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Abstract 

In this study, equation of motion for free vibration of both ends simply 

supported Timoshenko beam resting on two different elastic foundation are 

obtained considering P- effects. The eigenvalues being the fundamental 

frequencies of Timoshenko beam on elastic foundation and the frequency 

factors related to these eigenvalues are calculated using two different 

methods. Free vibration equation of Timoshenko beam is solved by using 

respectively differential transform method (DTM) and transfer matrix 

method (TMM), respectively. Frequency factor values obtained by both 

methods depending on the beam length ratios at two different foundation 

regions, the modulus of subgrade reactions and the axial load ratios are 

presented in the tables. 

Key words: Differential transformation method, transfer matrix method, 

partial differential equation, equation of motion, Timoshenko beam, elastic 

foundation. 

Özet 

Bu çalışmada, iki farklı elastik zemine oturan, iki ucu basit mesnetli, 

Timoshenko kirişinin serbest titreşimine ait hareket denklemi P- etkileri 

altında elde edilmiştir. Elastik zemine oturan Timoshenko kirişinin temel 
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frekansları olan özdeğerler ve bu özdeğerlere bağlı frekans faktörleri iki 

farklı yöntem kullanılarak hesaplanmıştır. Timoshenko kirişinin serbest 

titreşim denklemleri, sırasıyla diferansiyel dönüşüm yöntemi (DTM) ve 

taşıma matrisi yöntemi (TMM) kullanılarak çözülmüştür. İki farklı zemin 

bölgesindeki kirişin uzunluk oranları, zemin yatak katsayısı ve eksenel 

kuvvet oranları bağlı olarak her iki yöntemle elde edilen frekans faktör 

değerleri tablolarda sunulmuştur. 

Anahtar kelimeler: Diferensiyel dönüşüm yöntemi, taşıma matrisi 

yöntemi, kısmi diferansiyel denklem, hareket denklemi, Timoshenko kirişi, 

elastik zemin. 

 

1. INTRODUCTION 

Static and dynamic analysis problems of beams resting on elastic 

foundation is encountered at many engineering applications related to soil-

structure interactions in structure and geotechnical engineering like strip 

foundations, railroads tracks, pipelines embedded in soil. 

It is assumed in many studies related to beam on elastic foundation 

problem that the soil behavior is modeled by linear-elastic spring 

according to Winkler soil. Yokoyama studied the vibration of Timoshenko 

beam on two-parameter elastic foundation considering both bending 

moment and shear force effects [1]. Doyle et all, solved the equation of 

motion of the beam on partial elastic foundation including only bending 

moment effect by using separation of variables [2]. Chen examined the 

static analysis using differential quadrature element method of Bernoulli-

Euler beam on elastic foundation considering only the bending moment 

effect by discretizing differential equation of the beam [3]. Chen and 

Huang obtained the dynamic stiffness matrix of Timoshenko beam on 

viscoelastic foundation [4]. Karami studied free vibration analysis of non-

uniform Timoshenko beam resting on elastic supports by differential 

quadrature element method [5]. Catal obtained the free vibration circular 

frequencies of the piles partially embedded in the soil due to supporting 

conditions of top and bottom ends of the pile using separation of variables 

[6]. Hsu investigated vibration analysis of axially loaded clamped-free and 

hinged-hinged Bernoulli-Euler beams on elastic foundation with single 
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edge crack using differential quadrature method [7]. Kim obtained 

dynamic stiffnes matrix of non-symmetric thin-walled beams on elastic 

foundation by power series method [8]. The differential equation for 

bending of Timoshenko beam resting on Kerr-type three-parameter elastic 

foundation is obtained an analytically solved by Avramidis and Morfidis 

[9]. 

The differential transform method (DTM) which was introduced by 

Zhou in 1986 for the solution of initial value problems in electric circuit 

analysis is based on Taylor series expansions [10]. In recent works, DTM 

is applied to vibration analysis of continuous systems as beams and plates. 

Jang and Chen, the differential transformation method is applied to solve a 

second order non-linear differential equation that describes the under 

damped and over damped motion of a system subject to external 

excitations [11]. According to types of conditions at both end of a 

prismatic Bernoulli-Euler beam, frequency equations and fundamental 

frequencies of the beam have obtained using DTM by Malik and Dang 

[12]. Chen and Ho, using differential transform technique proposed a 

method to solve eigenvalue problems for the free and transverse vibration 

problems of a rotating twisted Timeshenko beam under axial loading [13]. 

