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1. Introduction

In this paper, we consider the second order, quadratic rational difference equation

o+ ﬁxznfl

APl o012,
A+an+Cx2n_17n

An+l =
with positive parameters a, 8, A, B, C, and non-negative initial conditions.
We focus on local stability, invariant intervals, boundedness of the solutions, periodic solutions of prime period two and global stability of
the positive fixed points.
Global asymptotic stability and Neimark-Sacker bifurcation of the difference equation
F
bxyxn—1 +Cxp—q 2+ f '

Xn+1 = n:071727

have been investigated by M. R. S. Kulenovié et al. [1], with non-negative parameters and non-negative initial conditions such that the
denominator is always positive.

Y. Kostrov and Z. Kudlak in [2] studied the boundedness character, local and global stability of solutions of the following second-order
rational difference equation with quadratic denominator,

O+ YXp—1

) YZZO, 17 27
B+Dxnxnfl +Xn—1

Xn+1 =

where the coefficients are positive numbers, and the initial conditions are non-negative numbers such that the denominator is nonzero.
S. Moranjkié, and Z. Nurkanovi¢ [3] investigated local and global dynamics of difference equation

Bxpx,—1 + Cx,,_l2 +F
bxpxy—1+ anfl2 +f ,

Xpt1 = I’l:O7 172,

with positive parameters and nonnegative initial conditions. Other higher ordered rational difference equations have been recently studied in
[4], [51,[61,[71,[81,[91,[10],[11].
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2. Preliminaries

Before studying the behavior of solutions of this rational difference equation, we will review some definitions and basic results that will be
used throughout this paper.
Consider the second order difference equation,

x(n+1)= f(x(n),x(n—1)),n=0, 1, 2, ... 2.1

where f : I x I — I is a continuously differentiable function, and / is an interval of real numbers. Then for every set of initial conditions
x_1, xg € I the difference equation (2.1) has a unique solution {x,}__.

Definition 2.1. [12] A point % € I is an equilibrium point of equation (2.1) if f(%,%) = &.

Definition 2.2. [12] Consider the difference equation (2.1). Then the linearized equation associated with this difference equation is
Yn+1 = aYn +b)’n—17 n= 07 17 23

where a = %(X,X), and b= %(E,X).
And the characteristic equation of (2.1) is

A2—adl—b=0 (2.2)

Theorem 2.3. [13] (Linearized Stability)
Consider the characteristic equation (2.2).

1. If both characteristic roots of (2.2) lie inside the unit disk in the complex plane, then the equilibrium x of (2.1) is locally asymptotically
stable.

2. If at least one characteristic root of (2.2) is outside the unit disk in the complex plane, the equilibrium point X is unstable.

3. If one characteristic root of (2.2) is on the unit disk and the other characteristic root is either inside or on the unit disk, then the
equilibrium point X may be stable, unstable, or asymptotically stable.

4. A necessary and sufficient condition for both roots of (2.2) to lie inside the unit disk in the complex plane, is

la] <1-b<2.
Let A = J f(x) be the Jacobian matrix of f at X, where
JI® =155 a8 |k
ox; oxy
An important way to determine the stability of fixed points is given in the following result.

Theorem 2.4. [14] Consider the map f : H C R* — R?, and let A = J £ (%), with spectral norm p(A). Then p(A) < 1, if and only if
[tr(A)| —1 < det(A) < 1

where tr(A) is the trace of A, and det(A) is the determinant of A.
The following theorem will be used to investigate global stability of fixed points.

Theorem 2.5. [12] Let [a,b] be an interval of real numbers and assume that f : [a,b] X [a,b] — [a,b] is a continuous function satisfying the
following properties:

1. f(x,y) is non-increasing in x € [a,b)] for each'y € [a,b], f(x,y) is non-decreasing in'y € [a,b] for each x € |a,b).
2. The difference equation (2.1) has no solutions of prime period two in [a,b].
Then (2.1) has a unique equilibrium X € [a,b] and every solution of (2.1) converges to X.

There are several types of bifurcation, the saddle-node bifurcation, period-doubling bifurcation, Neimark-Sacker bifurcation. For more
information on types of bifurcation, the readers can refer to [15].

a+ﬁx2n71

3. Dynamlcs OfX,H_] = m

In this section, we consider the second order quadratic rational difference equation

o+ ﬁx2n71

—————— n=0,1,2, ... 3.1
A+ Bx, +Cx2,_; " ’ C

Xn+1 =

with positive parameters o, B, A, B, C, and non-negative initial conditions.
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3.1. Change of variables

The change of variables

reduces equation (3.1) to the difference equation

Yn+1 =
Where p = a/%, q= %, and r = CB‘Q‘.
3.2. Equilibrium points
To find the equilibrium point of

Yn+l1 =

A
Xn = E)’rb
pH+ay*,
Ly, +r2,_y’
ptay,
L4 yu+ry2,

n=0,1,2, ..

,n=0,1,2, ..

