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ABSTRACT

First passage times underlie many stochastic processes in which the event, such as a chemical reaction,
the firing of a neuron, or the triggering of a stock option, relies on a variable reaching a specified value
for the first time. In this study, a transition matrix was estimated by taking into account the closing
values of Istanbul Stock Exchange (ISE -100) index from 20.01.2009 to 18.01.2013 for discrete
Markov model. Empirical information regarding the first passage time was obtained by writing a
computer program. Later, the first passage time which calculated by using WinQSB software was
accepted as asymptotic information. Under the assumption that the frequency distribution of the first
passage time fits with the geometric distribution, the fittings of the first passage time obtained from
empirical information and the first passage time obtained from asymptotic information to the
geometric distribution was compared with a chi-square analysis. It is found that, in some cases of the
first passage time of asymptotic information gives better results regarding the fitting with the
geometric distribution. Graphics of continuous distribution which comply with frequency of first
passage time were also provided by using Easy-fit software. From these graphs first passage time
distribution was seen to be a positively skewed or reverse j-shaped distribution.

Keywords: Empirical information, Asymptotic information, First passage time, Markov chain, Markov
chain simulation

MARKOV ZİNCİRİNDE İLK GEÇİŞ ZAMANLARININ ASİMTOTİK VE AMPİRİK BİLGİ
AÇISINDAN DEĞERLENDİRİLMESİ

ÖZETİlk geçiş zamanları bir değişkenin ilk kez belli bir değere ulaşmasına dayanan olaylarda örneğinkimyasal bir reaksiyon, sinir sistemindeki nöronun uyarılması, stok seçiminin başlaması gibi pekçok stokastik süreci vurgular. Bu çalışmamızda kesikli Markov modeli için  20.01.2009-18.01.2013 tarihleri arasındaki IMKB-100 endeksinin kapanış değerleri dikkate alınarak geçişmatrisi tahmin edildi. Yazılan bir bilgisayar programı aracılığıyla ilk geçiş zamanına ilişkinampirik bilgi elde edildi. Win-QSB yazılımı kullanılarak hesaplanan ilk geçiş zamanı ise Asimtotikbilgi olarak kabul edildi. İlk geçiş zamanının frekans dağılımının Geometrik dağılıma uyduğuvarsayımı altında Ampirik bilgiden elde edilen ilk geçiş zamanı ile Asimtotik bilgiden elde edilen
 Sorumlu yazar: murat.gul@giresun.edu.tr
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ilk geçiş zamanın Geometrik dağılıma uyumu hesaplanan Ki-Kare değeriyle karşılaştırılmıştır. İlkgeçiş zamanının bazı durumları için asimptotik bilginin geometrik dağılıma uyumu bakımındandaha iyi sonuç verdiği bulunmuştur. Ayrıca Easy-Fit yazılımı ile İlk geçiş zamanının frekansınauyan sürekli dağılımların grafikleri verilmiştir. Bu grafiklerden ilk geçiş zamanının dağılımınınsağa çarpık ve ters J şeklinde  olduğu  görülmüştür.

Anahtar Kelimeler: Ampirik bilgi, Asimtotik bilgi, İlk geçiş zamanı, Markov zinciri, Markov zinciri
simülasyonu

1. INTRODUCTION

The first-passage concept used in many areas from controlled reactions in physical and chemical
processes to chromatographic, stochastic processes play an important role. Therefore, you need to
know the first passage characteristics to understand the movements of real systems. Once this
connection is established, it is  quite simple to obtain the dynamical properties of the system in terms
of well-known first passage. The problems associated with these systems can be found in [1,2,3,4,5].

First passage times underlie many stochastic processes in which the event, such as  a chemical
reaction, the firing of a neuron, or the triggering of a stock option, relies on a variable reaching a
specified value for the first time. The behavior of normal or abnormal can be revealed by looking at
the mean first passage times of processes. Although two processes are very different microscopically,
their long-time properties-including first passage characteristics are essentially the same. Books are
devoted merely to first passage process [6,7,8,9] or in books on stochastic process that discuss first
passage processes as a subtopic [10,11,12,13,14].