Özdemir and Kaya, flapwise bending vibration of a rotating tapered 

cantilever Bernoulli-Euler Beam is considered by using differential 

transform technique [14]. Kaya and Özgümüş, flexural-torsional-coupled 

vibration analysis of axially loaded closed-section composite Timoshenko 

beam is considered by using DTM [15]. Ruotolo and Surace calculated 

natural frequencies of a bar with many cracks using transfer matrix 

approach and finite element method [16]. Hosking studied natural flexural 

vibrations of Bernoulli-Euler beam mounted on discrete elastic supports 

using transfer matrices [17]. Coupling lateral and torsional vibrations of 

symmetric rotating shaft modeled by the Timoshenko beam is examined 

using modified TMM by Hsieh [18]. Free vibration of semi-rigidly 

connected piles embedded in soils with different subgrades problem are 

taken by Yesilce and Catal [19]. Differential transform method is used for 

free vibration analysis of a moving beam [20]. Demirdag and Yesilce, the 

problem of free vibration equation of elastically supported Timoshenko 

columns with a tip mass are solved by using differential transform method 

[21]. 

S. Catal, O. Demirdağ 



52 
 

In this study, forth-order partial differential equations of motion for 

free vibration of Timoshenko beam on two different elastic foundations are 

developed considering P- effect. These governing equations are solved 

using two different methods, the first being differential transform method 

(DTM) the other being transfer matrix method (TMM) approach, and 

frequency factors for the first three modes of the beam are obtained and 

presented in tables. 

2. THE MATHEMATICAL MODEL 

A Timoshenko beam with total length of L and with lengths of L1 and 

L2 on elastic foundations respectively called as the first and the second 

regions and having modulus of subgrade reactions of Cr1 and Cr2 is 

presented in Figure 1a; whereas internal forces and deformations of 

differential beam segment of the first and the second regions in Figures 1b 

and c. 

 
Figure 1a. Beam on elastic foundation 

 
Figure 1b. Internal forces and deformations of segments of the beam in first and 

second regions. 
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The relation between the distributed forces acting on differential beam 

segment of the first and the second regions and the elastic curve functions 

of the beam are written as q1(x1,t) = Cs1*y(x1,t) and q2(x2,t) = Cs2*y(x2,t) 

according to Winkler hypothesis where Cs1 = Cr1*b, Cs2 = Cr2*b, y1(x1,t) 

and y2(x2,t) are elastic curve functions respectively at the first and the 

second regions, b is beam width. Equations of motion for the first and the 

second regions of Timoshenko beam on elastic foundation are obtained by 

using the equilibrium equations of forces and moments acting to 

differential beam segments of the first and the second regions, and by 

considering also P- effect under the assumptions that cross-section and 

density of the beam is constant and the beam is made of linear elastic 

material, respectively as in the following [6]. 
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Writing the dimensionless parameters z1, z2 instead of the position 

parameters x1, x2 and y1(z1,t) = (z1).sin(t + ),  y2(z2,t) = (z2).sin(t +) 

instead of the elastic curve functions in equations (1) and (2) gives the 

equation of motion for the beam at the first and the second regions as 
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where 1(z1) and 2(z2) are dimensionless displacement functions of the 

beam in the first and the second region, respectively; t is time variable;  is 

phase angle; Nr = N L
2
 / (

2
 EI) is the ratio of axial load N acting to the 

beam to Euler buckling load; m is distributed mass of the beam;  is beam 

circular frequency; k  is shape factor due to cross-section area of the beam. 

N is constant axial compressive force, L1 and L2 are length of the beam in 

the first and the second region, respectively; L is total length of the beam, 

A, G, E, I are respectively cross-section area, shear modulus, elastic 

modulus and moment of inertia of the beam respectively. 

3. DIFFERENTIAL TRANSFORMATION 

The differential transformation technique, which was first proposed 

by Zhou in 1986 [10], is one of the numerical methods for ordinary and 

partial differential equations that use the form of polynomials as the 

approximation to the exact solutions that are sufficiently differentiable. 

