript (') denotes the derivate with respect to the arc length parameters of the

dual curve (). Since the dual vectors B and V, are linearly, we get
ds” , ,
n—o-B)=0, (T+ATN+A'B,B)=0, A'=0.
S

If we take A = A4, + 8/11* ,we get 4/ =0 ve ll*' = 0. From here, we can write
*
A=c¢ and A =c¢,, ¢,c,=constant.
Then we get A = ¢, + &c, . On the other hand, from the definition of distance function between

@(s) and B(s) we can write
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d(a(s). B(s)) = | B(s)-a(s)| =] (s) B(s)| = Hﬂqb+g(ﬂq*b+ﬂ1b*)
(Ab A'b+4D")
|4b]

=|A4|F et =|a|Fec,.

-laol e

This is completed the proof.

Theorem 2.2. For a dual spacelike curve ¢ in ]Dl3 , there is a dual spacelike curve ,B so that
{d, ﬂN } is a dual spacelike Mannheim pair.

Proof: Since the dual vectors }, and B are linearly dependent, the equation (3.2) can be

written as
a=p-, (3.4)

Since A is a nonzero constant, there is a dual spacelike curve £ for all values of A .
Now, we can give the following theorem related to curvature and torsion of the dual
spacelike Mannheim partner curves.

Theorem 2.3. Let {07 , ,6~’ } be a dual spacelike Mannheim pair in ]Dl3 .If 7 is dual torsion of

& and P is dual curvature and Q is dual torsion of /3 , then
P
20
Proof: By taking the derivate of equation (3.3) with respect to § and applying the Frenet
formulas, we obtain

r= (3.5)

*

VldizT+)n-N (3.6)
ds

Let ® =@ +&p be dual angle between the dual tangent vectors T and V., we can write

V,=cos®T +sin® N, ;
i
V,=sin®T —cos®N. G-D
From (3.6) and (3.7) , we get
di: ! , /”Lz'zsinCDdi (3-8)
ds cosd ds

By taking the derivate of equation (3.4) with respect to § and applying the Frenet formulas, we

obtain

ds’ ds”

T=(1-AP)V,——AQV,— (3.9)
ds ds

From equation (3.7) we can write
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T =cos®V, +sin®V,
. (3.10)
N =sin®V, —cosDV,.
where @ is the dual angle between 7' and V) at the corresponding points of the dual curves of

a and ﬂ~ . By taking into consideration equations (3.9) and (3.10), we get

*

@

cos® =(1-AP) y
s

i (3.11)
s

in®=-10—.

sin 0 s

ds
Substituting d_ into (3.11) , we get
S

cos’ @ =(1-AP),
sin® ® =-1°7Q.

From the last equation, we can write

_P
A0

If the last equation is seperated into the dual and real parts, we can obtain

(3.12)

T =

(3.13)

« G (pq -P Q)+Cqu
k, = > .
(aq)
Corollary 3.1. Let {0? , B } be a dual spacelike Mannheim pair in IDI3 . Then, the dual product

of torsions 7 and Q) at the corresponding points of the dual spacelike Mannheim partner

curves is not constant.
Namely, Schell’s theorem is invalid for the dual spacelike Mannheim curves. By
considering Theorem 2.3 we can give the following results.

Corollary 3.2. Let {07, ﬂN } be a dual spacelike Mannheim pair in ID13 . Then, torsions 7 and

0 has a negative sign.

Theorem 3.4. Let {0?, ,6~’ } be a dual spacelike Mannheim pair in ID13 . Between the curvature

and the torsion of the dual spacelike curve IB’ , there is the relationship

HO+AP =1 (3.14)
where £ and A are nonzero dual numbers.
Proof: From equation (3.11) , we obtain
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cos® sin®

1-AP -0’
arranging this equation, we get
1-AP
cot® =

-0’
and if we choose ( =—Acot® for brevity, we see that
HO+ AP =1.