Passage times and their applications have been investigated since early days of probability theory. The
best known example is the first entrance time to a set, which embraces waiting times, absorption
problems, extinction phonomena, busy periods and other applications. Probability of the first passage
to obtain in stochastic models such as diffusion, random walk, the mathematical tools as Green’s
function, Fourier and Laplace transform are used. Thus all first passage characteristics can be
expressed in terms of the first passage probability. In this sense, [9] introduces passage times, a
concept, which includes both the first passage/entrance time and last exit time from a set and stresses
on the role of sample functions behaviour in the determination of passage probabilities. (Ross and
Schechner, 1985) considered a discrete time Markov process for estimating first passage time and used
the estimators based on observed hazard and then extended their results to continuous time by
uniformizing [15]. Thus, they have used gamma function to estimate the distribution of the first

passage time. Although passage times are in fact examples of stopping times, they enjoy important
position in theoretical and practical applications. In analyzing and using Markov chain, first passage
times are fundamental to understanding the long-run behavior of a Markov chain [16].

2. METHODOLOGY
In this section, the techniques that shall be used for the analysis will be given. Accordingly, we will
summarize the methodology used for calculating first passage times for Markov  chain.
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2.1. Markov Chain

Modern probability theory studies random (stochastic) processes for which the knowledge of previous
outcomes influences predictions for future experiments. In this principle, it is thought when we
observe a sequence of chance experiments, all of the past outcomes could influence our predictions for
the next experiment [17]. In 1907, A. A. Markov began the study of an important new type of chance
process. In this process, the outcome of a given experiment can affect the outcome of the next
experiment [17]. In other words, Markov chains are the stochastic processes whose futures are
conditionally independent of their pasts provided that their present values are known [18].

Let  : 0,1,2,...nX n  be a stochastic  process that has a finite or countable infinite state space S .
When nX i we say that the process is in state i at time n.  The probability that the process is in state
j in the next time provided that its present state is i, is denoted by ijP .

Let 0 1 1, ,..., , ,ni i i i j be the states of the process and 0n  . The stochastic process  : 0,1,2,...nX n  is
called a Markov chain provided that

   1 0 0 1 1 1 1 1

,

|  X , ,...., , |n n n n n n

ij n

P X j i X i X i X i P X j X i
P

          


(2.1)

for all j’s and i’s, and 0n  . By this definition, a Markov chain is a sequence of random variables such
that for any n, the “next” state of the process 1nX  is independent of the “past” states 0 1 1, ,...., nX X X 

given that the present nX is known; that is, the strong Markov property is to hold at randomly chosen
times [18]. The probability ijP is called (one step) transition probability from state i to state j. When
the transition probabilities satisfy the condition, ,ij n ijP P for all 0n  , i.e., they are independent of

the time parameter n, then the Markov chain  : 0,1,2,...nX n  is said to be time-homogeneous, or
stationary [17].

 1 ,| ( , ) =P  ; i,j Sn n ij n ijP X X i P i j P    

For the Markov chains, the transition probabilities are arranged in a matrix form and the resulting
matrix is called the transition matrix of the chain. The elements of a transition matrix hold the
following conditions:

a) for any two states i,j S , 0ijP  ; and

b) for all i S , 1ij
j

P  .

As it can be easily seen from the next theorem and following corollary, the joint distribution
0 1, ,...., mX X X can be completely specified for every m once the initial distribution and the transition

matrix P are known [17].
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Theorem 2.1.1. Let  :nX X n N  be a Markov chain. For any ,m n N ; 1m and

0 ,i 1 2, ,..., mi i i S ,

 
0 1 1 2 11 1 2 2 0, ,... / ...

m mn n n m m n i i i i i iP X i X i X i X i P P P
       (2.2)

Corollary 2.1.1 For the Markov chain, let the initial probability distribution 0 be given on the state
space S ; i.e., let  0 0 ( )P X i i  be for all i S given. Then for any m N and 0 1 2, , ,..., mi i i i S

we have

 
0 1 1 2 10 0 1 1 0 0, , ..., ( ) ...

m mm m i i i i i iP X i X i X i i p p p


    (2.3)

In some cases, it is needed to calculate the probabilities for the transitions between distant times for
Markov chain. Thus, the following definition is given.