The function that will be solved and the calculation of following 

derivatives necessary in the solution become more difficult when the order 

increases. This is in contrast with the traditional high-order Taylor series 

method. Instead, the differential transform technique provides an iterative 

procedure to obtain higher-order series; therefore, it can be applied to the 

case high order. 

The differential transformation of the function (z) is defined as follows: 
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Where (z) is the original function and (k) is transformed function 

which is called the T-function (it is also called the spectrum of the (z) at z 

= z0, in the K domain). The differential inverse transformation of (k) is 

defined as: 
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Equation (6) implies that the concept of the differential transformation 

is derived from Taylor’s series expansion, but the method does not 

evaluate the derivatives symbolically. However, relative derivative are 

calculated by iterative procedure that are described by the transformed 

equations of the original functions. 

The basic operations of transformed functions which are given Table-

1 can be easily proofed using equations (5) and (6). 

The function is expressed by finite series and equation (6) can be 

written as 



n

0k

k
0 )k()zz()z( . Equation (4) implies that 







1nk

k
0 )k()zz()z(  is negligibly small. In fact, n is decided by the 

convergence of natural frequency in this paper. 

 

Table 1. Some basic mathematical operations of DTM 

Original function (z) Transformed function (k) 

A(z) a(k) 

1(z)  2(z) 1(k)  2(k) 

d(z)/dz (k+1) (k+1) 

d
2
(z)/dz

2
 (k+1)(k+2) (k+2) 

d
3
(z)/dz

3
 (k+1)(k+2)(k+3) (k+3) 

d
4
(z)/dz

4
 (k+1)(k+2)(k+3)(k+4) (k+4) 

 

4. SOLUTION OF EQUATIONS OF MOTION BY DIFFERENTIAL 

TRANSFORMATION METHOD 

The boundary conditions of the Timeshenko beam resting on two 

different elastic foundation and both ends simply supported shown in 

Figure 2 are given in equations (8) - (15). 
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Figure 2. Both ends simply supported beam on elastic foundation. 
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By applying the DTM to equations (3),(4),(8),(10) and using the 

relationship in Table-1 following equations are obtained. 
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0)2(1                   (19) 
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The recurrence relations of the first region for k = 0(1)n are obtained from 

equation (16) using equations (18) and (19) as follows: 
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The recurrence relations of the second region for k = 0(1) n are obtained 

from Eq. (17) as: 
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By applying the DTM to equations (9), (11), (12), (13), (14), (15) and 

using the recurrence relations (20), (21) following equations are obtained 

0)3(!3b)2(!2b)1(b)0(b 214213212211             (22) 

0)3(!3b)2(!2b)1(b)0(b 224223222221             (23) 

)0()3(!3b)1(b 2136135                (24) 

)1()3(!3b)1(b 2146145                (25) 

)1(C)3(!3)3(!3b)1(b 222156155               (26) 

)0(C)2(!2)3(!3b)1(b 222166165               (27) 
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Substituting equations (24) and (25) into equations (26) and (27), respectively, 

gives: 

)3(!3)bCb()1()bCb()3(!3 1462561452552             (28) 

)3(!3)bCb()1()bCb()2(!2 1362661352652             (29) 

 

Substituting equations (24),(25),(28) and (29) into equations (22) and (23), 

respectively, gives: 
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2221

1211
               (30) 

where 

B11 = b11b35  + b12b45 + b13 ( b65 – C2 b35) + b14 ( b55 – C2 b45) 

B12 = b11b36  + b12b46 + b13 ( b66 – C2 b36) + b14 ( b56 – C2 b46) 

B21 = b21b35  + b22b45 + b23 ( b65 – C2 b35) + b24 ( b55 – C2 b45) 

B22 = b21b36  + b22b46 + b23 ( b66 – C2 b36) + b24 ( b56 – C2 b46) 

 

Thus, the frequency equation of the beam resting on elastic foundation is 

obtained using Eq. (30) as: 

f
(n)

 = B11 B22 – B12 B21 = 0               (31) 

 

Solving (31) we get  = i 
(n)

, i = 1, 2, 3,… where i 
(n)

 is the nth estimated 

 circular frequency corresponding to n, and n is indicated by 


 )1n(

i
)n(

i
 

where i 
(n-1) 

 is the ith estimated circular frequency corresponding to n-1 

and  is a positive and small value. 

