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ABSTRACT

First passage times underlie many stochastic processes in which the event, such as a chemical reaction,
the firing of a neuron, or the triggering of a stock option, relies on a variable reaching a specified value
for the first time. In this study, a transition matrix was estimated by taking into account the closing
values of Istanbul Stock Exchange (ISE -100) index from 20.01.2009 to 18.01.2013 for discrete
Markov model. Empirical information regarding the first passage time was obtained by writing a
computer program. Later, the first passage time which calculated by using WinQSB software was
accepted as asymptotic information. Under the assumption that the frequency distribution of the first
passage time fits with the geometric distribution, the fittings of the first passage time obtained from
empirical information and the first passage time obtained from asymptotic information to the
geometric distribution was compared with a chi-square analysis. It is found that, in some cases of the
first passage time of asymptotic information gives better results regarding the fitting with the
geometric distribution. Graphics of continuous distribution which comply with frequency of first
passage time were also provided by using Easy-fit software. From these graphs first passage time
distribution was seen to be a positively skewed or reverse j-shaped distribution.

Keywords. Empirical information, Asymptotic information, First passage time, Markov chain, Markov
chain simulation

MARKOV ZINCIRINDE iLK GEGi$ ZAMANLARININ ASIMTOTIK VE AMPIRIK BiLGI
AGISINDAN DEGERLENDIRILMESI

OZET

Ilk gecis zamanlar bir degiskenin ilk kez belli bir degere ulasmasina dayanan olaylarda érnegin
kimyasal bir reaksiyon, sinir sistemindeki néronun uyarilmasi, stok se¢ciminin baslamasi gibi pek
cok stokastik siireci vurgular. Bu calismamizda kesikli Markov modeli i¢in 20.01.2009-
18.01.2013 tarihleri arasindaki IMKB-100 endeksinin kapanis degerleri dikkate alinarak gecis
matrisi tahmin edildi. Yazilan bir bilgisayar programi aracihigiyla ilk gecis zamanina iliskin
ampirik bilgi elde edildi. Win-QSB yazilimi kullanilarak hesaplanan ilk gecis zamani ise Asimtotik
bilgi olarak kabul edildi. Ilk gecis zamamnin frekans dagilimimnin Geometrik dagilima uydugu
varsayimi altinda Ampirik bilgiden elde edilen ilk gecis zamani ile Asimtotik bilgiden elde edilen
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ilk gecis zamanin Geometrik dagilima uyumu hesaplanan Ki-Kare degeriyle karsilagtirlmistir. Ik
gecis zamaninin bazi durumlari i¢in asimptotik bilginin geometrik dagilima uyumu bakimindan
daha iyi sonug verdigi bulunmustur. Ayrica Easy-Fit yazilimu ile Ilk gecis zamaninin frekansina
uyan stirekli dagilimlarin grafikleri verilmistir. Bu grafiklerden ilk gecis zamaninin dagiliminin
saga carpik ve ters ] seklinde oldugu gorilmiistiir.

Anahtar Kelimeler: Ampirik bilgi, Asimtotik bilgi, ik gecis zamani, Markov zinciri, Markov zinciri
simulasyonu

1. INTRODUCTION

The first-passage concept used in many areas from controlled reactions in physical and chemical
processes to chromatographic, stochastic processes play an important role. Therefore, you need to
know the first passage characteristics to understand the movements of real systems. Once this
connection is established, it is quite simple to obtain the dynamical properties of the system in terms
of well-known first passage. The problems associated with these systems can be found in [1,2,3,4,5].

First passage times underlie many stochastic processes in which the event, such as a chemical
reaction, the firing of a neuron, or the triggering of a stock option, relies on a variable reaching a
specified value for the first time. The behavior of normal or abnormal can be revealed by looking at
the mean first passage times of processes. Although two processes are very different microscopically,
their long-time properties-including first passage characteristics are essentially the same. Books are
devoted merely to first passage process [6,7,8,9] or in books on stochastic process that discuss first
passage processes as a subtopic [10,11,12,13,14].

