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ABSTRACT

In this study, the Differential Transform Method (DTM) and Adomian’s
Decomposition Method (ADM) are applied to certain linear and non-linear partial
differential equations.

Keywords: linear and nonlinear partial differential equations, differential transform
method, Adomian decomposition method.

DİFERANSİYEL DÖNÜŞÜM VE ADOMIAN AYRIŞTIRMA
YÖNTEMLERİ İLE FARKLI TİPTE KISMİ DIFERANSİYEL

DENKLEMLERİN ÇÖZÜMLERİ

ÖZET
Bu çalışmada, Diferansiyel Dönüşüm Metodu (DTM) ve Adomian Ayrıştırma
Metodu (ADM) uygulanarak belirli doğrusal ve doğrusal olmayan kısmi
diferansiyel denklemlerin nümerik-analitik çözümleri sunulmuştur.

Anahtar Kelimeler: doğrusal kısmi diferansiyel denklemler, doğrusal olmayan
kısmi diferansiyel denklemler, diferansiyel dönüşüm yöntemi, Adomian ayrıştırma
yöntemi.

1. INTRODUCTION
The Differential Transform method (DTM) is an approximate method for solving
differential equations. The method is applied in [1] and for applications
[2,3,4,5,6,7].

The Adomian decomposition method (ADM) is used widely to solve differential
equations [8,9,10,11,12,13].
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2. DIFFERENTIAL TRANSFORM METHOD

2.1. One-dimensional differential transform

One-dimensional differential transformation of the function f(x) is defined as
follows:
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The differential inverse transformation of F(k) is defined as:
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From (1) and (2) we get
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(3) implies that the concept of the differential transformation is derived from
Taylor’s series expansion, but the method does not evaluate the derivatives
symbolically. However, relative derivatives are calculated by iterative procedure,
which are described by the transformed equations of the original functions.
From the definitions of (1) and (2), it is easily proven that the transformed
functions comply with the basic mathematical operations. In real applications, the
function f(x) in (2) is expressed by a finite series and can be written as

.)k(F)xx()x(f
N

0k

k
0



 (4)

(4) implies that 





1Nk

k
0 )k(F)xx( is negligibly small and N is decided by the

convergence of the solution, where N is series size [14,15].

2.2. Two-dimensional differential transform

Consider a function of two variables )y,x(u , and suppose that it can be represented
as a product of two single-variable functions, for example, g(y)f(x)y)u(x,  . Based on



Sol. Diff. types PDEs using DTM and ADMs

10

the properties of one-dimensional differential transform, function )y,x(u with two
variables can be represented as
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where (i)G(j)Fj)U(i,  is called the spectrum of )y,x(u .
If the function )y,x(u with two variables is analytic and differentiable continuously
with respect to time t in the domain of interest, then let
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where the spectrum h)U(k, is the transformed function.
The differential inverse transform of h)U(k, is defined as follows:
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hk
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yx)h,k(U)y,x(u (7)

Combining (6) and (7), it can be obtained that
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From these definitions, it can be found that the concept of the two-dimensional
differential transform is derived from the two-dimensional Taylor series expansion.
The fundamental mathematical operations of DTM are listed in Table 1, [14,15].

Table 1: Operations of differential transform
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Original function Transformed function
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2.3. The Adomian decomposition method
For the Adomian Decomposition Method see [16,17,18,19]. One considers the
following equation:

g(x)u(x)F  (9a)

where F is a general nonlinear ordinary  or partial differential equation operator
including both linear and nonlinear terms. Thus one write this equation as

g(x)NuRuLu  (9b)
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where N is a nonlinear operator, L is the highest-order derivative which is assumed
to be invertible, R is the remains of  linear differential operator and g is the source
term. Thus,

NuL-RuL-gLLuL -1-1-1-1  (10)

For the initial value problem, L-1 can be an integral operator defined from t0 to t,
for the boundary value problems, undefined integration is used and constants of
integration are found from the boundary conditions. Here,
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polynomials in [8,9,10]:
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and so on. The other polynomials can be constructed in a similar way.

