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ABSTRACT

In this study, the Differential Transform Method (DTM) and Adomian’s
Decomposition Method (ADM) are applied to certain linear and non-linear partial
differential equations.

Keywords: linear and nonlinear partial differential equations, differential transform
method, Adomian decomposition method.

DIFERANSIYEL DONUSUM VE ADOMIAN AYRISTIRMA
YONTEMLERI iLE FARKLI TIPTE KISMi DIFERANSIYEL
DENKLEMLERIN COZUMLERI

OZET

Bu calismada, Diferansiyel Donlisum Metodu (DTM) ve Adomian Ayristirma
Metodu (ADM) uygulanarak belirli dogrusal ve dogrusal olmayan kismi
diferansiyel denklemlerin nimerik-analitik ¢ozimleri sunulmustur.

Anahtar Kelimeler: dogrusal kismi diferansiyel denklemler, dogrusal olmayan
kismi diferansiyel denklemler, diferansiyel donusim yoéntemi, Adomian ayristirma
yontemi.

1. INTRODUCTION

The Differential Transform method (DTM) is an approximate method for solving
differential equations. The method is applied in [1] and for applications
[2,3,4,5,6,7].

The Adomian decomposition method (ADM) is used widely to solve differential
equations [8,9,10,11,12,13].
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2. DIFFERENTIAL TRANSFORM METHOD
2.1. One-dimensional differential transform

One-dimensional differential transformation of the function f(x) is defined as
follows:

k
F(k) = %{%} k>0. (8]
X=X

The differential inverse transformation of F(k) is defined as:

F() = D~ (x=x0) F(K). @)
k=0

From (1) and (2) we get

o k[ gk
f(x)zz%[%] | @
k=0 X=X

-0

(3) implies that the concept of the differential transformation is derived from
Taylor’s series expansion, but the method does not evaluate the derivatives
symbolically. However, relative derivatives are calculated by iterative procedure,
which are described by the transformed equations of the original functions.

From the definitions of (1) and (2), it is easily proven that the transformed
functions comply with the basic mathematical operations. In real applications, the
function f(x) in (2) is expressed by a finite series and can be written as

N
F() = D~ (x=x0) F(K). (4)
k=0
(4) implies that Z(x ~x0)¥F(K) is negligibly small and N is decided by the
k=N+1

convergence of the solution, where N is series size [14,15].
2.2. Two-dimensional differential transform

Consider a function of two variablesu(x,y) , and suppose that it can be represented
as a product of two single-variable functions, for example, u(x,y)=f(x)g(y). Based on
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the properties of one-dimensional differential transform, function u(x,y) with two
variables can be represented as

U y) = D FOX' D60y =D UG ix'y! (5)
i=0 i=0 i=0 j=0

where U(, j)=F (i)G(j) is called the spectrum of u(x,y) .
If the function u(x,y) with two variables is analytic and differentiable continuously
with respect to time t in the domain of interest, then let

1 6k+h
U(k,h):W mu(x,y) ,k>0,h>0. (6)
S ox oy X=Xo

where the spectrum Uk, h) is the transformed function.
The differential inverse transform of u(k,h) is defined as follows:

u(x,y)=iiua<,h)xky“ )

k=0h=0

Combining (6) and (7), it can be obtained that

u(x, y):ZZ 'h'L)xkay u(x, y)} xkyP (8)

k=0h=0

From these definitions, it can be found that the concept of the two-dimensional
differential transform is derived from the two-dimensional Taylor series expansion.
The fundamental mathematical operations of DTM are listed in Table 1, [14,15].

Table 1: Operations of differential transform

10
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Original function

Transformed function

au(x,y) +bv(x,y)

ou(x,y)
OX

au(x.y)
oy

ar+3u(X’ y)

ox" oy’

U, y)v(x,y)

Sin(ax)

Cos(ax)

aU(k, h) + bV(k, h)

(k +1)U(k +1, h)
(h +1)U(k, h +1)

(K+1)(k+2)...(k+ ) +1)(h +2)...(n + )UK +1,h +5)

k h
ZZU(r, h—s)V(k—r,s)

r=0s=0
1 k=m,n=h
8(k—m,h—n) = .
0 otherwise
at
k!