Definition 2.1.1. For any m N n-step transition probability from state i to state j is given by

  ( )| ; i,j Sn
n m m ijP X j X i P     , n N . (2.4)

It is often desirable to make also probability statements about the number of transitions followed by
the process in going from state i to state j for the first time. This length of time is called the first
passage time in going from state i to state j

To illustrate these definitions, reconsider the inventory example  where tX is the number of cameras
on hand at the end of week t, where we start with 0X . Suppose that it turns out that

0 1 2 3 4 53, X 2, X 1, X 0, X 3, X 1X      

In this case, the first passage time in going from state 3 to state 1 is 2 weeks, the first passage time in
going from state 3 to state 0 is 3 weeks, and the recurrence time for state 3 is 4 weeks.

In general, the first passage times are random variables. The probability distributions associated with
them depend upon the transition probabilities of the process. In particular, let ( )n

ijf denote the
probability that the first passage time from state i to j is equal to n. For 1n  , this first passage time is
n if the first transition is from state i to some state k ( k j ) and then the first passage time from state k
to state j is n - 1. Therefore, these probabilities satisfy the following recursive relationships (Hillier,
2001).

(1) (1)
ij ij ijf p p  ,                                                                                                                       (2.5)

(2) (1)
ij ik kj

k j
f p f



 , (2.6)

( ) ( 1)n n
ij ik kj

k j
f p f 



 (2.7)
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Among the Markov chain characteristics, the first passage times play an important role. For any two
states, the first passage time probability in n steps is defined as follows and this probability is related
to the ever reaching probability.

Definition 2.1.2. For any two states i and j, the first passage time probability from i to j in n steps,
( )n

ijf is defined as

( )
( 1)

               ; 1

 ; 2,3,...
ij

n
nij

ik kj
k j

p n
f p f n




  

 (2.8)

Definition 2.1.3. The value ( )

1

n
ij ij

n
f f





 is called ever reaching probability, or reaching probability

in every step from state i to state j [18].

Unfortunately, this sum may be strictly less than 1, which implies that a process initially in state i may
never reach state j. When the sum does equal 1, ( )n

ijf ,  (for n = 1, 2, . . .) can be considered as a
probability distribution for the random variable, the first passage time.

The following theorem reflects how to calculate the  steady state probabilities for  the process.

Theorem 2.1.2. If  : 0,1,2,...nX n  is an irreducible aperiodic finite state Markov chain, the system
of equations

.P   (2.9)

. 1 1   (2.10)

has a unique positive solution. This solution is called  the limit distribution of Markov chain.

Definition 2.1.4. An important indicator of the first passage times is the mean first passage time and
for an irreducible recurrent Markov chain, this quantity is calculated as [18].

1ij ik kj
k j

p 


  or 1
ii

i



 .

This equation is recognized as that the first transition from state i can be to either state j or to some
other state k. If it is to state j, the first passage time is 1. Given that the first transition is to some state
k( k j ) instead, which occurs with probability ikp , the conditional expected ,

first passage time from state i to state j is 1+ kj . Combining these facts, and summing over all the
possibilities for the first transition, leads directly to this equation.

For the case of ij where j = i, ii is the expected number of transitions until the process returns to
the initial state i [19].
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Application to Istanbul Stock Exchange (Ise)

Aim and Content of the Application

In this section, the increasing and the decreasing values that is observed in Istanbul Stock Exchange’s
closing index was modelled with transition matrix by using Markov chain analysis. With this
modeling, first passage time  between states was calculated with initially WinQSB software and then
by a written a computer program code.

Application Data

Transition matrix was estimated by taking the closing values of  Istanbul Stock Exchange  (ISE -100)
index from 20.01.2009 to 18.01.2013 into account for discrete Markov model. 998 data was used to
estimate  for this transition matrix.

According to the increments and decrements in Stock Exchange’s closing index value, states of
Markov chain was determined.

Let  the rates be percent values, in the form of

-1 and  more decrements constitute state 1
-1 with 0 (including 0) decrements constitute  state 2
0 with 1(including 1) increments constitute state 3
1 with more increments constitute state 4

of Markov chain. The transition matrix is estimated by the method of maximum likelihood as follows.