 

5. TRANSFER MATRIX METHOD 

The relations of displacement and internal force vector between the 

simply supported right end and the left end of the beam in the first region, 
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and between the simply supported left end and the right end of the beam in 

the second region are as in the following [22]. 
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(U{ 2  are displacement and force vectors of 

the beam respectively at the positions of z1=0 ,z1=L1/L , z2=L2/L and are as 

in the following. 
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             (36) 

[H1] and [H2] are transfer matrices respectively for the first and the 

second regions. 

1(z1) function in the relations (34), (35) and 2(z2) function in the 

relation (36) are obtained according to the signs of parameters S1, S2, S3 ,S4 

,S5 and S6 from the solutions of differential equations (3) and (4). 

Following five conditions exist according to the signs of parameters S1, S2, 

S3 ,S4 ,S5 and S6 [6]. 

I. Condition: in the first region S1>0 , S2>0 ve   S3 >0  

 )zDsinh(C)zDcosh(C)zDsinh(C)zDcosh(C)z( 14614513413311     (37) 
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           (0   z1  L1/L) 

in the second region S4>0 , S5>0 ve  S6 >0  

 )zDsinh(C)zDcosh(C)zDsinh(C)zDcosh(C)z( 261026925825722       (38) 

     (0   z2  L2/L) 

II. Condition: in the first region S1>0 , S2>0 ve  S3 <0  

 )zDsin(C)zDcos(C)zDsinh(C)zDcosh(C)z( 14614513413311     (39) 

           (0   z1  L1/L) 

in the second region; S4>0 , S5>0 ve  S6 <0 

 )zDsin(C)zDcos(C)zDsinh(C)zD(oshC)z( 261026925825722     (40)

            (0   z2  L2/L) 

III. Condition: in the first region S1>0 , S2<0 ve  S3>0  

 )zDsinh(C)zDcosh(C)zDsin(C)zDcos(C)z( 14614513413311     (41) 

           (0   z1  L1/L) 

in the second region; S4>0 , S5<0 ve  S6>0  

 )zDsinh(C)zDcosh(C)zDsin(C)zDcos(C)z( 261026925825722     (42) 

           (0   z2  L2/L) 

IV. Condition: in the first region; S1>0 , S2<0 ve  S3<0  

 )zDsin(C)zDcos(C)zDsin(C)zDcos(C)z( 14614513413311     (43) 

           (0   z1  L1/L) 

in the second region; S4>0 , S5<0 ve  S6<0 

 )zDsin(C)zDcos(C)zDsin(C)zDcos(C)z( 261026925825722     (44) 
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V. Condition: in the first region; S1<0  

    )zrcos()zrsinh(C)zrcos()zrcosh(C)z( 1211114121111311   

   )zrsin()zrsinh(C)zrsin()zrcosh(C 12111161211115  ;  (45) 

          (0   z1  L1/L ) 

in the second region; S2<0 

    )zrcos()zrsinh(C)zrcos()zrcosh(C)z( 2421328242232722   

   )zrsin()zrsinh(C)zrsin()zrcosh(C 24223210242329 
 
(46) 

         (0   z2  L2/L ) 

where, D3 = S2
0.5

; D4 = S3
0.5

; D5 = S5
0.5

; D6 = S6
0.5

; 1 = 
4 

- 1; 2 = 
4 

- 2 

)2/sin( 11  ; )2/cos( 12  ;   25.0
11r  ; 

  25.0
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C
S  ;

5.0
4

2
6 )S(

2

C
S  ; 3,C4,…,C10 are integration constants. 

Shear force and bending moment functions T(z1), M(z1) in the 

relations (34), (35) and shear force function T(z2) in the relation (36) are 

obtained using the relation between the derivatives of elastic curve and the 

internal forces of the beam as in the following [6]. 
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Writing the value of )}
L

L
(U{ 1 form the equation (32) in equation 

(33) gives 

)}0(U]{H[)}
L

L
(U{ 2                  (50) 

where 
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]H][H[]H[  and is 4x4 matrix that 

transforms displacements and forces in the left end of the beam in the first 

region to displacements and forces in the right end of the beam in the 

second region [22]. The 2x2 homogeneous matrix equations are obtained 

from equation (50) according to the boundary conditions of the beam ends 

as in the following. 
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Frequency equation of the both ends simply supported beam on elastic 

foundation is obtained equating the determinant of the coefficient matrix in 

the matrix equation (51) to zero as in the following. 

h12 * h34 – h32 * h14 = 0                 (52) 

Thus, circular frequency values obtained using equation (52) is the 

eigenvalues of the beam. 