2.3. The Adomian decomposition method
For the Adomian Decomposition Method see [16,17,18,19]. One considers the

following equation:

Fu(9) =9(x)

(%)

where F is a general nonlinear ordinary or partial differential equation operator
including both linear and nonlinear terms. Thus one write this equation as

Lu + Ru + Nu=g(x)

(9b)

11
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where N is a nonlinear operator, L is the highest-order derivative which is assumed
to be invertible, R is the remains of linear differential operator and g is the source
term. Thus,

Llu= Ulg-UtRu-Lt Nu (10)

For the initial value problem, L™ can be an integral operator defined from t, to t,
for the boundary value problems, undefined integration is used and constants of
integration are  found from the boundary  conditions. Here,

NU:ZAn where U:Zun, and the components of A, are called Adomian
n=0 n=0
polynomials in [8,9,10]:

Ap=F(up)

Ar=ug F'(ug)

Ay =Uy F'(u0)+(u1)2 F'(ug)/2 (11)
Az =ug F'(ug)+ugusF'(ug) + (up)® F"(ug)/6

and so on. The other polynomials can be constructed in a similar way.
Numerical Examples

In this part, some different types of linear and non-linear partial differential
equations are solved by using DTM and ADM and numerical results are compared.
Example 1: Consider the following Poisson’s Equation [20]:

Uyx +Uyy =xe¥ (12)
with the boundary conditions;

u@,y)=0 u(2,y)=2eY foro<y<1 (13a)
u(x,0)=x u(x,1)=ex for0<x<2 (13b)

By applying DTM to (12) with given formulas from Table 1 one gets
(k+2)(k +1) Uk +2, hy+ (h +2)(h +1) U(k, h +2) =5(0,1) ® F(0,) (14)

where F(,y)=1/ht. From the boundary conditions (13b) and (12), it can be
obtained that

12
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1, for h=1

U(O’h):{o, otherwise (15)
and
1
UGk hy = | Tor k=1 (16)
0, otherwise

Putting U(k, h) into (8), it can be written that the closed form solution is

uDTM(x,y)=ZZU(k,h)xky“=(ZU(k,h)xk)(ZU(k.h)y“)=x(2%y“) (17)
k=0h=0 k=0 h=0 h=0 "~

By applying ADM to (12) one gets

Lx.u+Ly.u=xe¥ (18)
02 0% 4 ) : .

where Ly =—5.Ly=—5 Ly (*):_U(*)(dy) and applying both sides of (12)
OxX oy

Lyt Lyu =Lyt xeY) - Lyt (Ly.u) (19)

u(x,y) = ”xey(dy)2 ~ (L) = xeY + Cpy + Cp — Lyh(Ly ) (20)

where u(x, y):ZUn substituting into (20), it can be obtained that
n=0

Zun(x,y)zxey+C1y+Cz—L§,1(LXZun) (21)
n=0 n=0

Hence, the solution can be written as follows:

ug=xe¥Y +C1y+Cy (22)

and

Un+1:_|—§/1(|-xzun)v n=0 (23)
n=0

In this way, from recurrence (23), it is obtained following terms; for n=0,

13
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up=-L3"(Ly Up) =-L5 (0)=0, up=0,...,up =0, it can be written the solution of
Example 1:

u(x,y) = Zun (x,y)=xe¥ +C1y+Cy
n=0

(24)

from (13a) and (13b) are found C;=0andC, =0, then it is obtained as

uapm (X y)=xe¥ (25)
The exact solution of the Examplel is,
(26)

Uexact (X, Y) =X eY

Table 2: Solutions and absolute errors for the Example 1

X

y

Uexact(X,Y)

UpTm(X.Y)

uapm(X,Y)

Error(DTM)

Error(ADM)

0.2
0.4
0.6
0.8
1.0
1.2
14
1.6
1.8
2.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.2210341836
0.4885611033
0.8099152845
1.1934597581
1.6487212707
2.1865425605
2.8192537905
3.5608654856
4.4272856001
5.4365636569

0.2210341836
0.4885611033
0.8099152845
1.1934597581
1.6487212707
2.1865425604
2.8192537897
3.5608654819
4.4272855848
5.4365636023

0.2210341836
0.4885611033
0.8099152845
1.1934597581
1.6487212707
2.1865425605
2.8192537905
3.5608654856
4.4272856001
5.4365636569

0

0
2.73114864*10
8.69748718*10°%°
1.27626798*10 1
1.14781962*101°
7.36252837*101°
0.0000000037
0.0000000153
0.0000000546

0
0
0
0
0
0
0
0
0
0

Example 2: Consider the following Wave Equation:

