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ABSTRACT 

In this paper, it is concerned with the least squares method based on Legendre 

polynomials approximation for solving non-linear initial value problem. In 

particular, it is noted that such polynomials can be effective for the solution of non-
linear equations if one needs to express products of Legendre polynomials as linear 

expansions of these functions. Besides, obtained results are compared with the least 

squares approximation based on Taylor series and the exact solutions. Furthermore, 
to show the performance of the method, some numerical examples and their figures 

of absolute errors are given. 

 

Keywords: Least squares approximation, Legendre polynomials, Adomian 

polynomials, non-linear differential equations 

 

DOĞRUSAL OLMAYAN DİFERANSİYEL DENKLEMLER İÇİN 

LEGENDRE POLİNOMLARI YAKLAŞIMI 

 

ÖZET 

Bu çalışmada, doğrusal olmayan başlangıç değer problemlerinin çözümü için 

Legendre polinom tabanlı en küçük kareler yöntemine yer verilmiştir. Bu tip 

polinomların doğrusal derlemeleri ile elde edilen fonksiyonların, doğrusal olmayan 
denklemlerin çözümleri için etkin olduğu vurgulanmıştır. Ayrıca, analitik ve 

Taylor serisi tabanlı en küçük kareler yaklaşımı kullanılarak elde edilen sonuçlar 

karşılaştırılmıştır. Daha sonra, sayısal örnekler ve grafikler ile sunulan yöntemin 
doğruluğu desteklenmiştir.  

Anahtar Kelimeler: En küçük kareler yaklaşımı, Legendre polinomları, Adomian 
polinomları, doğrusal olmayan diferansiyel denklemler 

 
1. INTRODUCTION 

Studies have revealed the importance of differential equations in many fields. 

Especially, when we want to obtain mathematical models of physical or 

engineering science, generally we get non-linear differential equations or equation 
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system [1]. To obtain analytical solution of such non-linear differential equation or 
equation system are not so easy. There are some methods to find analytic or 

approximate solution of these kinds of equations. Analytical solutions can not be 

obtained except for special types of non-linear differential equations. This type of 
differential equations, in general, semi-analytic or numerical solutions can be 

obtained. Previously, such equations, a serial method or the finite difference 

method and solved, recently tried to analyze the different methods [2-5]. For 

instance, some of these are differential transform method [6-10], spectral method 
[11-14], and Adomian decomposition methods [15-21], Adomian polynomials 

which are nothing else than combinations of elementary differentials of similar 

order, that play a fundamental role in determining order conditions in ordinary 
differential equation integrants. 

In this study, a new method other than these methods will be given. 

2. LEGENDRE POLYNOMIAL APPROXIMATION METHOD 

The least squares problem is stated, for a finite interval [a, b], as follows: Assume 

that { N(x)   N  0} is an orthonormal polynomials with weight function w(x)  0 , 

that is, 
MN,0

MN,1
, M,NMN               (2.1) 

Then an arbitrary polynomial p(x) of degree less equal than N (  N) can be written 
as 

p(x) = a0 0(x) + a1 1(x) + … + aN N(x)                          (2.2) 

then for a given nonnegative continuous function g(x)  C[a, b] [22-23]; 

b

a

N10

2
N

0k

kk

2

2
)a,...,a,a(Gdx)x(a)x(g)x(wpg                    (2.3) 

for solving the least squares problem by minimizing G in Eq.(2.3), as the 

coefficients {ai} range over all real numbers. A necessary condition for a point (a0, 
a1, …, aN) to be a minimizing point is 

N,...,1,0i,0
a

G

i

                                                (2.4) 

Explicit form of the Eq.(2.4) is written as follows: 

b

a

N

b

a

N

0k
kkN

b

a

0

b

a

N

0k
kk0

dx)x(g)x()x(wdx)x(a)x()x(w

dx)x(g)x()x(wdx)x(a)x()x(w

  
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On the other hand, G is minimum if and only if 

 N,...,1,0j,,gb jj  (positive definite) 

then the least squares approximation exists; it is unique (from the properties of 

inner product of functions) and given by 

N

0j

jj

*

N )x(,g)x(P                 (2.5) 

In order to solve the least squares problem on a finite interval [a, b] with w(x)  1, 
we can convert it to a problem on [-1, 1]. The change of variable 

2

t)ab(ab
x                  (2.6) 

converts the interval -1  t  1 to a  x  b . For a given g(x) C[a, b], it can be 
defined 

1t1,
2

t)ab(ab
g)t(G               (2.7) 

then 

1

1

2

N

b

a

2

N dt)t(P)t(G
2

ab
dx)]x(p)x(g[             (2.8) 

where PN(t) is obtained from pN (x)  using Eq.(2.6). The change of variable Eq. 