6. NUMERICAL ANALYSIS 

 

Frequency factor values () for the first three modes of the both ends 

simply supported IPB 900 steel beam resting on two different elastic 

foundation are calculated considering three groups of modulus of subgrade 

reactions and using DTM and transfer matrix method for parametric 

studies in this paper.  I., II. and III. groups of modulus of subgrade 

reactions are considered as respectively Cs1=70000 kN/m
2
, Cs2= 0 kN/m

2
; 

Cs1=70000 kN/m
2
, Cs2 = 20000 kN/m

2
 and Cs1=70000 kN/m

2
, Cs2=50000 

kN/m
2
. 0.25, 0.5, 0.75 values are taken for both Nr and L1/L in the study. 

Characteristics of the steel IPB 900 profile used in the numerical analysis 

are presented in the following. 

L = 6 m; I = 444.1*10
-5

 m
4
; A = 3.71*10

-2
m

2
; m = 0.296 Nsec

2
/m

2
;  k  = 

2.55; E = 2.1*10
8
 kN/m

2
; G = 8.1*10

7
 kN/m

2
 

Frequency factor values are calculated according to Nr, L1/L and 

series size (n) values using DTM and according to Nr and L1/L values 

using transfer matrix method; and the values obtained for respectively 

Cs1=70000 kN/m
2
, Cs2 = 0 kN/m

2
; Cs1=70000 kN/m

2
, Cs2 = 20000 kN/m

2
 

and Cs1= 70000 kN/m
2
, Cs2 = 50000 kN/m

2
 are presented in Tables 2, 3 and 

4. 

Frequency factor values for the third mode cannot be calculated for 

each modulus of subgrade reaction considered in numerical analysis and n 

= 2 using DTM. 

Frequency factor values obtained for the first mode using DTM for 

series size n = 2 and n>2 are same. DTM results indicate that frequency 

factor values of the first mode are very fast converging for each Nr, L1/L, 
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Cs1, Cs2 value, and that converging speed decreases as the number of 

modes increase. 

It is seen from Tables-2, 3 and 4 that all frequency factors obtained 

using TMM and obtained using DTM for n = 16 overlap. 

7. CONCLUSION 

Eigenvalues for the first three modes of the both ends simply 

supported Timoshenko beam resting on two different foundations are 

calculated using DTM and TMM according to the axial compressive force, 

modulus of subgrade reactions and variation of L1/L values. 

Frequency factor values of all modes increase for each Nr and L1/L 

values as the modulus of subgrade reaction CS2 increases. 

Frequency factor values of all modes decrease for each Cs1 and Cs2 

value as L1/L value remains constant and axial compressive force 

increases. This variation in frequency factors is clearer in the first and the 

second modes. 

Frequency factor values of all modes decrease for each Cs1 and Cs2 

value as Nr value remains constant and L1/L value increases. 
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Nr METHOD n L1/L = 0.25 L1/L = 0.50 L1/L = 0.75 

 1 2 3 1 2 3 1 2 3 

 

0.25 

 2 7.64419889 7.70511430 - 3.20497274 5.20944023 - 3.61614609 3.80194879 - 

 4 2.85668182 4.86087608 7.37156820 3.16665697 5.30849934 6.56168461 3.42784381 5.00870800 7.31811142 

D T M 8 2.85533524 5.25938606 7.11325979 3.16665697 5.29980135 7.04365253 3.42756343 5.33288670 7.11461258 

 6 2.85533524 5.23997831 7.58061171 3.16665697 5.29980135 7.01819420 3.42756343 5.31899071 7.52173376 

 10 2.85533524 5.25938606 7.03285074 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05716515 

 12 2.85533524 5.25938606 7.03175592 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05634689 

 14 2.85533524 5.25938606 7.03175592 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05634689 

 16 2.85533524 5.25938606 7.03175592 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05634689 

 TMM  2.85533524 5.25938606 7.03175592 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05634689 