Uyy -Uxx =0 for0<x<1 and y>0 27)

with the initial and boundary conditions;

u(x,0) =cos (nx /2)

ux(0,y)=0
By applying DTM to (27) with Table 1 together with (28) and (29) one gets

uy(x,0=0 (28a.b)

(29)

(h+2)(h +1) Uk, h+2) = (k + 2)(k +1) Uk + 2, h)
(h+1) Uk, h+1)=0

(30)
(31)

14
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(k+1) U(k+1,h)=0 (32)

from the condition (28a) U(x,0) :ZU(i,O)xi = cos(”—zx) . The corresponding spectra can
i=0
be obtained as follows:

(%H—%} for i =2,610,.., m

U0 =4 % I L) foriz048..m (33)
2 il

0, for i=135,.. m

and from (28b), it can be obtained that  uy (x,0) = ZU(i,l)xi =0 hence, we get;

i=0

U(i,0) =0 i=0,1,2,...,m (34)
from (29), it can be obtained

ux (0,y) = Zua, i)y' =0 where U(1,i)=0,i=0(1)n (35)

i=0

Substituting (33) for k = h, in (30) is obtained as in bellows:

SIS

—||-—| , fork=h=2610,..,m

2 ht
h

u(k,0) = u(0,h) = (g} [%j , fork=h=048,...m (36)
0 . , fork=h=135,..,m

then,

1 2h 1 2
U(k,h)=(5] (Fj k=h=0246,..,m (37)

is concluded. Therefore, the closed form of solution can be defined as;

15
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womon-[is (33 (5T ap (5 ap 5
Py e
[ESET ERE | =

where the exact solution of given problem ugy,c(x,y) :

Uexact (X, Y) = %{cos%(x +y)+ cosg(x - y)} = cos[%j cos(n—zyj (39)

Now, by using ADM to

Uyy = U (40)
Operator form of this equation is defined as in bellows:

Ly.u=Ly.u (41)

0? 0% 4 ([ rerien? : :
where Ly =— Ly =— Ly« )=J.J.( Y(dy)< and applying both sides of (40)
ox oy

u(x,y) —u(x,0) - (y —0)u(x,0) = L, .(L,.u) (42)
where u(x,y) :Zun(x,y) substituting (20), it can be written;

n=0

Zun(x,y) =U(x,0) + .Uy (x,0) + L;,l(LXZun) (43)
n=0 n=0

Hence, the solution can be arranged as follows:
ug =u(x,0) +y.uy (x,0) and Upg = L}l(LXZun), n>0 (44)
n=0

In this way, from recurrence relation (44), following terms can be written as;

16
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up =cog =X
0 2

= :T T Lax—zz(uo)}(olw2 =—[§]2 %cos[n—zxj
00

u2 =TT_;—22(U1)1(dy)2 :@4 %cos[%j
oot

i :T T ;(_Zz(uz)(dy)z =—(§j6y6—fcos[“_n
oot -

Ug =ﬁ_;—22(u3)_(dy)2 =[§]8 4005{%)
oot -

s _].]/._;(_22(“4)_(‘1)/)2 ——[gjmgcos{n—gj
oot J

u :ﬁ_;—Z(us)_(dy)z =[§]12 %cos{n—;]
00+ -

(45)

Thus, the approximate solution of the given equation is written as:

oot =o{ % (5 5 (3 55 |l ol 7 0
ADM (X, 2 2) 2 2) 4 2) 6 " 2 2

17



Table 3: Solutions and absolute errors for the Example 2
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X y Uexact (X, Y) uptm(X,y) uapp (xy)  Error(DTM)  Error(ADM)

00 00 1 1 1 0 0

01 01  0.9755282581 0.9755282581 0.9755282581 0 0

02 0.2  0.9045084972 0.9045084972 0.9045084972 3.663736*10° 0

03 0.3  0.7938926261 0.7938926261 0.7938926261 445532510  1.887379*10°%°
04 04  0.6545084972 0.6545084972 0.6545084972 1.276057*10%  2.2271074*107%
05 05 05 0.4999999998 0.4999999999 1.621012*10°  6.3802297*10*
06 0.6  0.3454915028 0.3454915016 0.3454915022 0.0000000012  8.105056*10*
07 07  0.2061073739 0.2061073680 0.2061073709 0.0000000059  5.998164*10°%°
08 0.8  0.0954915028 0.0954914830 0.0954914929 0.0000000198  0.0000000029

09 09  0.0244717419 0.0244717007 0.0244717213 0.0000000412  0.0000000099

1.0 10 0 2.160074*10*° 0 2.160074*10"*  0.0000000206

(@)

Uexact(X,y) solution of Example 2.