(3.2)

with positive parameters p, ¢, r, and non-negative initial conditions. We solve the following equation

Hence,

can be considered as two curves with behavior

p+ gy

M P

_ v
ry2+(1—q)y:§—1.

7+ (1—q)5* +y—p=0.

(3.3)

Equation (3.2) has a unique positive equilibrium point ¥, which can be obtained as an intersection point of these two curves. From Figure 3.1

and Figure 3.2 we obtain the required conclusion.

Figure 3.1: The equilibrium of (4.2.1), ¢ > 1.

And then we choose the positive root to be .

3.3. Linearized equation

g-1 (g-1)°
2r ' Ar

To find the linearized equation of (3.2) about the equilibrium point y, let

We have

2
_ ptagy
f(xmy)* 1+x+ry2
Loy)= oty
ox L+5+r?

)
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Figure 3.2: The equilibrium of (4.2.1),0 < g < 1.

And
af . 25(g—ry)
-y = T .o
dy 1+y+ry
The linearized equation is
-y 25(g—r9)

Yn+1 = 1+)_)+r)72yn 1_‘_)_)_‘_’372)7n71~

And the characteristic equation is

_ 5 rs
Py - it} ry_)2: .
I+y+ry I+y+ry

3.4. Local stability

To check when the unique positive equilibrium point y of equation (3.2) is locally asymptotically stable, let

gV _ 2(g=ry)
1+5+r52" " 1+5+r5?
Using Theorem 2.3 (4), a sufficient condition for asymptotic stability of ¥ is |a| < 1 —b < 2, which is equivalent to
—-b <1, (3.4)
and |a| < 1—b. (3.5)
(3.4) holds when
e e +2’ny =
And (3.5) is equivalent to
a>—-1+b, (3.6)
and a<1—b. 3.7
(3.6) holds when
143172
2y

And (3.7) holds when
1425+ 3r2
< i LS

2y
Hence a sufficient conditions for asymptotic stability of y is
142 -5
> )
2y
14 3ry?
g< (3.8)
Yy
1+ 25+ 3ry>
P hkleiy (3.9)
2y

Note that if (3.8) holds, then (3.9) holds, thus 71+2ry_}7 ) <g< 1+23;y ’ is a sufficient condition for asymptotic stability of 3.
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3.5. Invariant intervals

Consider the difference equation (3.2), and {y, },.__, as a solution. Then [0, %] when pr < ¢ is an invariant interval.

q .
Proof. Assume that pr < g, and yy_1, yy € [0, Z] for some integer N.

P+ayn_i
Ly +ry?y
a8 +y’n_1)

o+ Ly a2y
q(%ijszl

oty

YN+1 =

And working inductively we complete the proof.

3.6. Boundedness

We will show that every solution of the difference equation (3.2) is bounded. Let {yn}f:_] be a solution of (3.2). then we have for

n=0,1,2, ..

0<yp1=

p+ay’,
Lty +ry2,_

p %

o ltya 2y Ty,
P@a

<+

1 ryzn—l

:p+7
r

Hence, the solution is bounded, since it is bounded from below and from above.

3.7. Period two cycles

In general, we say that the solution {y, };-__, has a prime period two if the solution eventually takes the form:

AR ¢7 W? ¢7 ‘I/’ e
where ¢ and y are positive, and ¢ # .

Theorem 3.1. Assume that Equation (3.2) has a two periodic cycle {¢, y}, where ¢ and y are positive, and ¢ # y. Then q must satisfy

the following condition:

L+r(9> +y?)
oty

Proof. Assume {¢, y} is a prime period two solution of Equation (3.2), then ¢, v satisfy:

o Pta9’
14+ y+r¢?
and,
yo PTav
1+¢+ry?’

From Equation (3.10), we have

9+ow+rg’ = p+qo’,
and from Equation (3.11), we have

Yoy = ptayt.

Subtracting Equation (3.13) from (3.12), we get:

(0 —v)+r(0> —v?) =q(p*> — v?).

(3.10)

(3.11)

(3.12)

(3.13)
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Since, ¢ # v, the last equation can be divided by (¢ — y), and we get

L+r(0® +ow+v?) =q(9+y). (3.14)
So,
v — flfr(¢2+v:2)+q(¢+w).
But, y¢ >0, so
—1=r(9?+y?) +q(¢+w) 2 0.
Hence,
1+r(9% +v?)
o+y
which complete the proof. Note that from (3.14), we get:
r(@*+oy+y?)+1
P+y= p
which is always positive. O

3.8. Global stability

Now, we will investigate a result about the global stability of the positive equilibrium point of (3.2) .

Theorem 3.2. Assume pr < q < % Then the positive equilibrium point y on the interval S = [0, %] is globally asymptotically stable.

Proof: This proof can be easily done depending on Theorem 2.5. Assume pr < ¢, and consider the function

p+qy*

flx,y) = Trxen?’