0 , 2 1 2 0 ,1 9 0 0 , 2 7 5 0 , 3 2 3
0 , 2 0 4 0 , 2 7 2 0 , 2 7 6 0 , 2 4 8
0 ,1 8 5 0 , 2 6 3 0 , 3 1 5 0 , 2 3 7
0 ,1 6 3 0 , 2 5 9 0 , 3 5 9 0 , 2 1 9

P

 
 
 
 
 
 

First passage time and limit distribution obtained via WinQSB-Process by using this transition matrix
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Table 1. Mean First Passage Times.

Table 2. Limit Distribution.

Markov Chain Analysis

After the estimation of transition matrix, we determine whether or
not the observed transition matrix is appropriate for the analysis and
then the first passage time distribution has been studied to be found. Finally, we give the stages of
analyzing and interpreting the information that is obtained from the first passage times.

Chi-Square Analysis

In order to perform a chi-square goodness of fit test, the estimated frequencies need to be found.
Therefore, based on Markov Chain simulations the expected frequencies were calculated by a
computer program. Here, Markov chain simulation is summarized briefly.

For a Markov chain with transition matrix ( )ijP P , ,i j S let iY denote a generic random variable

distributed as the thi row of the matrix, that is, having  the distribution

( ) , .i ijP Y j p j S   (3.1)

Cases Starting
State

Entering
State

Mean First
Passage Time

1 1 4 3,5573
2 1 3 3,3500
3 1 2 4,3262
4 1 1 5,2816
5 2 4 3,8483
6 2 3 3,3671
7 2 2 3,9932
8 2 1 5,3077
9 3 4 3,8981
10 3 3 3,2391
11 3 2 4,0236
12 3 1 5,4101
13 4 4 3,9760
14 4 3 3,0962
15 4 2 4,0328
16 4 1 5,5274

State Probability

1 0,1893
2 0,2504

3 0,3087
4 0,2516
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This distribution is used for the inverse transform to generate such a iY . For example, if
 0,1,2,3,...S  , then iY is generated via deriving a ~ (0,1)U U and setting 0iY  , if 0iU p ;

1iY  , if 0 0 1i i ip U p p   , and in general iY j , if
1

0 0

j j

ik ik
k k

p U p


 

   . Steps to generate iY by

using this inverse transform method and an independent uniform is provided in the following
algorithm [20].

Algorithm for simulating a Markov chain up to N steps

1. Generate a U~U(0,1)
2. Choose an initial value, 0 0X i . Set  n=1
3. Generate

0i
Y , and set

01 iX Y
4. If n N , then set ni X , generate iY ,  set n = n + 1 and set n iX Y ; otherwise stop.
5. Go back to step 4.

This simulation study was performed in order to obtain the same total frequency. Expected frequencies
and observed frequencies are as follows

Observed Frequencies                           Expected Frequencies

4 0 3 6 5 2 6 1
5 1 6 8 6 9 6 2
5 7 8 1 9 7 7 3
4 1 6 5 9 0 5 5

 
 
 
 
 
 

3 4 3 9 4 9 6 5
4 2 7 5 7 3 6 0
6 7 6 9 8 0 8 2
4 3 6 7 9 6 5 7

 
 
 
 
 
 

0 :H Estimated transition matrix fits the data

1 :H Estimated transition matrix does not fit the data

2
C a l  13,365
2
0 .0 5  24,996

Conclusion: 0  AcceptH

Some of the first passage distributions observed are given below and their goodness of fit to geometric
distribution is tested by chi-square analysis.
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0 :H Transitions have a geometric distribution with success probability p.

1 :H Transitions do not have a geometric distribution with success probability p.

Table 3. The observed distributions of the first passage time from state i to state j .

From state i =1 to state j = 4                                 From state i =3 to state j =2

Bar graphs of the geometric distribution are shown below.