Numerical Examples

In this part, some different types of linear and non-linear partial differential
equations are solved by using DTM and ADM and numerical results are compared.
Example 1: Consider the following Poisson’s Equation [20]:

y
yyxx e xuu  (12)

with the boundary conditions;

1y0fore2y)u(2,0y)u(0, y  (13a)
2x0for xe1)u(x, xu(x,0)  (13b)

By applying DTM to (12) with given formulas from Table 1 one gets

y)F(0,(0,1)2)h U(k,1)2)(h(hh)2, U(k1)2)(k(k  (14)

where h!1/y)F(0,  . From the boundary conditions (13b) and (12), it can be
obtained that
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Putting h)U(k, into (8), it can be written that the closed form solution is
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By applying ADM to (12) one gets

y
yx  xeu.Lu.L  (18)
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Hence, the solution can be written as follows:

21
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and
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In this way, from recurrence (23), it is obtained following terms; for 0n  ,
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0(0)L-)u(LL-u 1
y0x

1
y1   , 0u,0,u n2  , it can be written the solution of

Example 1:

2
0n

1
y

n CyCxe)y,x(u)y,x(u 




(24)

from (13a) and (13b) are found 0Cand0C 21  , then it is obtained as

y
ADM e xy)(x,u  (25)

The exact solution of the Example1 is,

y
exact e xy)(x,u  (26)

Table 2: Solutions and absolute errors for the Example 1
x y y)(x,uexact y)(x,uDTM y)(x,u ADM Error(DTM) Error(ADM)
0.2 0.1 0.2210341836 0.2210341836 0.2210341836 0 0
0.4 0.2 0.4885611033 0.4885611033 0.4885611033 0 0
0.6 0.3 0.8099152845 0.8099152845 0.8099152845 2.73114864*10-14 0
0.8 0.4 1.1934597581 1.1934597581 1.1934597581 8.69748718*10-13 0
1.0 0.5 1.6487212707 1.6487212707 1.6487212707 1.27626798*10-11 0
1.2 0.6 2.1865425605 2.1865425604 2.1865425605 1.14781962*10-10 0
1.4 0.7 2.8192537905 2.8192537897 2.8192537905 7.36252837*10-10 0
1.6 0.8 3.5608654856 3.5608654819 3.5608654856 0.0000000037 0
1.8 0.9 4.4272856001 4.4272855848 4.4272856001 0.0000000153 0
2.0 1.0 5.4365636569 5.4365636023 5.4365636569 0.0000000546 0

Example 2: Consider the following Wave Equation:

0yand1x0for0u-u xxyy  (27)

with the initial and boundary conditions;

)2/x(cosu(x,0)  00)(x,u y  (28a.b)
0y)(0,ux  (29)

By applying DTM to (27) with Table 1 together with (28) and (29) one gets

h)2, U(k1)2)(k(k2)h U(k,1)2)(h(h  (30)
01)h U(k,1)(h  (31)
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0h)1, U(k1)(k  (32)

from the condition (28a) )
2
xcos(x)0,i(U)0,x(U
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and from (28b), it can be obtained that 0x)1,i(U)0,x(u
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hence, we get;
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from (29), it can be obtained
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Substituting (33) for k = h, in (30) is obtained as in bellows:
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is concluded. Therefore, the closed form of solution can be defined as;
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where the exact solution of given problem y)(x,uexact :
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Now, by using ADM to

xxyy uu  (40)

Operator form of this equation is defined as in bellows:
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In this way, from recurrence relation (44), following terms can be written as;
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x
u

2
xcos

!6
y

2
)dy()u(

x
u

2
xcos

!4
y

2
)dy()u(

x
u

2
xcos

!2
y

2
)dy()u(

x
u

2
xcosu

1212y

0

y

0

2
52

2
6

1010y

0

y

0

2
42

2
5

88y

0

y

0

2
32

2
4

66y

0

y

0

2
22

2
3

44y

0

y

0

2
12

2
2

22y

0

y

0

2
02

2
1

0

(45)

Thus, the approximate solution of the given equation is written as:







 







 




















 






 






 






 

2
ycos

2
xcos...

!6
y

2!4
y

2!2
y

2
1

2
xcos)y,x(u

664422
ADM (46)
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Table 3: Solutions and absolute errors for the Example 2
x y y)(x,uexact y)(x,u DTM y)(x,u MAD Error(DTM) Error(ADM)

0.0 0.0 1 1 1 0 0
0.1 0.1 0.9755282581 0.9755282581 0.9755282581 0 0
0.2 0.2 0.9045084972 0.9045084972 0.9045084972 3.663736*10-15 0
0.3 0.3 0.7938926261 0.7938926261 0.7938926261 4.455325*10-13 1.887379*10-15

0.4 0.4 0.6545084972 0.6545084972 0.6545084972 1.276057*10-11 2.2271074*10-13

0.5 0.5 0.5 0.4999999998 0.4999999999 1.621012*10-10 6.3802297*10-12

0.6 0.6 0.3454915028 0.3454915016 0.3454915022 0.0000000012 8.105056*10-11

0.7 0.7 0.2061073739 0.2061073680 0.2061073709 0.0000000059 5.998164*10-10

0.8 0.8 0.0954915028 0.0954914830 0.0954914929 0.0000000198 0.0000000029
0.9 0.9 0.0244717419 0.0244717007 0.0244717213 0.0000000412 0.0000000099
1.0 1.0 0 2.160074*10-13 0 2.160074*10-13 0.0000000206

(a) uexact(x,y) solution of Example 2. (b) uDTM(x,y) solution of Example 2.