Note that S is an invariant interval and all non-negative solutions of Equation (3.2) lie in this interval. And f(x,y) on S is non-increasing
function in x, and non-decreasing in y.

Now, we need to show that the difference equation (3.2) has no solution of prime period two in S.
For seek of contradiction, assume that the difference equation (3.2) has a solution of prime period two {¢, y} € S. Then g must satisfy

L+r(9> +y?)
o+v

)

but since {¢,y} € S

1+r(¢2+y?) _ 140

o+y & 144
hence
p
‘1>Z7
S0,
q2>%,

Vr

which is a contradiction, since g < VL

So, Equation (3.2) has no solution of prime period two in S. Then both conditions of Theorem 2.5 hold, so (3.2) has a unique positive
equilibrium point y € S, and it is globally asymptotically stable. O
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PHay* .

4. Bifurcation of =
Il = Tyn?,

In this section we study types of bifurcation that occur at g = g* as ¢ is the bifurcation parameter.
In order to convert Equation (3.2) to a second dimensional system with three parameters p, g, and r, let

in = Yn—1;
and
Vp = Yn.
We get the following system
Zn+1 =Vn
2
Vntl = %, n=0,1,2, ..

This system has the unique fixed point (Z,7)7 = (7,7)T. Convert this system into a second dimensional map

2\ _ (filzv) _ v
F <) - < f2<z,v)> - <1 m;) . @1

0 1
JF(2,9)|(5,5) = | 25t4=r) -y

I4+5+r7% 1454172

So, the Jacobian matrix of F(z,v) at (7,¥) is

So,
etUF (55 = - A,
and,
rUFGS) = -
1+y+r3?
Theorem 4.1. The fixed point (3,5) of the system (4.1) undergoes a saddle-node bifurcation, when g = W{#
Proof: Saddle-node bifurcation happens when,
C2%(g-r) v
1+3+r92  1+7+r7?
thus,
3P 425+ 1
2y
So, saddle-node bifurcation happens if g = MZJZ“# O
3+

Theorem 4.2. The fixed point (3,7) of the system (4.1) undergoes a period-doubling bifurcation, when q = 5
Proof: Period-doubling bifurcation happens when,
det(J) = —tr(J) — 1.

So, the fixed point (7,7) of the system (4.1) undergoes a period-doubling bifurcation if

B N
1+54+r92 145+ r7?
thus,
341
=T
S . . . . . 3P+l
0, period-doubling bifurcation happens if g = =5—. O

1+y

Theorem 4.3. The fixed point (3,7) of the system (4.1) undergoes Neimark-Sacker bifurcation when, g = ryzgiy_y—l’ if r> 7



Journal of Mathematical Sciences and Modelling

109

Proof: Assume r > % Neimark-Sacker bifurcation which happens when,
det(J) =1
and,
—2<tr(J)<2.

So, the system (4.1) undergoes Neimark-Sacker bifurcation when,
det(JF(3,5)) =1
and,
=2 <tr(JF(3,¥)) < 2.
The last inequality always holds, since it is equivalent to

-y

-2< m <2,
which can be splitted into two inequalities, namely
S T
and,
Ty <2
The first inequality
225217 < -3,
implies
—2—y-2r? <0,
which always holds. And —2 <2 implies

1+5+ry?
2435+2r7* > 0.

which also always holds.
Now, Equation (4.2) holds if

_2(g—ry) _
1+y+ry?
s,
~25(g— 1) = 145 +15°
thus,
7 —y—1
= 5
Which is positive since r > % So the system (4.1) undergoes Neimark-sacker bifurcation at (¥,7) when ¢ = '1‘72;; !

4.1. Direction of the period-doubling (flip) bifurcation

In this subsection, we will find the direction of Flip bifurcation of system (4.1) at ¢ = 3"‘_;;1 .
We need at first to shift the fixed point (,y) to the origin. Let
Wn=2n—Y, Up =Vp —J.
System (4.1) will be
Wni1l = Un
=2
Uyl = P+q_(wn+)’) . n=0,1,2, ..
L+ (un +3) +r(wn +7)

Or,

Yn+l =AY, +G(Yn)7

4.2)



110 Journal of Mathematical Sciences and Modelling

where,
0 1
A= <2y(qry> j ) s Yo = (W") ;
H+r2 T2 Un
and,
1 1 4
G(Y) = 5BV.Y) + <C(Y.Y.Y) +O(|¥ )
_ BI(Y7Y) _ CI(Y7Y7Y)
B(Y)Y) = (Bz(YyY)) and, C(Y,Y,Y) = (CZ(Y,Y,Y)
where,
=0 XKy
kal 371k371 |71 ( ])
and,
n QSY'
Ci(x,y,2) = i) [n=0(x1ykz;)-

1k, j=1 371197714977/

SO,B](I]/,(P) :OandCI(W7¢7€) =

2q(1+7¥) —2r(p+25(2g5 — 2r52))