Period Frequency
1 61
2 41
3 28
4 25
5 11
6 7
7 5
8 3
9 1
10 4
12 2
15 1

Period Frequency
1 80
2 57

3 49
4 32
5 20
6 14

7 16

8 5
9 12

10 6
11 5

12 3
13 3
15 1
17 1

Mean = 3,0212
p      = 0,3310

2
C al  2,6454

6,0.05  12,592
Conclusion: 0  AcceptH

Mean  = 3,7336
p        = 0,2678

2
C a l  8,8780

2
8,0.05 = 15,507

Conclusion: 0  AcceptH
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Figure 1 : Graphs of the geometric distribution

In the following Table 3.4, p success probability of geometric distribution and mean first passage time,
the calculated chi-square values for goodness of fit are shown. As a result, when asimptotic
information is used instead of empirical information, better results and increasing fitting with the
geometric distribution has been found in some cases.
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Starting
State

Entering
State

p and mean Calculated Chi-Square Is there a
Recovery?

Ho Accept/Reject

Empirical Asymptotic Empirical Asymptotic Empirical Asymptotic

1 4 0,3310
3,0212

0,2811
3,5573 2,6454 8,4598 No Accept Accept

1 3 0,2688
3,7196

0,2985
3,3500 1,5677 5,4141 No Accept Accept

1 2 0,2436
4,1058

0,2311
4,3262 18,0558 17,9924 Yes Reject Reject

1 1 0,1983
5,0426

0,1893
5,2816 6,2998 6,9287 No Accept Accept

2 4 0,2753
3,6320

0,2599
3,8483 8,4457 8,5979 No Accept Accept

2 3 0,2662
3,7560

0,2970
3,3671 3,7202 8,9447 No Accept Accept

2 2 0,2513
3,9799

0,2504
3,9932 11,0709 10,9860 Yes Accept Accept

2 1 0,2010
4,9746

0,1884
5,3077 2,3666 4,3596 No Accept Accept

Table 4. p and mean first passage time, calculated chi-square.
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Table 4. (Continued) p and mean first passage time, calculated chi-square.

Starting
State

Entering
State

p and mean Calculated Chi-Square Is there a
Recovery?

Ho Accept/Reject

Empirical Asymptotic Empirical Asymptotic Empirical Asymptotic

3 4 0,2598
3,8497

0,2565
3,8981 7,0480 6,9785 Yes Accept Accept

3 3 0,3086
3,2403

0,3087
3,2391 8,2947 8,2933 Yes Accept Accept

3 2 0,2678
3,7336

0,2485
4,0236 8,8780 9,4969 No Accept Accept

3 1 0,1740
5,7456

0,1848
5,4101 5,9229 7,7020 No Accept Accept

4 4 0,2518
3,9720

0,2515
3,9760 10,1737 10,1541 Yes Accept Accept

4 3 0,3134
3,1912

0,3230
3,0962 5,7475 6,4780 No Accept Accept

4 2 0,2580
3,8755

0,2480
4,0328 3,4301 3,1158 Yes Accept Accept

4 1 0,1992
5,0207

0,1809
5,5274 4,5537 6,3915 No Accept Accept
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Using Easy Fit software,  fitting distributions for first passage time are shown below.

Table 5. First Passage Time Distribution

Distributions given in the column of first passage time distribution are fitting with distributions
corresponding to cases because p values are greater than 5% (all of them having values at least over
67%.). Graphs of fitting distribution for first passage time and their parameter values are shown below.

Cases Starting
State

Entering
State

First Passage
Time
Distribution

Kolmogorov-Smirnov
Goodness of Fit
p value

1 1 4 Beta 0,91583
2 1 3 Weibull 0,90204
3 1 2 Chi-Squared 0,98186
4 1 1 Johnson SB 0,92867
5 2 4 Johnson SB 0,96254
6 2 3 Johnson SB 0,81151
7 2 2 Beta 0,97800
8 2 1 Gen.Gamma 0,85360
9 3 4 Weibull 0,91920
10 3 3 Kumaraswamy 0,70628
11 3 2 Gen.Gamma 0,89069
12 3 1 Burr 0,91058
13 4 4 Gamma 0,96357
14 4 3 Weibull 0,67077
15 4 2 Gamma 0,92335
16 4 1 Johnson SB 0,97891
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Figure 2.  Graphs of fitting distribution for first passage time starting state 1



Evaluating First Passage Times in Markov Chains

41

Figure 3.  Graphs of fitting distribution for first passage time starting state 2
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Figure 4.  Graphs of fitting distribution for first passage time starting state 3
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Figure 5.  Graphs of fitting distribution for first passage time starting state 4
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3. CONCLUSIONS AND SUGGESTIONS