Theorem 3.5. Let {d R ,6~’ } be a dual spacelike Mannheim pair in IDI3 . There are the following

equations fort he curvatures and the torsions of the curves & ve [

* *

i)z(:—d—q), ii)r:Psind)di—QcosCDdi,,
ds ds ds
iii)P:rsin(Dd—i, iv)Q=-1cosd ds*.
ds ds

Proof: i) By considering equation (3.7), we can easily that <T , V1> =cos®. Differentiating of
this equality with respect to s by considering equation (3.1) , we have
' ' dS* . dod
(T"V)+(T. V] —)=-sin®d—,
ds ds
from equations (3.1) and (3.2), we can write
ds” . dd
(kN V) +{T,PV,— )=—sin®—,
ds ds

from equations (3.10), we get

_dd
ds
If the last equation is seperated into the dual and real part, we can obtain
d
k=-22,
ds
. do’
v 4o
‘ ds

ii) By considering equation (3.7), we can easily that <N ,V2> = 0. Differentiating of this

equality with respect to s and by considering equation (3.1) , we have
ds’
<N’,V2>+<N,V2'— =0,
ds

From equations (3.1) and (3.2), we can write

10
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<—KT+TB,V2>+<sinCDV1 —cos®V,,(PV, +QV3)%>=0,

From equations (3.10), we get

* s

r=PsinCDdi—QcosCDdi.
ds ds

iii) By considering equation (3.7), we can easily that <B,Vl> = 0. Differentiating of this

equality with respect to s and by considering equation (3.1) , we have
ds’
(B V,)+( BV, —)=0,
ds

From equations (3.1), (3.2) and (3.10) we can write

(z(sin®V, —coscDI/}),Vl>+<B,PV2‘fii>=o, P=rsind- %
S S

iv) By considering equation (3.7), we can easily that <B,V3> = 0. Differentiating of this
equality with respect to s by considering equation (3.1) , we have
ds’
(BV,)+{B,V;, —)=0,
ds
From equations (3.1), (3.2) and (3.10) we can write

(z(sin®V, —cosqalg),lg>+<B,QVf;i>=0, QZ—rcosq)js*.
A) S

Corollary 3.3. Let {d, ﬁ} be a dual spacelike Mannheim pair in ]Dl3 . If the statements of

Theorem 3.5 is seperated into the dual and real part, we can obtain

k2=psin¢9di—qcos9di,

: ds ds

l) d * d *
* 5 5 A) * * S
k, = sin@+ p@ cos@)——(qg cos@—ql sinf)—.
»=(p p )4 q )~

ds
=k, sinf—;,
p 2 ds

p =(k; sin0+k,0" cos 9)%,

11
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q =—k, cos Qd—s*,
ds
i) P
* * * . S
q =—(k2 cos@—k,0 s1n6?) o

By considering the statements iii and iv) of Theorem 3.5 we can give the following results.

Corollary 3.4. Let {07, ﬂN } be a dual spacelike Mannheim pair in IDI3 . Then there exist the

following relation between curvature and torsion of E and torsion of ¢ ;
2
ds
O +P =1 — (3.15)
ds

Theorem 3.6. A dual spacelike space curve in ID13 is a dual spacelike Mannheim curve if and

only if its curvature P and torsion Q satisfy the formula
—/I(P2+Q2)=P (3.16)
where A is never pure dual constant.

Proof: By taking the derivate of the statement @ = f§ — le with respect to § and applying

the Frenet formulas we obtain

d
Td—;:Vl+/1(PVl+QV3),

K‘N( ds T+Td—2S:PV +A(PV+QV+(PP+ 00
ds’ ds™ ? 1 } A

Taking the inner product the last equation with B , we get
~A(P*+Q%)=P.
If the last equation is seperated into the dual and real part, we can obtain

P= (p2+q2)’ (3.17)

p ==2¢(pp +aq')-c, (P’ +q*)

where A =¢, +&c, .

Theorem 3.7. Let {d, ﬂN } be a dual spacelike Mannheim partner curves in ]Dl3 . Moreover,

the dual points gt (S ) , ﬁ(s ) be two corresponding dual points of {(},Z)’} and M ve M be

the curvature centers at these points, respectively. Then, the ratio

12
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] [pom
oy eteyor

=(1+AP)N1-A’k* # constant. (3.18)

is not constant.

Proof: A circle that lies in the dual osculating plane of the point gl (S ) on the dual spacelike

~ ~ 1
curve @ and that has the centre M =« (s) +— N lying on the dual principal normal N of
K

~ 1 ~
the point & (S) and the radius — far from & (S ) , is called dual osculating circle of the dual
K

curve & in the point & (S) . Similar definition can be given fort he dual curve 3 too.

Then, we can write

T e O B e
OIS A S /OM R SR R

Therefore, we obtain
|B(s)m] |B(s)M e
~(—) : N(—) = (1+ AP)N1- A’k # constant.

Jer(s) M| e (5) M

Thus, we can give the following

Corollary 3.5. Mannheim’s Theorem is invalid fort he dual spacelike Mannheim partner curve

{@.B}in ID;.

%)
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