(2.6) gives a one-to-one correspondence between polynomials of degree M on [a, 

b] and of degree M on   [-1, 1], for every M  0. Thus, minimizing 
2Npg  on 

the interval [a, b] is equivalent to minimizing 
2NPG  on the interval [-1, 1] [22] 

.The basic of this method is to expand the function g(x) as a finite series of very 

smooth basis functions as given below: 

N

0i

ii )x(a)x(g  

in which i represents a family of polynomials which are orthogonal and complete 

over the interval [a, b] with respect to non-negative weight function w(x). If the 

weight function is w(x)  1, given g(x)  [-1, 1] the orthonormal family (if every 

member has length one, that is 1g
2

) described in Gram-Schmidt theorem is 

...,
2

1x3

2

5
)x(,x

2

3
)x(,

2

1
)x(

2

210  
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in which 1dx)x(L)x(L)x(w,

1

1

NNNN  and further polynomials can be 

constructed by   

1N,)x1(
dx

d

!N2

)1(

2

1N2
)x( N2

N

N

N

N

N               (2.9) 

Eq.(2.2) defined general polynomial approximation is obtained by using the 

equation (2.5). Given in particular Legendre polynomials instead of the general 
polynomial approximation Eq. (2.10) is obtained similar to Eq.(2.5). The least 

squares approximation can be defined; 

N

0j

jj

*

N )x(,g)x(L               (2.10) 

where 

1

1

jj dx)x()x(g,g  the coefficients  g, j  are called Legendre 

coefficients. 

In this study, Legendre polynomials are indicated by Ln(x). Legendre polynomials 

are in a different form of the classical Taylor polynomial and trigonometric 
functions [17-18]. So, Legendre polynomials are eigen functions of Sturm-

Liouville problem; 

0)x(L)1N(N])x(L[x2])x(L)[x1( NNN

2
         (2.11) 

where it is generated form Rodrigue’s formulas, in closed form 

N2

N

N

N

N

N )x1(
dx

d

!N2

)1(
)x(L                       (2.12a) 

 

for N = 1  L0(x) = 1 

for N = 2 L1(x) = x 

for N = 3 L2(x) = (3x
2
 – 1) / 2 

for N = 4 L3(x) = (5x
3
 – 3x) / 2 

  

of which explicit expansion is [24] 

M2NM
2/N

M
NN x

N

)MN(2

M

N
)1(

2

1
)x(L          (2.12b) 

if the expression is in the form of (cx-d) where c and d are constants; similar to Eq. 

(2.12a), the recurrence relation can be written as follows: 

L0(cx – d ) = 1 
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L1(cx – d ) = c (cx – d ) 

L2(cx – d ) = c
2
 [ 3 (cx – d )

2
 – 1]/ 2 

  

and also triple recursion relation for Legendre polynomials is written [24] 

1N),x(L
1N

N
)x(xL

1N

1N2
)x(L 1NN1N            (2.13) 

Now, let us consider the following general ordinary differential equation 

Ly(x) + R y(x) + N y(x) = g(x)              (2.14) 

where L is the highest-derivative operator, R is the linear term of which the degree 

is less than the degree of term L, N is non-linear term, L
-1

 is the inverse operator of 
L. Applying the inverse operator L

-1
 to both sides of Eq. (2.14), it is obtained as 

follows 

L
-1
 {L y(x)} = L

-1
 {g(x)} – L

-1
 {R y(x)} – L

-1
 {N y(x)} 

y(x) = y(x0) + (x – x0) y
/
(x0) +  L

-1
 {g(x)} – L

-1
 {R y(x)} – L

-1
 {N y(x)}         (2.15) 

 

where y(x0) + (x – x0) y
/
(x0) comes from initial condition of problem. It is written 

N

0i

iA)x(Ny)y(f  and 
N

0i

iy)x(y  where the components of Ai are called 

Adomian polynomials as follows[10-16]: 

A0 = f(y0) 

A1 = y1 f
/
(y0) 

A2 = y2 f
/
(y0) + y1

2
 f

//
(y0) / 2!                                                                    (2.16) 

A3 = y3 f
/
(y0) + y1 y2 f

//
(y0) + y1

3
 f

///
(y0) / 3! 