In this study, the concept of first passage was examined. It was also emphasized the
importance of the first passage time in Markov Chains and Stochastic Processes.
Later by using data from the ISE for an application, transition matrix of Markov
chain was estimated. Under the assumption that the frequency distribution of the
first passage time fits with the geometric distribution, the fittings of the first
passage time obtained from empirical information and the first passage time
obtained from asymptotic information to the geometric distribution was compared
with a chi-square analysis. With respect to the results of this comparision, for some
states of the first passage time the values obtained from the asymptotic information
comply better with the geometric distribution. Looking at the results in the Table
3.4, approximately 40 percent of cases the asymptotic information is superior to the
empirical information. Researchers who wish to use the first passage times might
need to do their analysis by taking asymptotic information into account. Using
Easy Fit software,  fitness of the first passage time distributions according to
Kolmogorov-Smirnov Goodness of Fit test were examined and thus, the first
passage time distributions corresponding to cases were found. Graphics of
continuous distribution which comply with frequency of first passage time were
also provided. From these graphs first passage time distribution was seen to be a
positively skewed or reverse j-shaped distribution.

Since it is also possible to obtain geometric distributions from some continuous
distributions [21]. We will attempt to obtain the first passage time distributions in
our subsequent papers.

REFERENCES

[1] Bulsara A. R., Lowen S. B., Rees C. D., 1994. Phys. Rev, E 49, p. 4989-5000.

[2] Bulsara A. R., Elston T. C., Doering C. R., Lowen S. B., Lindenberg K., 1996. Phys.
Rev, E 53, p.3958-3969.

[3] Fienberg S. E., 1974. Biometrics, 30,  p. 399-427.

[4] Gerstein G. L., Mandelbrot B. B., 1964. Biophys, J. 4, p.41-68.

[5] Tuckwell H. C., 1989. Stochactic Process in the Neurosciences, Society for industrial
and Applied Mathematics, Philadelphia, PA.

[6] Dynkin E. B., Yushkevich A. A., 1969. Markov Processes: Theorems and Problems,
Plenum, New York.

[7] Kempernan J. H. B.,1961. The Passage Problem for a  Stationary Markov Chain
University of Chicago Press, Chicago.

[8] Spitzer F., 1976. Principle of Random walk, 2nd ed, Springer-Verlag, NewYork.

[9] Syski R., 1992. Passage Times for Markov chains, IOS, Amsterdam.



M.Gül, S.Çelebioğlu

45

[10]Cox D., Miller H., 1965. The Theory of Stochastic Processes, Chapman&Hall, London,
U.K.

[11]Feller W., 1968. An Introduction to Probability Theory and Its Applications Wiley,
NewYork.

[12] Gardiner C. W., 1985. Handbook of Stochastic Methods, Springer-Verlag, New York.

[13] Risken H. 1988. The Fokker-Plank equation: Methods of Solution and  Applications,
Springer-Verlag, New York.

[14] Van Kampen N. G., 1997. Stochastic  Processes in Physics and Chemistry revised
edition, North-Holiand, Amsterdam.

[15] Ross S., Schechner Z., 1985. Management Science, Vol. 31, No. 2, p. 224 234.

[16] Das Gupta, 2010. Fundamentals of Probability: A first course , Springer  Texts in
Statistics.

[17]Grinstead C.M., Snell J.S., 2006. Introduction to the Probability, American
Mathematical Society, 2nd revised ed., United States of America, p.405-471.

[18] Çınlar E., 1997. Introduction to Stochastic Processes, Englewood Cliffs, New Jersey,
106-277.

[19] Hillier F.S., Lieberman G.J., 2001. Introduction to operations research, Seventh
Edition, Mcgraw-Hill

[20]Sigman, K., 2009. Simulation of Markov Chain. http://www.columbia.edu/~ks20/4703-
Sigman/Monte-Carlo-Sigman.html -( Erişim tarihi: 21/03/2013)

[21] Alzaatreh A., Lee C., Famoye F., 2012. Statistical Methodology, 9, p. 589- 603.