(c) y)(x,u MAD solution of Example 2.
Figure 1: y)(x,uexact , y)(x,u DTM , and y)(x,u MAD solutions of Example 2.

Example 3: Consider the following Heat Conduction Problem:
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0t2x0,u4u txx  (47)

with the boundary conditions;

0for t0t)u(2,0t)u(0,  (48a)
2x0forx/2)2sin(u(x,0)  (48b)

By applying DTM to (47) with given formulas from Table 1. One gets

1)h U(k,1)(h4h)2, U(k1)2)(k(k  (49)

From the boundary condition (48b), the corresponding spectra can be obtained as
follows:






















 







 





,...11,7,3kfor,
!k

1
2

2

,...9,5,1kfor,
!k

1
2

2

,...4,2,0kfor,0

)0,k(U

k

k
(50)

In the (49), for  2,1,0,kand0h , we get






















 







 






,...11,7,3kfor,
2
!k

2

,...9,5,1kfor,
2
!k

2

,...4,2,0kfor,0

)1,k(U

k

2k
(51)

In the (49), for  2,1,0,kand1h , we have

























 












 









,...11,7,3kfor,
2

)!2k(
22.4

)1k)(2k(

,...9,5,1kfor,
2

)!2k(
22.4

)1k)(2k(
,...4,2,0kfor,0

)2,k(U

4k

4k
(52)

In (49), for 2,1,0,kand2h  , we have
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























 












 









,...11,7,3kfor,
2

)!4k(
22.4.3.4

)1k)(2k)(3k)(4k(

,...9,5,1kfor,
2

)!4k(
22.4.3.4

)1k)(2k)(3k)(4k(
,...4,2,0kfor,0

)3,k(U

6k

6k
(53)

and so on. Putting h)U(k, into (8), it can be obtained that the closed form solution is

......t
24

!9.7.3t
22.4

!7.3.7t
22

!5
!5

1
2

2x

...t
22.4

!7.7.5t
22.4

!5.2.5t
22

!3
!3

1
2

2x

...t
2

3.5t
22.4

!3.3t
22

1
!1

1
2

2x)y,x(u

3
112

2
975

5

3
9

2
753

3

3
7

22
53

DTM




















 






 






 






 



















 






 






 






 



















 






 






 






 

(54)

Now, by applying ADM to

txx u4u  (55)

Operator form of this equation is defined as in bellows:

u.Lu.L txx  (56)

where 






  dt(*)(*)L,

t
L,

x
L 1

tt2

2
xx and applying both sides of (55):

)u.L.(L
4
1)0,x(u.t)0,x(u)t,x(u xx

1
tt
 (57)

where 





0n

n )t,x(u)t,x(u substituting (57), it can be written;

)uL(L)0,x(u.t)0,x(u)t,x(u
0n

nxx
1

tt
0n

n 









 (58)

Hence, solution can be arranged as follows:
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(x,0) t.uu(x,0)u y0  and 0n),uL(L
4
1u

0n
nxx

1
t1n  






 (59)

In this way, from recurrence relation (59), following terms can be written as;



3
6

2
4t

0
2

2
3

2
42t

0
2

2
2

2t

0
2

2
1

0

t
2
xsin

12288
dtt

2
xsin

256x4
1u

t
2
xsin

256
dtt

2
xsin

8x4
1u

t
2
xsin

8
dt

2
xsin2

x4
1u

2
xsin2u







 




















 












 




















 













 
















 












 







(60)

Thus, approximate solution of the given equation is written as:













 







 






























 

16
texp

2
xsin2...t

24576
t

512
t

16
1

2
xsin2)t,x(u

2
3

6
2

42
ADM (61)

where the exact solution of given problem t)(x,uexact as same as in equation (61).