  

and, taking Eq. (2.15), it is constructed 

y0 = y(x0) + (x – x0) y
/
(x0) +  L

-1
 {g(x)}             (2.17) 

yk = – L
-1

 {R yk-1} – L
-1
 {N yk-1} , k  1 

Representation of function g(x) in terms of series expansion using orthogonal 

polynomials is a fundamental concept in approximation theory the basis of least 
squares approximation of solution of differential equations. The function g(x) is 

defined with Legendre polynomials which complete orthogonal sets of functions on 

the interval [a,b] for applying the method to non-homogeneous equations, as given 
below: 

N

0i

ii )x(La)x(g                (2.18) 
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where N is arbitrary positive integer number and Li(x) denotes Legendre 
polynomials which is defined in Eq. (2.12),  then the Adomian procedure can be 

defined 

y0 = y(x0) + (x – x0) y
/
(x0) +  L

-1
 {a0 L0(x) + a1 L1(x) + …+ aN LN(x)} 

y1 = – L
-1

 {R y0} – L
-1

 {N y0} 

y2 = – L
-1

 {R y1} – L
-1

 {N y1}                                        (2.19) 

y3 = – L
-1

 {R y2} – L
-1

 {N y2} 

  

or according to [20] 

y0 = y(x0) + (x – x0) y
/
(x0) +  L

-1
 {a0 L0(x)} 

y1 = L
-1

 {a1 L1(x)} – L
-1
 {R y0} – L

-1
 {N y0} 

y2 = L
-1

 {a2 L2(x)} – L
-1
 {R y1} – L

-1
 {N y1}                                                (2.20) 

y3 = L
-1

 {a3 L3(x)} – L
-1
 {R y2} – L

-1
 {N y2} 

  

or by converting to Eq. (2.19) into standard form; 

......a
16

105
a

4

15
a

2

3
x...a

84

15
a

2

3
ax...a

4

3
a

2

1
a1

...xbxbb

xb)x(g

642
2

531420

2
210

N

0i

N
i

(2.21) 

 

 it is obtained, then it is written in matrix form;  

 
















5

4

3

2

1

0

5

4

3

2

1

0

a

a

a

a

a

a

.

32/3003016/231000000

016/69308/6300000

64/3465016/31508/350000

32/315016/10504/1502/300

016/3508/1502/3010

128/35016/508/302/101

b

b

b

b

b

b

 

 

3. NUMERICAL EXAMPLES 

In this section, the following non-linear differential equations are considered in 

order to support presented method. 

Example 1: Let us consider the following non-linear initial value problem with 

variable coefficient for 0  x  1: 

y
//
 (x) + x y

/
 (x)+ x

2
 y

3
(x) = (2 + 6x

2
) exp(x

2
) + x

2
 exp(3x

2
)            (3.1) 
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y(0) = 1 y
/
(0) = 0                 (3.2) 

The exact solution of Eq. (3.1) under conditions Eq. (3.2) is yexact(x) = exp(x
2
) [14]. 

The operator form of Eq. (3.1) can be written as 

L y(x) + R y(x) + N y(x) = g(x)                (3.3) 

where L = d
2
 / dx

2
 , R = x d / dx , N y = x

2
 y

3
 and g(x) = (2 + 6x

2
) exp(x

2
) + x

2
 

exp(3x
2
) . For non-linear term, the components of Adomian polynomials An 

are obtained from Eq. (2.16) as follows: 

 

A0 = x
2
 y0

3
 

A1 = x
2
 (3y0

2
 y1)                 (3.4) 

A2 = x
2
 (3y0

2
 y2 + 3 y0 y1

2
) 

A3 = x
2
 (3y0

2
 y3 + 6 y0 y1 y2 + y1

3
) 

   

and so on. Applying both sides of Eq. (3.1) by inverse operator 
x

0

x

0

21 )dx(*)((*)L , 

L
-1
{y

//
 (x) + x y

/
 (x) + x

2
 y

3
 (x)} = L

-1
{(2 + 6x

2
) exp(x

2
) + x

2
 exp(3x

2
)}           (3.5) 

Now, the Taylor series of g(x) is obtained as follows 

gT(x)  2 + 9x
2
 + 10x

4
 + 47x

6
/ 6 + O(x

7
)               (3.6) 

from Eq. (3.5) under the initial conditions Eq. (3.2), it is written 

y(x) = y(0) + xy
/
(0) + L

-1
{gT(x)} – L

-1
{ x y

/ 
(x) + x

2
 y

3 
(x)}           (3.7) 