By(y,¢) = _
2(v.9) T+712) (y1¢1)
2y(2ry+q) 2y
— + + ,
(1 +)7+I")72)2 (W1¢2 WZ(PI) (1 +)_)+ry_2)2(l//2¢2)
and
12r5(=3(g(1 +3) — rp) +457%(q —15))
C =
2(v,9,8) (7520 (v1¢181)+
—2q(1+75) +24(g— 1) — 6rq5”
(U154 (V1018 + 19281 +v20181)+
43(q —3ry) —6y
e E—— + + ———r .
017127 5 (V20281 +y2016 + v $282) + 05747 (v20262)
Now, we find the eigenvectors of A and AT corresponding to the eigenvalue A = —1 at the bifurcation point g = %
Let 4 and p* be the eigenvectors of A and AT corresponding to the eigenvalue A = —1 respectively. So, we have
Ag=—¢, and AT p* = —p*.
Or,
(A+Dg=0 4.3)
(AT +1)p* =0. (4.4)
. R 1
From Equation (4.3), we get § ~ (_1
—25(q—17)
And from equation (4.4), we get p* ~ l+)"1+ri2 .
Now, we normalize p* and g,
o —2(g—ry
(r*.q) = (_7_2) -
I+y+ry
—25(q—1y) o
A 52 _ 1+y+ry
Take p=1 ( Hyl“y = T g Dy
The critical eigenspace T¢ corresponding to A = —1 is a one-dimensional and spanned by an eigenvector §. Let 7% denote a one-dimensional

linear eigenspace of A corresponding to all eigenvalues other than A. Note that the matrix (A — A1,,) has common invariant spaces with the
matrix A, so we conclude that y € T** if and only if (p,y) = 0.

So, to find ¢(0) which is given by the following invariant formula:

1

c(0) = £($.€(3,4.9)) — 5 (P, B, (A~ 1)~ 'B(4.9)))-

AN =
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We evaluate

0
B(q,4) = (2}"(3q+1+4r)")+2q2r(p+2i(2q)72r)72))> .

(I4+5+r37)2
A A A 0
C(3:9:9) = | 120(3a(3)—rp) +4P(g-r7)) _ 3-20(149)+24(g_r7) 6% | 123(g-3r7) | 65 |-
(I+5+132)3 (I+5+r32)3 (I+5+r32)% T (1+5+r3%)3

e 1+y+ry? 12r5(=3(g(1+5) — rp) +45*(q — r¥))
(9,C(3,4,9)) = — S 3 -
1+2q+1)y—ry (1+5+r7?)
3—2q(1+y‘)+24(q—ry‘)—6rq7y‘2 125(q — 3ry) 6y }
(1+5+15%)? (I+5+r32)7 - (1454092

-1
A-n'= 25(;1rv> = Lty ler(HH)r) B
= i(g—n -y - — =t T :
e A A e R it \ -y 1

—25(3q+1+4ry) —2q+2r(p4+25(2g7—2r7%))

s )—
- 145+ r5? ;
_ Lpia Ay — (I4+5+r7)?
(A I) B(q"q) - 2)7+}’)72 —25(3q+1+4r9) —2q+2r(p+25(2g5+2r7%))
(14-5+r32)?

-2
B@.(A— 1) 'B(g.4) = 2T (0) ,

2y +ry m
where
_ (—2y‘(3q +144r5) — 2+ 2r(p+25(2q5 + 2177)) ) y
(1+3+7r32)2
(2q(1 +3) = 2r(p+25(245 — 2r5%)) — 2&)
(I4+3+r7%)? '
, . 25(3q+ 1 +4r9) +2q — 2r(p +25(2qy + 2r5°))
p.B(q,(A—1, qu):({ — ——
B A=) B @+ )1+ g+ 15— 15)
[Zq(l +5) = 2r(p +25(2g5 — 215%)) — 2&} )
(L+y+r52)? '
If ¢(0) > 0, then a unique and stable period-two cycle bifurcates from the fixed point at the bifurcation point g = 3’%2;1 .
4.2. Direction and stability of Neimark-Sacker bifurcation
We will first show when the Neimark-Sacker bifurcation conditions are satisfied.
Theorem 4.4. Ifg=qg* = 1 = and r > _2 Y then the characteristic equation of (3.2) has two complex conjugate roots that lie on the

unit circle. Moreover, the Nelmark Sacker blfurcanon conditions are satisfied.
Proof: At the beginning, we will show that the characteristic equation of (3.2)

_ 25— 75
Py y(q_ y_)zz
I+y+ry I+y+ry

has two complex roots. The roots of (4.5) are
__y
A et VA
2= 5
where,

¥ 25(q — ry)
(I+54+r72)?%  1+3+r9%

Substituting ¢ = ¢*, we get

S S e e
T (L4574 r72)? 1 +3+r?

4.5)
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So,

)72

—_— 4
(1+3+r52)?