(€) uappy (x.y) solution of Example 2.
Figure 1: ugxact(x.y), uptm(X.y) , and uapy, (x.y) solutions of Example 2.

Example 3: Consider the following Heat Conduction Problem:

18
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Uy =4U¢,0<Xx<2 t>0 47

with the boundary conditions;

u(0,)=0 u(2,t)=0 fort>0 (48a)
u(x,0) = 2sin(nx/2) for 0 < x <2 (48b)

By applying DTM to (47) with given formulas from Table 1. One gets
(k+2)(k+1)U(k+2,h)=4(h+1) U(k,h +1) (49)

From the boundary condition (48b), the corresponding spectra can be obtained as
follows:

0, fork =0,2,4,...
k
U(k,0) = 2(%} % fork=159,... (50)
b K 1
-2/—=| —, fork=3711...
2) K

In the (49), for h=0and k=0,1,2,..., we get

0, for k =0,2,4,...
. k+2 kI
Ukl =4- > > fork =159,... (51)
k
|
K fork=3711,..
2) 2

In the (49), for h=1and k=0,1,2,..., we have

0, fork =0,2,4,...
k+4
U(k,2) = W(Ej M for k =15,0,... (52)
4.2 2 2
k+4
_W(Ej M, for k =3,7.11,...
4.2 2 2

In (49), for h=2and k=0,1,2,... , we have

19



Sol. Diff. types PDEs using DTM and ADMs

0, for k =0,2,4,...
k+6
U(k,3) = (k+4)(k +3)(k + 2)(k +1) (Ej Dt 150, (53)
4.34.2 2 2
_ (k+4)(k+3)(k+2)(k +1) [EJ“G KD k3711
4342 2 2

and so on. Putting u(k,h) into (8), it can be obtained that the closed form solution is

3 7
n\l 1(=m 3.3 2 2. (m) .3
somtn <o 3 -3 5 10335 .3(5) ool
3 5
Hs{z@ Ly sz e sz s, } 54)
+xs{2@51_g(3ft ran(sfe £1a(ss }
2) 51 2(2 4.2
Now, by applying ADM to
Uxx =4 Ut (55)

Operator form of this equation is defined as in bellows:

Lyx-U=L¢.u (56)

2
where Ly :a_ Ly == Ltl(*) j(*)dt and applying both sides of (55):
ox2

u(x, t) — u(x,0) — tu (x,0) :%LIl.(LXX.u) (57)

where u(x,t) = Zun(x,t) substituting (57), it can be written;
n=0

Zun (%, 1) =U(x,0) + tug (x,0) + Lt (L x Zun) (58)
n=0 n=0

Hence, solution can be arranged as follows:

20
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ug =u(x0) +tuy(x0 and up, :%L{l(LXX Zun), nx0 (59)
n=0

In this way, from recurrence relation (59), following terms can be written as;

Ug = Zsin(n—zxj

0
t
2 2 4
up —lj.a— I sinf ™ bt = Tsin| ™ |¢2 (60)
4 8X2 8 2 256 2
0
t
2
ug lja— T‘—sm[”—xjt2 - si [”—)F’
4) 2256 (2 12288 | 2
0

Thus, approximate solution of the given equation is written as:

2 4 6 2
uapm (X, t) = 25in(%}[1—ﬂ—t+n—t2 -3 +] = Zsin(%Jexp[—n—tJ (61)

16 512 24576 16

where the exact solution of given problem ugyact (%, t) @S same as in equation (61).

Example 4: Consider the following

Uy +UlUy =0 (62)
with the initial conditions;

u(x,0) = x (63a)
u(,y)=0 (63b)

where the exact solution is ugyet(x.y)=x/(1+y) (Jang vd., 2001). Taking the
differential transform of (62), it can be obtained as;

(h+1) U(k, h +1) + U(k, h) ® [(k +1) U(k +1),h)] =0 (64)

from the initial condition (63a)

21
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1, fork=1
U(k'o):{o, otherwise (65)
Substituting (65), the resulting spectra for all i and k can be obtained as
UkK) = )", fork=1landh=01,... (66)
Y 0, otherwise

By (66), the solution of u(x,y), can be concluded.