Passage times and their applications have been investigated since early days of probability theory. The
best known example is the first entrance time to a set, which embraces waiting times, absorption
problems, extinction phonomena, busy periods and other applications. Probability of the first passage
to obtain in stochastic models such as diffusion, random walk, the mathematical tools as Green’s
function, Fourier and Laplace transform are used. Thus all first passage characteristics can be
expressed in terms of the first passage probability. In this sense, [9] introduces passage times, a
concept, which includes both the first passage/entrance time and last exit time from a set and stresses
on the role of sample functions behaviour in the determination of passage probabilities. (Ross and
Schechner, 1985) considered a discrete time Markov process for estimating first passage time and used
the estimators based on observed hazard and then extended their results to continuous time by
uniformizing [15]. Thus, they have used gamma function to estimate the distribution of the first

passage time. Although passage times are in fact examples of stopping times, they enjoy important
position in theoretical and practical applications. In analyzing and using Markov chain, first passage
times are fundamental to understanding the long-run behavior of a Markov chain [16].

2. METHODOLOGY

In this section, the techniques that shall be used for the analysis will be given. Accordingly, we will
summarize the methodology used for calculating first passage times for Markov chain.
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2.1. Markov Chain

Modern probability theory studies random (stochastic) processes for which the knowledge of previous
outcomes influences predictions for future experiments. In this principle, it is thought when we
observe a sequence of chance experiments, all of the past outcomes could influence our predictions for
the next experiment [17]. In 1907, A. A. Markov began the study of an important new type of chance
process. In this process, the outcome of a given experiment can affect the outcome of the next
experiment [17]. In other words, Markov chains are the stochastic processes whose futures are
conditionally independent of their pasts provided that their present values are known [18].

Let {Xn n :0,1,2,...} be a stochastic process that has a finite or countable infinite state space S.
When X, =i we say that the process is in state i at time n. The probability that the process is in state
J in the next time provided that its present state is i, is denoted by P, .

Let iy,i,...,i,,,i, ] be the states of the process and n>0. The stochastic process {Xn n= 0,1,2,...} is
called a Markov chain provided that

2.1)

forall j’sand i’s, and n>0. By this definition, a Markov chain is a sequence of random variables such
that for any n, the “next” state of the process X, is independent of the “past” states X, X,..., X,

given that the present X, is known; that is, the strong Markov property is to hold at randomly chosen
times [18]. The probability P, is called (one step) transition probability from state i to state j. When

the transition probabilities satisfy the condition, P, =P, for all n>0, i.e, they are independent of

ij
the time parameter n, then the Markov chain {Xn n :0,1,2,...} is said to be time-homogeneous, or
stationary [17].

P{Xy.| X, =i}=P(i,j)=P;,=P; ;ijeS

n

For the Markov chains, the transition probabilities are arranged in a matrix form and the resulting
matrix is called the transition matrix of the chain. The elements of a transition matrix hold the
following conditions:

a) for any two states i,jeS, P, 20; and

b)forallieS, > P, =1.
j

As it can be easily seen from the next theorem and following corollary, the joint distribution
X Xpheey X, €an be completely specified for every m once the initial distribution and the transition

matrix P are known [17].
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Theorem 2.1.1. Let X ={X,:ne N} be a Markov chain. Forany m,ne N ; m>1 and

iy bslyyend €S,

P{Xn+1 = il’ Xn+2 = i2""Xn+m = im / xn = IO} = I:)ioil I:)iliz "'Pim,lim (2-2)

Corollary 2.1.1 For the Markov chain, let the initial probability distribution p, be given on the state
space S;i.e., let P{X,=i}=p,(i) beforall ieS given. Then forany meN and iy,i,,i,,.... i, €S

we have
P{X,=lig, X, =l0,... X\, =iy} =p,(iy) Pii, Pii, - Pi i (2.3)

In some cases, it is needed to calculate the probabilities for the transitions between distant times for
Markov chain. Thus, the following definition is given.