Thus, (4.5) has two complex roots if A < 0, which is equivalent to

)—)2

(e
which implies
V<4(1+3+15%),
S0,
41425+ 7 +2(1+7)ri? + 257 — 72 > 0,
thus, A(g*) <0 if
4+ 85+ 377 +8(143)ri* +4r%5* > 0,

which always holds.
Next, we show that (4.5) has two conjugate complex roots on the unit circle when ¢ = ¢*.
Since, A, 5 are the roots of (4.5), we have

5(a— 15
My = - 2T,
14+y+ry
Substituting g = ¢* we get
MA; = 1.

But, 412 = |44 ,2|2 = 1. Thus, the two complex roots are on the unit circle.
Assume the roots of (4.5) at g = ¢* are e+ So, we have

P N |
1+5+ry?’
but, ¥ + ¢~ = 2cos(6). Thus,
y
cos(0) = ————~.
©) 2(1+35+r52)

Note that ’71 < cos(B) < 0. So, there exists 6y € (5, ) such that

90:cos_1 (773) — >
2(14+3+r7?)

And, %% £ 1 fork=1, 2, 3, 4.
Next, we will show that % | q=q* #0.

M‘|2 - _ 2)7(517’37)
L+y+r7%
differentiate with respect to g, we get

dAP (5?30 - ) + (- 9)2) — (25— r9) (G +2r7 )
dg (1+5+ry?)?

To find Z—Z, we differentiate equation (3.3) with respect to ¢

d , _ 5
@(ry3+(1—q)y2+y—p):07

S0,

thus,

dy _ v
dg 3r2+(1—-q)25+1°
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Substituting g = ¢*, we get

y P
dg'™" 22 43542
So,
d|A? o = — (3r5° + 657 +37) (1% + 7+ 1) _
dg " 2r? +35+2)(1+5+r92)2 7
So the Neimark-Sacker bifurcation conditions are satisfied.
O
As in the previous subsection, we shift the fixed point (¥,7) to the origin. We get
Yist =AYy +G(Y,), .6)
where,
0 1 w
A= (25'(4@) = ) » Yo = (un)
I+5+r7? 1454172 n
and,
1 1 4
G(Y) = 3BOY) + £ C(, YY)+ Oy )
_ BI(Y7Y) _ CI(Y7Y7Y)
B(Y)Y) = (Bz(Y,Y) and, C(Y,Y,Y) = O (Y.Y.Y)
where,
| —0(x%y;)
;1 8nk8n Y
and,
L PR
Ci(x,y,2) = S [0 (ykz))-
' 1A OO NI K !
So BI(W7¢) =0and Cl(‘l’?‘l’:é) -
2q(1+73) —2r(p +25(2qy — 2r7%))
By(v,9) = _
2(v.9) T+7122 (y1¢1)
25(2ry +q) 2y
v + o )
and,
12r5(=3(q(1 +5) — rp) +45° (g — 1))
C(y,9,8) = — +
2(v.9.,8) 075727 (vi19:1&1)
—2q(143) +24(q — ry) — 6rg5”
+ + +
15+ (V1018 + 19281 +v20181)
43(q —3ry) —6y
3 + + + .
01752 (V20281 + 20182 + 1 9262) 0551727 (v20262)
Now, we find the eigenvectors of A and AT corresponding to the eigenvalue e at the bifurcation point ¢ = ’52;7)?_71
Let § and p* be the eigenvectors of A and AT corresponding to the eigenvalue =% respectively. So, we have
Ag=e%g, and AT p* = 00 p*.
Or,
(A—e®DNg=0 4.7)
(AT — e~ p* = 0. (4.8)