0.50  2 7.60216188 7.66657495 - 3.04089999 5.12161446 -  3.47380137     3.68799472 - 

 4 2.61820149 4.76037741 7.32639122 2.99887466 5.22362804 6.50408792 3.29896164 4.91710281 7.27194071 

 6 2.61636472 5.15211344 7.53809214 2.99855399 5.21478844 6.96796560 3.29867029 5.23520708 7.47823620 

D T M 8 2.61636472 5.17203665 7.06438875 2.99855399 5.21478844 6.99374437 3.29867029 5.24932480 7.06575060 

 10 2.61636472 5.17222214 6.98272753 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00762796 

 12 2.61636472 5.17222214 6.98162508 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00680399 

 14 2.61636472 5.17222214 6.98162508 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00680399 

 16 2.61636472 5.17222214 6.98162508 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00680399 

 TMM  2.61636472 5.17222214 6.98162508 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00680399 

0.75  2 7.55950928 7.62503958 - 2.84487772 5.02881718 - 3.31349707 3.56070113 - 

 4 2.28694654 4.65296173 7.28040504 2.79647589 5.13454723 6.44478226 3.15296865 4.81997108 7.22480869 

 6 2.28484344 5.05949545 7.49481821 2.79647589 5.12536669 6.91653776 3.15266371 5.14707422 7.43383694 

DTM 8 2.28484344 5.08016014 7.01449108 2.79647589 5.12536669 6.94278479 3.15266371 5.16161919 7.01586294 

 10 2.28484344 5.08034945 6.93140936 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95690823 

 12 2.28484344 5.08034945 6.93029881 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95607853 

 14 2.28484344 5.08034945 6.93029881 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95607853 

 16 2.28484344 5.08034945 6.93029881 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95607853 

 TMM  2.28484344 5.08034945 6.93029881 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95607853 

Table-2: Frequency factors for the first, second and third modes of the beam resting on foundation having modulus of subgrade reaction of Cs1=70000 kN/m2, Cs2=0 

kN/m2 
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Nr METHOD n L1/L = 0.25 L1/L = 0.50 L1/L = 0.75 

 1 2 3 1 2 3 1 2 3 

 

0.25 

 2 7.65702915 5.23392200         - 3.29808736 5.23392200 - 3.68569844 3.74771404 - 

 4 3.07579494 5.32783747 7.37182903 3.26793242 5.32783747 6.57311392 3.44295192 7.33374310 7.33374310 

 6 3.07454443 5.31917143 7.57959604 3.26793242 5.31917143 7.02723837 3.44267273 7.53758144 7.53758144 

D T M 8 3.07454443 5.31917143 7.12150764 3.26793242 5.31917143 7.05266380 3.44267273 7.12245369 7.12245369 

 10 3.07454443 5.31917143 7.04515505 3.26793242 5.31917143 7.05280018 3.44267273 7.06248140 7.06248140 

 12 3.07454443 5.31917143 7.04419899 3.26793242 5.31917143 7.05280018 3.44267273 7.06166363 7.06166363 

 14 3.07454443 5.31917143 7.04419899 3.26793242 5.31917143 7.05280018 3.44267273 7.06166363 7.06166363 

 16 3.07454443 5.31917143 7.04419899 3.26793242 5.31917143 7.05280018 3.44267273 7.06166363 7.06166363 

 TMM  3.07454443 5.31917143 7.04419899 3.26793242 5.31917143 7.05280018 3.44267273 7.06166363 7.06166363 

0.50  2 7.61518908 7.65489244 - 3.14869809 5.14726067 - 3.53659534 3.64236474 - 

 4 2.89113998 4.81218767 7.32665396 3.11709166 5.24401236 6.51591396 3.31610680 4.92218256 7.28053713 

 6 2.89014220 5.18688202 7.53694296 3.11709166 5.23502350 6.97721291 3.31552696 5.24547863 7.49366236 

D T M 8 2.89014220 5.20574903 7.07282925 3.11709166 5.23502350 7.00295734 3.31552696 5.26029968 7.02299166 

 10 2.89014220 5.20593357 6.99525785 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94430923 

 12 2.89014220 5.20593357 6.99429464 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94333887 

 14 2.89014220 5.20593357 6.99429464 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94333887 

 16 2.89014220 5.20593357 6.99429464 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94333887 