 

y0 = 1 + L
-1

{2 + 9x
2
 + 10x

4
 + 47x

6
/ 6} = 1 + x

2
 + 3x

4
 /4 + x

6
 /3 + 47x

8
 / 336 + … 

y1 = – L
-1

{ x y0
/
+  A0} = – L

-1
{ x y0

/
+ x

2
 y0

3
} = -x

4
 / 4 – x

6
 / 5 - … 

y2 = – L
-1

{ x y1
/
+  A1} = – L

-1
{ x y1

/
+ x

2
 (3y0

2
y1)} =  x

6
 / 30 + 39x

8
 / 1120 + … 

y3 = – L-1{ x y2
/+  A2} = – L-1{ x y2

/+ x2 (3y0
2y2 + 3 y0 y1

2)} = -x8 / 280-53x10 /12600 - … 

  

Hence, the solution is constructed by using Taylor series 

yT(x) = 
6

0i
iy = y0 + y1 + y2 + … + y6 

= 1 + x
2
 + x

4
 / 2 + x

6
 / 6 + x

8
 / 24 – 29x

10
 / 540 + …             (3.8) 

Furthermore, to apply Legendre polynomial approximation for g(x); first of all, we 

can convert [0, 1] to a problem on [-1, 1] by using Eq. (2.6), after that for a given 

g(x) C[0, 1] can be defined form Eq. (2.7):  

g(0.5x+0.5) = (2 + 6(0.5x+0.5)2) exp((0.5x+0.5)2) + (0.5x+0.5)2 exp(3(0.5x+0.5)2)      (3.9) 
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and, series expansion is  

1x0,)1x2(La)x(g
N

0i

ii                         (3.10) 

where the Legendre polynomial coefficients are (from Eq. (2.10)) 

,...2,1,0i,dx)x(L)5.0x5.0(g
2

1i2
a

1

1

ii                      (3.11) 

for N = 6 , coefficients are obtained: a0 = 13.203, a1 = 11.451, a2 = 6.38, a3 = 2.652,               

a4 = 1.024, a5 = 0.353, a6 = 0.114, then we have 

...x5.6741x17378x17012x7.7800x3.1683x96.147989.6

...)1x6x6(2a)1x2(2a1.a

)1x2(La)x(g

65432

22

210

6

0i

iiL

(3.12) 

by using Eq. (3.7) 

y0 = 1 + L-1 {gL(x)} = 1 + 3.4945x2 – 24.66x3 + 140.28x4 – 390.04x5 + 567.07x6 – ... 

y1 = -L-1 { x y0
/ + A0} = - 0.66575x4 + 3.699x5 – 19.053x6 + 48.194x7 – 68.926x8 +… 

y2 = -L-1 { x y1
/ + A1} = 0.088767x6 – 0.44036x7 + 2.0771x8 – 4.8397x9 +…         (3.13) 

y3 = -L-1 { x y2
/ + A2} = -0.0095108x8 + 0.042812x9 – 0.18452x10 + 0.39537x11 +… 

  

and so on. The other terms of series solution can be found by using matcad7. 
Therefore, Legendre polynomial solution of problem is constructed 

yL(x)  1 + 3.4945 x2 – 24.66 x3 + 139 x4 – 386 x5 + 548 x6 – 366 x7 + 53.2 x8 + 58.9 x9 – …  (3.14) 

Example 2: Consider the following non-linear differential equation with constant 
coefficient:  

y
//
(x) + y(x) + y

2
(x) = (2x

2
 + 4x + 2) e

x
 + x

4
e

2x
                       (3.15) 

under the initial conditions (for 0  x  1): 

y(0) = y
/
 (0) = 0                           (3.16) 

 

where the exact solution is yexact(x) = x
2
 e

x
 [14]. 