1
From Equation (4.7), we get § ~ (eif)o)'

1 6y y
And Equation (4.8) gives p* ~ < te 1+"+’>2>

ele(]
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1

. [ 4+eff0 Y
Now, we normalize p* and g, take p =7 eié(fwryz , N =

Ly+ry2
So, to determine the direction of the Neimark-sacker bifurcation, we compute a(0) as given in ([15]).
where,
20— e!% (2g(1+5) — 2r(p +25(2q5 — 2r7%)) — 45(2r5 + q)e'® + 25¢%%)
2 QA +3+r7?) +e O3)(1+5+7r52) '
gy = E0124(1+5) ~2r(p+ 25(29y — 2r57)) +25 — 47(2ry + ) cos(By)]
QA +3+7r9?) +e %y)(14+3+r7?)
g0 = E2a(1+5) = 2r(p+25(2q5 = 205%)) — 45(2r5+ g)e ™ + 25¢” 2]
Q21 +5+7ry%) +e ®5)(14+5+7r5?) '
And,
821 = ($,C(4,:4,9)) +2(p,B(q. (I —A) "' B(4.9)))+
R < . _ A 7!9() ] zeie(] R . =
(B, B(§, (e¥*1—A)"'B(4,9))) + 1(—e*"90 )< ,B(4,9))(p,B(3,9))
2 A A R ele() A A A
*WKI%B(%(I)HZ*m\(l’ﬂ(%qmz-
where,
o ay @P[12r5(=3(q(14) —rp) +45% (g —19))]
(p,€(3,4.9)) = T o
Q2(14+7+ry?) +e 003 (1 +37+ry?)
e®[(—2g(1+7) +24(q — ry) — 6rg5*) (cos(6p) + ) +45(q — 3r7) (2 + e**) — 65¢']
Q2(1+5+772) + e %3) (145 +172)? '
And,
- dOM(1+5+ 1)
5,B(g,(I—A)"'B(4,5))) = LA
(p,B(4,(I-A)""B(4,9))) 015+ R) fe 7
_ 29(1+5) = 2r(p+25(2qy — 215)) +25 — 45(2r3 + g) cos(60)
(1425 —2g7+3r72) (1 + 7+ 17?2)
v = 2000+5) = 2r(p+25(245 — 2r5%)) — 25(2r5 +q) (1 +¢™®) + 27
’ (1+5+7r92)2
Finally,
N e éOL2g(1475) —2r(p+25(2g5 — 217>
(5,B(G, (81— 4)~1B(q,4))) = 24 4Y) ~2r(p L2/ (2qy — 2r7 )
(1434 ry?) + e 005) (1 +5+ry?)
INL[-25(2r5 +q) (¥ +e7%) + 25¢7%]
2(1 454 r92) + e~ 1005) (1 + 5+ rj?)
where,
2q(1+5) —2r(p+25(2q9 — 2r%)) — 45(2ry + q)'® + 25¢* %
L= . rre Bl A - ——
(e (1+5+7r7?) + 2ty —25(q — r)) (1 + 5+ 152)
So,
1 B s . s
a(0) = 5Re (7 (5,C(4,4.9)) ) +Re (™ (p. B, (1~ ) 'B(4,9))))
1 . _
+5Re (7 (5, B, (¥1 - 4)'B(3,0))))
Let
B =Re (¢ (5,C(3.0,))) , B2 = Re (7™ (5,B(, (1~ 4)'B(3,9))))
and
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To find By,

B :Re(hzry‘(—:s(qm +5) = o) +4P(q — 1)
| Q(1+5+r9?) +ey)(1+5+r7?)?
e0[(=2g(1+7) +24(q — ry) — 6rq7*)(cos(6p) + €'%) + 45(q — 3r7) (2 + €2%) — 67¢'%) >
Q2(L+7+r52) +e3) (145 +152)2 .

Multiplying and dividing by the conjugate of the complex part of the denominator, the denominator becomes,

Ar = (4(1+5+r7)? +4(1+5+r7%)ycos(8p) +77) (1 +5+r5?)%.
Multiplying the numerator by the conjugate of the complex part of the denominator and taking the real part of the numerator, we get,
Ay =2(1+ 5+ r)12r7(=3(q(1 +3) = rp) +45 (g — 7))+
5112r5(=3(q(1 +3) — rp) +45% (g — 1)) cos(6o)
FA(1+5+r7)(—2q(1 +7) +24(q — ry) — 6rg5*) (cos(6p))+
3(=2q(1+3) +24(g — rj) — 6r5*) (cos? (60))+
5(=2q(1+3) +24(g — ry) — 6r5*) cos(269)+
16(1+5+757)5(q — 3r9) + 8(1 + 5+ 17°)5(q — 3r¥)(cos(260))+
87 (q — 3r3)(cos(60)) + 45 (g — 3r7) (cos(360)) — 125(1 + 7+ 75> cos(6)
—65% cos(26p).

)
)
)
)

So, we have B] = ﬁ—f.

To find Bj:

B Re( 2q(1+5) —2r(p+25(245 = 215°)) — 25215 + q) (1 + ')
’ Q(1+5+r2) + e 03) (1+5+157)

2)7ei90
AT e R
Multiplying and dividing by the conjugate of the complex part of the denominator, the denominator becomes,
Ay = (1434157 +4(1+5+15)ycos(6p) +57) (1 +3+15).

Multiplying the numerator by the conjugate of the complex part of the denominator and taking the real part of the numerator, we get,

Ay =52(1+5+75°)(29(1+75) — 2r(p+25(25 — 217%)))

+5(2q(1+3) = 2r(p +25(245 — 2r57%))) cos(60) — 4(1 + 5+ r5*)7(2ry +q)

—4(1+3+75)5(2r5+ q) cos(60) — 27 (217 + ) cos(6p)

—25%(2r7 + q) cos(260) + 47 (1 + 3+ r7%) cos(8o) + 25* cos(26p )]

We have B, = f‘—;‘.
To find B3

By Re ( 29(1+75) —2r(p+25(2q5 — 215))]
Q1437+ 7r5?) + e %7) (1 43+ r5?)
[—25(2r7 + q) (%% + 1) + 25¢2i%)]
QI+F+r92) + e %3) (1 +7+r72)
2q(1+75) = 2r(p+25(2q7 — 2r37)) — 47(2ry + q) % + 25 %
(e (1+3+r5%) +eXby —25(g — 7)) (1 +5 +715?) ) '