Definition 2.1.1. Forany me N n-step transition probability from state i to state j is given by

P{Xpm=ilX,=i}=P";ijeS, neN. (2.4)

n+m

It is often desirable to make also probability statements about the number of transitions followed by
the process in going from state i to state j for the first time. This length of time is called the first
passage time in going from state i to state j

To illustrate these definitions, reconsider the inventory example where X, is the number of cameras
on hand at the end of week t, where we start with X, . Suppose that it turns out that

X,=3 X, =2, X, =1, X,=0, X, =3 X, =1

In this case, the first passage time in going from state 3 to state 1 is 2 weeks, the first passage time in
going from state 3 to state 0 is 3 weeks, and the recurrence time for state 3 is 4 weeks.

In general, the first passage times are random variables. The probability distributions associated with
them depend upon the transition probabilities of the process. In particular, let fij(”’denote the
probability that the first passage time from state i to j is equal to n. For n>1, this first passage time is
n if the first transition is from state i to some state k (k = j) and then the first passage time from state k

to state j is n - 1. Therefore, these probabilities satisfy the following recursive relationships (Hillier,
2001).

£ =p=py, (2.5)

1O =3"p, 19, (2.6)
k=]

fij(n) = Z Pic kaH) (2.7)

k#j
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Among the Markov chain characteristics, the first passage times play an important role. For any two
states, the first passage time probability in n steps is defined as follows and this probability is related
to the ever reaching probability.

Definition 2.1.2. For any two states i and j, the first passage time probability from i to j in n steps,
f\" is defined as

Pij ;n=1
™ _
i = > opfP in=23,... (2.8)

k#j

0

Definition 2.1.3. The value f; =Z fij(”) is called ever reaching probability, or reaching probability

n=1

in every step from state i to state j [18].

Unfortunately, this sum may be strictly less than 1, which implies that a process initially in state i may
never reach state j. When the sum does equal 1, fij(”), (for n=1,2,...) can be considered as a

probability distribution for the random variable, the first passage time.

The following theorem reflects how to calculate the steady state probabilities for the process.

Theorem 2.1.2. If {Xn n= 0,1,2,...} is an irreducible aperiodic finite state Markov chain, the system
of equations

!

I~ O

=p’ (2.9)
—1 (2.10)

p'.
p'.
has a unique positive solution. This solution is called the limit distribution of Markov chain.
Definition 2.1.4. An important indicator of the first passage times is the mean first passage time and
for an irreducible recurrent Markov chain, this quantity is calculated as [18].

1
m :1+Z Py My Or m; :p_-

k= j i

This equation is recognized as that the first transition from state i can be to either state j or to some
other state k. If it is to state j, the first passage time is 1. Given that the first transition is to some state
k(k = j) instead, which occurs with probability p, , the conditional expected ,

first passage time from state i to state j is 1+m, . Combining these facts, and summing over all the
possibilities for the first transition, leads directly to this equation.

For the case of m, where j =i, m, is the expected number of transitions until the process returns to
the initial state i [19].
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Application to Istanbul Stock Exchange (Ise)

Aim and Content of the Application

In this section, the increasing and the decreasing values that is observed in Istanbul Stock Exchange’s
closing index was modelled with transition matrix by using Markov chain analysis. With this
modeling, first passage time between states was calculated with initially WinQSB software and then
by a written a computer program code.

Application Data
Transition matrix was estimated by taking the closing values of Istanbul Stock Exchange (ISE -100)
index from 20.01.2009 to 18.01.2013 into account for discrete Markov model. 998 data was used to

estimate for this transition matrix.

According to the increments and decrements in Stock Exchange’s closing index value, states of
Markov chain was determined.

Let the rates be percent values, in the form of

-1 and more decrements constitute state 1

-1 with 0 (including 0) decrements constitute state 2
0 with 1(including 1) increments constitute state 3
1 with more increments constitute state 4

of Markov chain. The transition matrix is estimated by the method of maximum likelihood as follows.