Example 4: Consider the following

0u.uu xy  (62)

with the initial conditions;

 xu(x,0)  (63a)
0y)u(0,  (63b)

where the exact solution is y)(1 x /y)(x,uexact  (Jang vd., 2001). Taking the
differential transform of (62), it can be obtained as;

 0)h1), U(k1)[(kh) U(k,1)h U(k,1)(h  (64)

from the initial condition (63a)
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

 


otherwise,0
1kfor,1

)0,k(U (65)

Substituting (65), the resulting spectra for all i and k can be obtained as





 

otherwise,0
,...1,0hand1kfor,)1()k,k(U

h
(66)

By (66), the solution of y)u(x, , can be concluded.

 
y1

1x...yyy1xyx)h,k(U)y,x(u 32

0k 0h

hk
DTM 










(67)

On the other hand, according to ADM, from (9) and (10),

0u.Lu.u.L xy  (68)

can be written where 






  dy(*)(*)L,
y

L,
x

L 1
yyx and applying both sides of

(62)

0)]u.L(u.[L)u.L.(L x
1

yy
1

y   (69)

)]u.L.(u[Lx)y,x(u x
1

y
 (70)

Now, by considering (70) we have

 1,2,3,ifor,y-u x,u i0 (71)

and from (11), Adomian polynomials An can be obtained as follows:

3
3

2
210 yx-A,y xAy,x-A x,A  (72)

etc. The desired result

.
y1

1x...xyxyxyxyxA)y,x(u 432

0n
nADM 






(73)
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Table 4: Solutions and absolute errors for the Example 4.
x y y)(x,uexact y)(x,u DTM y)(x,u ADM Error for DTM and ADM
0.0 0.0 0 0 0 0
0.1 0.1 0.0909090909 0.0909090909 0.0909090909 9.091200015*10-13

0.2 0.2 0.1666666667 0.1666666701 0.1666666701 0.0000000034
0.3 0.3 0.2307692308 0.2307696396 0.2307696396 0.0000004088
0.4 0.4 0.2857142857 0.2857262694 0.2857262694 0.0000119837
0.5 0.5 0.3333333333 0.3334960938 0.3334960938 0.0001627604
0.6 0.6 0.375 0.3763604890 0.3763604890 0.0013604890
0.7 0.7 0.4117647059 0.4199066395 0.4199066395 0.0081419336
0.8 0.8 0.4444444444 0.4826219315 0.4826219315 0.0381774871
0.9 0.9 0.4736842105 0.622331335 0.622331335 0.1486471245
1.0 1.0 0.5 1 1 0.5

Figure 2: Absolute error for DTM and ADM for Example 4.

Example 5: Consider the following non-linear partial differential equation:

01-)(uu 2
xy  (74)

with the initial condition;

 xu(x,0)  (75)
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and the exact solution is y xy)(x,uexact  .
Taking the differential transform of (74), we have;

 









0r 0s

22 0)h,k()1sh,r(U)s1h()s,r1k(U)r1k( (76)

where









0h,1kfor,0
0h,1kfor,1

)1k()h()h,k(

from the initial conditions (75)

m,3,2,0,ifor00)U(i,  (77)
1ifor10)U(1,  (78)

0khfor1) U(0,0)U(1,  (79)

Thus, investigated solution;

  
yxy)1,0(Ux)0,1(U

...y)2,k(Uy)1,k(U)0,k(U...x)h,2(Ux)h,1(U)h,0(U)y,x(u 22
DTM


 (80)

is found, because all the other terms are zero. By  using ADM  in (74) is in operator

form, where 






 
y

0

1
yxy dy(*)(*)L,

x
L,

y
L

  )1(Lu.L)u.L(L 1
y

2
xy

1
y

  (81)

   
y

0

2
x dy.1uL.)0,x(u)y,x(u

Substituting 





0n

n )y,x(u)y,x(u into (81), it is obtained that

yuLx)y,x(u

2

0n
nx

0n
n 




























 









(82)

Where
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 xu0  and 0n,uLu

2

0n
nx1n 













 




 (83)

Thus, from recurrence relation, the following equation can be obtained:



 
 otherwise,0

0nfor,1
u 1n (84)

Substituting (84) into (82);

yx)y,x(u
0n

n 




(85)

is concluded. Hence, approximate solution of (74) can be written as

y xy)u(x,  (86)

As seen in (80) and (86), the solution functions are the same as the exact solution.

3. CONCLUSION

Partial differential equations in mathematics and physics, as well as in many areas
of engineering are widely encountered. Many times these equations are not solved
analytically. Therefore, it is important to know at least their approximating
solutions. In this respect we use DTM and ADM used by many for solving of linear
and especially nonlinear partial differential equations. Approximating solutions are
compared with analytic solutions. Calculated absolute errors are arranged in Table
2, 3, and 4. Tables and figures show that these approximations are so compatible
with real ones.
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