Multiplying and dividing by the conjugate of the complex part of the denominator, the denominator becomes,

As = 41+ 5+ +4(1+5+137%)5cos(80) +3°) (1 + 5+ 7 (1 +5+17%)* + 5
+452(q —r9)? +2(1 + 5+ ri*)ycos(26p)
~45(g—r9)(1+ 3+ 5°) cos(480) — 45(¢ — r7) cos(26p)].
Multiplying the numerator by the conjugate of the complex part of the denominator and taking the real part of the numerator, we get,
Ag = (agbe +agby)cos(56p) + ((a1 +ag +a12)b1 + agbs +agbz + asbg) cos(46p)+
((a1 +ae+ai2)bs + (az + a7 +ai0)b1 + (a3 +aa +ai1)be + asbz +agbs + aghy) cos(36p)+
((a1 +ag +ai2)ba + (az + a7 +aio)ba + (a2 +az +aio)be + (a3 +as + a1 )by
+(a3 +aq +ay1)bs +agby + agbs) cos(26y) + ((ay + ag + a12)bs
+(ay +ag+ain)be+ (az + a7 +ajo)by + (ap + a7 +ajg)bs + (a3 +as +ay )b
+(a3 +aq +ay1)bs +asby +asby + asbs + agby + aghbsz) cos(6p)
+(a1+ae +ain)bz + (ay + a7+ aio)bs + (a3 +as + a1 )ba + asbs + agby + agb,
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where,

ar = [2q(1+75) — 2r(p+25(2q5 — 2r7°)) ).
ay = —45(2r5+q)[2q(1 +5) — 2r(p+25(2q5 — 2157))].

a3 =2[2q(1+75) — 2r(p +25(2q5 — 2r7%))]5.
ay = —25(2r5 +q)[2q(1 +5) — 2r(p +25(2g5 — 2157))].

as = ag = 85 (217 +q)*, a7 =ag = —47*(2r7 +q).

ag = —2[2q(1+3) — 2r(p +25(2qy — 2r5*)) 7 (2ry + q).
aio = 25[2q(1 +5) — 2r(p+25(2g5 — 2157))].

an = —85°(2r7 +q), app =45,
. S o2\2 _ 52
by =2(14+3+r5°)%, by =2(1+3+r3°)5.
by =—4(1+5+17)5(g—13), ba=(1+5+15)5.

bs =37, bg=—25(q—1y).
And,

cos(36y) = 4cos®(6) —3cos(6y) = —

+ .
20+34+m2)3  2(1+3+r?)
52

cos(46) = 2c0s2(200) — 1 =2(=——> 12— 1.

( 0) ( 0) (2(1+}7+r)72)2 )
cos(56)) = 2cos(26y) cos(36p) — cos(6y)

=2 3 3% -
=2 T
2(1+34+r9%)  2(145+r72)"  2(14+3+r5?)

So, B3 = 4¢. And

1 1
a(O) = EB] +Bz + 533

Theorem 4.5. If a(0) < O (respectively,> 0), then Neimark-Saker bifurcation of system (4.6) at q = q* is supercritical (respectively,
subcritical) and there exists a unique invariant closed curve bifurcates from the positive fixed point ¥ which is asymptotically stable
(respectively, unstable).

5. Numerical discussions

In this section some numerical examples which support our results are given.

Example 5.1. Consider the difference equation (3.2). Fix p, r, and consider q as bifurcation parameter. Take p = 0.5, r = 1.8, and
0 < g < 10. Equation (3.2) becomes

0.5 +qy2,,_1

Tl 0,1, 2, . 5.1
1+yn + 1.8y2n71

Yn+1 =

Which is equivalent to

. 2(n)
() = ()

14y2(n)+1.8y (n)2

The positive equilibrium point y of (5.1) satisfies

1.85° + (1 —q)7* +5-0.5=0. (5.2)
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_ 3x1.85°+1

Theorem 4.2 shows that the fixed point undergoes a period-doubling bifurcation at q* %

. So Equation (5.2) at g* becomes

—0.95° +372+0.55— 0.5 =0.

Which has two positive roots, so we have two values of g*.
Thus the first value of q* gives the following fixed point of (5.1)

= 0.6495.

Substituting the value of y in ¢* we get
q" =2.5235.

Now to determine the direction of period-doubling bifurcation we find c(0).
¢(0)=0.9539>0

So this shows that a unique and stable period-two cycle bifurcates from the fixed point at the bifurcation point ¢* = 2.5235.
The second value of q* gives the following fixed point of (5.1)

5= 1.1840.

Substituting the value of ¥ in g* we get
q"F =3.6192.

Now to determine the direction of period-doubling bifurcation we find c(0).
¢(0)=-0.4132

So this shows that no stable period-two cycle bifurcates from the fixed point at the bifurcation point ¢* = 3.6192.
Figure 5.1 shows the stable period-two cycle.