 

The operator form of Eq.(3.15) is written similar to Eq.(3.3) where  L = d
2
/dx

2
 , R 

= 1 , Ny =  y
2
 and g(x) = (2x

2
 + 4x + 2) e

x
 + x

4
e

2x
. The components of An which is 

called Adomian polynomials can be obtained as given below: 

A0 =  y0
2
 

A1 = 2y0 y1                           (3.17) 

A2 = 2y0 y2 + y1
2
 

  
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Applying both sides of Eq. (3.15) by inverse operator

x

0

x

0

21 )dx(*)((*)L , and 

using initial conditions Eq. (3.16), it is obtained 

y(x) = y(0) + xy
/
(0) + L

-1
{g(x)} – L

-1
{ y + y

2
}                       (3.18) 

Here, the Taylor series of g(x) is obtained as follows 

gT(x)  2 + 6x + 7x
2
 + 13x

3
 /3 + 33x

4
/ 12 + O(x

5
)                       (3.19) 

using Eq. (3.18) and Eq. (3.19), it is written 

y0 = L-1{2 + 6x + 7x2 + 13x3 /3 + 33x4/ 12} = x2 + x3 + 7x4/12 + 13x5/60 + 11x6/120 + … 

y1 =  – L-1{y0 + y0
2} = -x4/12 – x5/20 – 19x6/360 – 19x7/360 – 271x8/6720 - … 

y2 = – L-1{y1 + 2y0y1} = x6 /360 + x7/840 + 79x8/20160 + 23x9/5184 + …                    (3.20) 

  

then, the solution is obtained by using Taylor series 

yT(x) = 
N

0i

iy = y0 + y1 + y2 + … + yN 

         = x
2
 + x

3
 + x

4
 / 2 + x

5
 / 6 + x

6
/24 – 13x

7
/252 – 367x

8
/10080 + …         (3.21) 

 

On the other hand, using Legendre polynomial approximation for g(x) C[0, 1] is 
written 

g(0.5x+0.5) = (2(0.5x+0.5)2 + 4(0.5x+0.5) + 2) e(0.5x+0.5) + (0.5x+0.5)4e2(0.5x+0.5)         (3.22) 

 

for N = 7 in Eq. (3.10), coefficients are determined from Eq. (3.11), a0 = 14.1, a1 = 
9.632, a2 = 3.229, a3 = 0.887, a4 = 0.223, a5 = 0.046, a6 = 0.00755, a7 = 0.0009815 , 

the Legendre polynomial approximation of g(x) is written as follows; 

...x16.431x6.1062x1121x5.606x59.182x416.15x7253.51096.3

)1x2(La)x(g

765432

7

0i

iiL

                (3.23) 

 
by using Eq. (3.18), non-linear term Adomian polynomials are used from Eq. 

(3.17) and  similar to Eq. (3.20); 

 
y0 = L-1 {gL(x)} = 1.5548x2 + 0.95423x3 – 1.2847x4 + 9.129x5 – 20.217x6 + 26.69x7 – ... 

y1 = -L-1{y0 + A0} = -0.12956x4 – 0.047712x5 – 0.037757x6 – 0.28801x7 + … 

y2 = -L-1{y1 + A1} = 0.004318x6 + 0.001136x7 + 0.00787x8 + 0.009494x9 – … 

y3 = -L-1{y2 + A2} = -0.0000771x8 – 0.0000159x9 – 0.000423x10 – 0.000305x11 +… 

  
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Hence, Legendre approximation is obtained 

yL(x)  1.5548 x2 – 0.9542 x3 – 1.41 x4 + 9.08 x5 – 20.2 x6 + 26.4 x7 - 18.6 x8 + …    (3.24) 

 

Example 3: Consider the second order non-linear initial value problem for 0  x  
1; 

y
//
 (x) – y 

/
 (x) + 4y

2
 (x) = 2 – Sin2x                        (3.25) 

y(0) = y
/
(0) = 0                           (3.26) 

The exact solution is yexact(x) = Sin
2
x [14]. 

Eq. (3.25) is organized in operator form as; 

 
L

-1
 {Ly(x)} = L

-1
 {2 – Sin2x} + L

-1
 { y

/
(x)} – 4 L

-1
 { y

2
(x)}                  (3.27) 

in which 

x

0

x

0

1 dxdx(*)(*)L inverse operator of L = d
2
/dx

2
, for non-linear term 

from Eq. (2.16), the Adomian polynomials are 

A0 = y0
2
 

A1 = 2y0 y1                (3.28) 

A2 = 2y0 y1 + y1
2
 

  

Taylor series of g(x)  

gT(x) = 2 – 2 x + (2 x)
3
 /3! – (2 x)

5
 / 5! + O(x

6
)                       (3.29) 