_ Sh Y koh o 2 3 ., 1
UpTM™ (X,y)_kzz()hzzou(k,h)x y _xél y+y° -y +...)_x1er (67)
On the other hand, according to ADM, from (9) and (10),
L,,u+u.L,.u=0 (68)

: 0 0 1. N . .
can be written where L, :a_x’l‘y :E,Lyl( )=j( ydy and applying both sides of
(62)
Lyt (Ly ) + Lyt [u(Ly u)] =0 (69)
u(x,y) =x-— Lg,l[u.(LX.u)] (70)

Now, by considering (70) we have

up=x, uUj=-y, for i=123,... (72)
and from (11), Adomian polynomials A, can be obtained as follows:

Ag=x, Aj=-xy, Ap=xy? Az=-xy3 (72)
etc. The desired result

o0
1
UADM(X,Y):nZ_E)An :x—xy+xy2—xy3+xy4—...:xm. (73)
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Table 4: Solutions and absolute errors for the Example 4.

X y Uexact (X,Y) Uptm (X, Y) uapm (X,y) Error for DTM and ADM
00 00 O 0 0 0
0.1 0.1 0.0909090909 0.0909090909 0.0909090909 9.091200015*10%
0.2 0.2 0.1666666667 0.1666666701 0.1666666701 0.0000000034
0.3 0.3 0.2307692308 0.2307696396 0.2307696396 0.0000004088
0.4 0.4 0.2857142857 0.2857262694 0.2857262694 0.0000119837
0.5 0.5 0.3333333333 0.3334960938 0.3334960938 0.0001627604
0.6 0.6 0.375 0.3763604890 0.3763604890 0.0013604890
0.7 0.7 0.4117647059 0.4199066395 0.4199066395 0.0081419336
0.8 0.8 0.4444444444 0.4826219315 0.4826219315 0.0381774871
0.9 0.9 0.4736842105 0.622331335 0.622331335 0.1486471245
10 10 05 1 1 0.5
0.5 T T T T T T T T T
045} E . :
0.4 il
0.35F -
03F )
g‘ 025} o
02F E
015 =
0.1 .
0.05F n
00 U‘.1 012 O.I3 O.I4 0?5 0..5 0.7 Dia 079 1

X

Figure 2: Absolute error for DTM and ADM for Example 4.

Example 5: Consider the following non-linear partial differential equation:

uy(ux)2-1:0

with the initial condition;

u(x,0) =x

(74)

(75)

23
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and the exact solution is ugyact(X,y)=Xx+Y.
Taking the differential transform of (74), we have;

ZZ(k+1—r)z[U(k+l—r,s)]2(h +1-s)U(r,h —s+1) - 5(k,h) =0 (76)
r=0s=0

where

1, fork=1Lh=0

8(k,h) =8(h)3(k-1) = {0 fork=Lh=0

from the initial conditions (75)

U@,0)=0 for i=0,2,3,...,m (77)
U@,0)=1 for i=1 (78)
U(L,0)=U(0,1) for h=k=0 (79)

Thus, investigated solution;

UpTm (X, Y) = U0, h) + UL h)x + U(2,h)x? + ...lU(k,O) + UKDy + U(k,2)y? + J (80)
=U@L0O)x+U@0y=x+y

is found, because all the other terms are zero. By using ADM in (74) is in operator

yl—x :i

Y,
_9 Loy =[x
form, where L, =% poal )_E[( )dy

Lt Ly wLyu? =Lt (81)

y
[u(x,y) - u(x,O)].[LXu]2 :.[l.dy
0

Substituting u(x,y) = Zun(x,y) into (81), it is obtained that
n=0

2
[Zun(x,y)x]{LxZun} =y (82)
n=0 n=0

Where
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2
ug=x and un+1—[LXZun} ,n>0 (83)
n=0

Thus, from recurrence relation, the following equation can be obtained:

1, f =0
Unst { (84)

0, otherwise

Substituting (84) into (82);

D unxy)-x=y (85)
n=0
is concluded. Hence, approximate solution of (74) can be written as

ux,y)=x+y (86)

As seen in (80) and (86), the solution functions are the same as the exact solution.

3. CONCLUSION

Partial differential equations in mathematics and physics, as well as in many areas
of engineering are widely encountered. Many times these equations are not solved
analytically. Therefore, it is important to know at least their approximating
solutions. In this respect we use DTM and ADM used by many for solving of linear
and especially nonlinear partial differential equations. Approximating solutions are
compared with analytic solutions. Calculated absolute errors are arranged in Table
2, 3, and 4. Tables and figures show that these approximations are so compatible
with real ones.
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