Period-doubling bifurcation
5 T T T T T T T T T

0.5+4y%_1

Figure 5.1: Period-doubling bifurcation of y,1; = T 187,

Example 5.2. Consider the difference equation (3.2). Fix p, r, and consider q as bifurcation parameter. Take p =2, r =9, and 0 < g < 10.

Equation (3.2) becomes

2+qy2n—l
L+ yn+9y%,

()’1("+1)> ( 2)’2(’;))2 )
= +gyi1(n .
a(nt+1) 152(n)+9y1 (n)’

97 +(1—¢)7* +5—2=0.

Yn+1 = 7’1:07 1727

Which is equivalent to

The positive equilibrium point y of (5.3) satisfies

7 —y— .
%' So Equation (5.4) at q* becomes

Theorem5.3 shows that the fixed point undergoes a Neimark-Sacker bifurcation at q* =
4.55° +1.55°+1.55-2=0.

Which has one positive roots.

(5.3)

54
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Thus the value of g* gives the following fixed point of (5.3)
y = 0.5462.

Substituting the value of ¥ in g* we get
q" =1.0424.

Now to determine the direction of period-doubling bifurcation we find a(0).
a(0) =11.7658 >0

So this shows that the Neimark- Sacker bifurcation at ¢* = 1.0424 is subcritical.

¥(n+1)

parameter q

2+qy%_;

Fi .2: Neimark-Sacker bifi i f =l
igure 5.2: Neimark-Sacker bifurcation of y, Thm a2,

18

16

121

x(n-2)

06 | s

0.4

2+qy% 01

Figure 5.3: Phase portraits of the ma = —=n1
g p S P Yn+1 T t97%, 1

atg=0.5.

Figure 5.2 shows that the positive fixed point y is asymptotically stable for ¢ > ¢* and change its stability at Neimark-Sacker bifurcation
value ¢*. Figure 5.3 shows phase portraits associated with Figure 5.2 at g = 0.5.

References

[1] M. Kulenovic, et al., Naimark-Sacker bifurcation of second order rational difference equation with quadratic terms, J. Nonlinear Sci. Appl., 10(7)
(2017), 3477-3489.

[2] Y. Kostrov, Z. Kudlak, On a second-order rational difference equation with a quadratic term, Int. J. Difference Equ., (2016), 179-202.

[3] S.Moranjki¢, Z. Nurkanovié, Local and global dynamics of certain second-order rational difference equations containing quadratic terms, Adv. Dyn.
Syst. Appl., (2017), 123-157.

[4] M. Abu Alhalawa M, M.Saleh, Dynamics of higher order rational difference equation x,+| = JQut betwy, e 3 Nonlinear Anal. Appl. 8(2) (2017),

A+Bxp+Cx, g
363-379.



Journal of Mathematical Sciences and Modelling 119

(5]
(6]

(71

(8]
(91

[10]
[11]
[12]

[13]
[14]
[15]

A. Jafar, M. Saleh, Dynamics of nonlinear difference equation x,11 = M, J. Appl. Math. Comput., 57 (2018), 493-522.

— A+Bxy+Cx,_y
M. Saleh, N. Alkoumi, A. Farhat, On the dynamics of a rational difference equation x,| = %, Chaos Soliton, 96 (2017), 76-84.
axp+bx,_

M. Saleh, A. Farhat, Global asymptotic stability of the higher order equation x,11 = - et J. Appl. Math. Comput., 55 (2017), 135-148.

M. Saleh, A. Asad, Dynamics of kth order rational difference equation, J. Appl. Nonlinear Dynam., (2021), 125-149, DOI 10.5890/JAND.2021.03.008.
M. Saleh, S.Hirzallah, Dynamics and bifurcation of a second order rational difference equation with quadratic terms, J. Appl. Nonlinear Dynam., (in
press).

C. Wang, X. Fang, R. Li, On the solution for a system of two rational difference equations, J. Comput. Anal. Appl., 20(1) (2016), 175-186.

C. Wang, X. Fang, R. Li, On the dynamics of a certain four-order fractional difference equations, J. Comput. Anal. Appl., 22(5) (2017), 968-976.

M. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations With Open Problems and Conjectures, Chapman. Hall/CRC, Boca
Raton, 2002.

S. Elaydi, An Introduction to Difference Equations, 3rd edition. Springer, 2000.

S. Elaydi, Discrete Chaos With Applications In Science And Engineering, 2nd edition. Chapman Hall/CRC.

Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer-Verlag, 1998.



	Introduction
	Preliminaries
	 Dynamics of xn+1 = + x2n-1A+B xn+C x2n-1 
	 Change of variables
	Equilibrium points 
	Linearized equation
	Local stability
	Invariant intervals
	Boundedness 
	Period two cycles 
	Global stability

	Bifurcation of yn+1 = p + q y2n-11+ yn+r y2n-1 
	 Direction of the period-doubling (flip) bifurcation
	Direction and stability of Neimark-Sacker bifurcation

	 Numerical discussions 