 

is found. From Eq. (3.27) under the initial conditions Eq. (3.26), we get 

y(x) = y(0) + xy/(0) + L-1 { gT(x)} + L-1 { y/ (x) } – 4 L-1 { y2(x) }  

y0 = x2 – x3/3 + x5/15 – 2x7/315 + …               (3.30) 

y1 =  x3/3 – x4/12 – 11x6/90 + 4x7/63 – 11x8/1260 – x9/135 + … 

y2 = x4/12 – x5/60 – 17x7/210 + x8/28 – 23x9/5670 + 11x10/1350 – 1091x11/155925 +…  

y3 = x5/60 – x6/ 130 – 71x8/5040 + 11x9/1890 – 11x10/113400 + 113x11/34650 - …   

  

In this way, the Taylor solution of problem Eq. (3.25) is obtained as 

...x
2835

16
x

1008

13
x

42

1
x

585

76
x

15

1
xy)x(y 987652

N

0i

iT
     (3.31) 

Besides, using  Eq. (2.6) and Eq. (2.7) Legendre polynomial form of g(x) C[0, 1] 
which is converted and from Eq. (3.10), it can be written g(0.5x+0.5) = 2 – Sin (x + 

1) from Eq. (3.11), Legendre polynomial coefficients are ai, for N = 6, are obtained 
that; a0 = 1.827, a1 = -0.399, a2 = 0.165, a3 = 0.018, a4 = -0.0003609,  

a5 = -0.0002346, a6 = 0.00003071 then we have 
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gL(x) = 3.2082 - 5.2906x + 7.239x2 – 12.71x3 + 14.963x4 – 7.3399x5 + 1.816x6 – … (3.32) 

 

Substituting Eq. (3.32) which is the Legendre approximation of g(x) and conditions 

Eq. (3.26) in Eq. (3.30), it can be obtained that  

y0 = 1.6041x
2
 – 0.88177x

3
 + 0.60325x

4
 – 0.6355x

5
 + 0.49877x

6
 – …   

y1  = 0.5347x3 – 0.22044x4 + 0.12065x5 – 0.449x6 + 0.34067x7 – 0.21563x8 + …       (3.33) 

y2 = 0.1337x
4
 – 0.04408x

5
 – 0.02012x

6 
– 0.2276x

7
 + 0.1605x

8
 – 0.1029x

9
 + …  

y3 = 0.02674x
5
 – 0.007347x

6
 +0.002874x

7
 – 0.03866x

8
 + 0.0257x

9
 + … 

  

Thus, the Legendre approximation solution can be obtained as follows 

N

0i

iL y)x(y = 1.6041x
2
 – 0.34707x

3
 +0.51655 x

4
 – 0.5321x

5
 + 0.06257x

6
 – 0 

.05876x
7
 – …

 
                                                                                          (3.34)

 

We give absolute errors in Figures 1,2, and 3 to show how the series rapidly 

converge to the exact solution. Absolute errors are defined as e1 =  y(x) – yL(x)  or  

e2 =  y(x) – yT(x)  in Figures 1, 2, and 3 where y(x) is the exact solution, yT(x) and 
yL(x) are the least squares approximation solution based on Taylor series and 

Legendre polynomials, respectively. 
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e1
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Figure 1: Absolute errors for the example 1. 
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Figure 2: Absolute errors for the example 2. 
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Figure 3: Absolute errors for the example 3. 

 

4. CONCLUSIONS 

The goal of this work has been to give an approximation for the solution of non-

linear differential equations. We have achieved this goal by applying Legendre 

polynomial approximation method. The considered method which is called 
Legendre approximation method is defined in section 2, the examples are applied 

to the method to make it clear in section 3. In this work, for the Legendre 
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approximation method, it is important thing that family of polynomials, called 
Jacobi polynomials, differs from each other according to the weight function with 

respect to which orthogonality holds. The existence of well-convergent expansions 

is guaranteed from the theory of orthogonal expansions, which gives the proof that 
any quadratically enterable function of bounded variation may be expanded into a 

complete orthogonal function system, such as the Legendre polynomials or 

Chebyshev polynomials. Therefore, in this paper Legendre polynomials are taken. 

Instead of Taylor polynomials for the solution of non-linear differential equations 
using Legendre polynomials is obtained a new approach in the least squares 

method. Obtained by the method of approach solved examples are presented. The 

results of the examples dealt with analytical solution, Taylor series solution and 
compared with Legendre polynomial approximation solutions, absolute errors are 

obtained. Graphs are plotted the absolute errors. As can be seen in the graphics, all 

the results are very close to each other trough was observed.  
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