 TMM  2.89014220 5.20593357 6.99429464 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94333887 

0.75  2 7.57260990 7.61316681 - 2.97440886 5.05607462 - 3.37500215 3.51815860 - 

 4 2.66226411 4.70820093 7.28053713 2.94027257 5.15584326 6.45701504 3.17241859 4.82535219 7.24104071 

 6 2.66118050 5.09621668 7.49366236 2.94027257 5.14670038 6.92599249 3.17211556 5.15789366 7.45025921 

      D T M  8 2.66118050 5.11560583 7.02299166 2.94027257 5.14670038 6.95206547 3.17211556 5.17315149 7.02408791 

 10 2.66118050 5.11579370 6.94430923 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984 

 12 2.66118050 5.11579370 6.94333887 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984 

 14 2.66118050 5.11579370 6.94333887 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984 

 16 2.66118050 5.11579370 6.94333887 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984 

 TMM  2.66118050 5.11579370 6.94333887 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984 

Table-3: Frequency factors for the first, second and third modes of the beam resting on foundation having modulus of subgrade reaction of Cs1=70000 kN/m2, 

Cs2=20000 kN/m2 
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Nr     METHOD N L1/L = 0.25 L1/L = 0.50 L1/L = 0.75 

 1 2 3 1 2 3 1 2 3 

 

0.25 

 2 3.45286410 5.01472513 - 3.42307377 5.26851559 - 4.14953709 5.55713272 - 

 4 3.33489347 4.98003340 7.37209034 3.40025377 5.35752153 6.59007502 3.46465850 5.02059174 7.35693216 

 6 3.33431697 5.32151985 7.57781839 3.40025377 5.34890318 7.04078245 3.46438098 5.34350967 7.56116390 

       D T M 8 3.33431697 5.33829069 7.13419867 3.40025377 5.34890318 7.06602335 3.46438098 5.35877705 7.13473797 

 10 3.33431697 5.33847094 7.06370735 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.07051611 

 12 3.33431697 5.33847094 7.06275368 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.06969929 

 14 3.33431697 5.33847094 7.06275368 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.06969929 

 16 3.33431697 5.33847094 7.06275368 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.06969929 

 TMM  3.33431697 5.33847094 7.06275368 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.06969929 

0.50  2 4.13642195 4.99713092 - 3.29079366 5.18354559 - 3.38104217 4.96401763 - 

 4 3.19415832 4.88671064 7.32691669 3.26793242 5.27489710 6.53317070 3.34035617 4.92959738 7.31153345 

 6 3.19325542 5.23777676 7.53528309 3.26793242 5.26614332 6.99099207 3.33978963 5.26084757 7.51827860 

      D T M  8 3.19325542 5.25499821 7.08574343 3.26793242 5.26614332 7.01654863 3.33978963 5.27635431 7.08628654 

 10 3.19325542 5.25518084 7.01421642 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02121019 

 12 3.19325542 5.25518084 7.01325607 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02038765 

 14 3.19325542 5.25518084 7.01325607 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02038765 

 16 3.19325542 5.25518084 7.01325607 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02038765 

 TMM  3.19325542 5.25518084 7.01325607 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02038765 

0.75  2 3.16403715 4.97130219 - 3.14044523 5.09433031 - 3.30571425 4.92170324 - 

 4 3.03171706 4.78775787 7.28093386 3.11740017 5.18836451 6.47487450 3.20017076 4.83331299 7.26518822 

 6 3.03076553 5.14987421 7.49199247 3.11740017 5.17927933 6.94015074 3.19987035 5.17408037 7.47463226 

      D T M  8 3.03076553 5.16757441 7.03627062 3.11740017 5.17927933 6.96603203 3.19987035 5.19003153 7.03681803 

 10 3.03076553 5.16757441 6.96368313 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.97086573 

 12 3.03076553 5.16757441 6.96271563 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.96989918 

 14 3.03076553 5.16757441 6.96257734 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.96989918 

 16 3.03076553 5.16757441 6.96257734 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.96989918 

 TMM  3.03076553 5.16757441 6.96257734 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.96989918 

Table-4: Frequency factors for the first, second, third modes of the beam resting on foundation having modulus of subgrade reaction of Cs1=70000 kN/m2, Cs2=50000 

kN/
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