0,212 0,190 0,275 0,323
0,204 0,272 0,276 0,248
0,185 0,263 0,315 0,237
0,163 0,259 0,359 0,219

First passage time and limit distribution obtained via WinQSB-Process by using this transition matrix
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Table 1. Mean First Passage Times.

Cases | Starting | Entering | Mean First
State State Passage Time
1 1 4 3,5573
2 1 3 3,3500
3 1 2 4,3262
4 1 1 5,2816
5 2 4 3,8483
6 2 3 3,3671
7 2 2 3,9932
8 2 1 5,3077
9 3 4 3,8981
10 3 3 3,2391
11 3 2 4,0236
12 3 1 5,4101
13 4 4 3,9760
14 4 3 3,0962
15 4 2 4,0328
16 4 1 5,5274

Markov Chain Analysis

After the estimation of transition
not the observed transition matrix

Table 2. Limit Distribution.

State Probability
1 0,1893
2 0,2504
3 0,3087
4 0,2516

matrix, we determine whether or
is appropriate for the analysis and

then the first passage time distribution has been studied to be found. Finally, we give the stages of
analyzing and interpreting the information that is obtained from the first passage times.

Chi-Square Analysis

In order to perform a chi-square goodness of fit test, the estimated frequencies need to be found.
Therefore, based on Markov Chain simulations the expected frequencies were calculated by a
computer program. Here, Markov chain simulation is summarized briefly.

For a Markov chain with transition matrix P =(P;),i,jeS let Y; denote a generic random variable

distributed as the i" row of the matrix, that is, having the distribution

P(Y, =)= pij’jes'

(3.1)
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This distribution is used for the inverse transform to generate such a Y,. For example, if
$={0,1,2,3,...}, then Y, is generated via deriving a U ~U(0,1) and setting Y,=0, if U<p, ;

j-1 J
Y, =1, if py<U<p,+p,, and in general Y, =j,if > p,<U <> p, . Steps to generate Y, by
k=0 k=0

using this inverse transform method and an independent uniform is provided in the following
algorithm [20].

Algorithm for simulating a Markov chain up to N steps

o s w e

Generate a U~U(0,1)
Choose an initial value, X, =i,.Set n=1

Generate Y, , and set X, =Y,

If n<N,thenseti=X
Go back to step 4.

generate Y,, setn=n+1andset X =Y, ; otherwise stop.

This simulation study was performed in order to obtain the same total frequency. Expected frequencies

and observed frequencies are as follows

Observed Frequencies

40
51
57
41

36
68
81
65

52
69
97
90

61
62
73
55

Expected Frequencies

34
42
67
43

H, : Estimated transition matrix fits the data

39
75
69
67

H, : Estimated transition matrix does not fit the data

C éal = 13,365
clos = 24,996
Conclusion: | H, Accept

49
73
80
96

65
60
82
57

Some of the first passage distributions observed are given below and their goodness of fit to geometric
distribution is tested by chi-square analysis.
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H, : Transitions have a geometric distribution with success probability p.

H, : Transitions do not have a geometric distribution with success probability p.

Table 3. The observed distributions of the first passage time from state i to state j .

From state i=1to state j=4

From state i =3 to state j=2

Period Frequency
1 61
2 41
3 28
4 25
5 11
6 7
7 5
8 3
9 1
10 4
12 2
15 1
Mean = 3,0212
p = 0,3310
cl, = 2,6454
Cooos = 12,592

Conclusion: | H, Accept

Period Frequency
1 80
2 57
3 49
4 32
5 20
6 14
7 16
8 5
9 12
10 6
11 5
12 3
13 3
15 1
17 1
Mean = 3,7336
p = 10,2678
cZ2, = |88780
Céo.os 15,507

Conclusion: | H, Accept

Bar graphs of the geometric distribution are shown below.
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p=0.3310, Geametric Probability Function p=0.2678, Geametric Probability Function
0.35 - - : : :

0.35 -

Figure 1 : Graphs of the geometric distribution

In the following Table 3.4, p success probability of geometric distribution and mean first passage time,
the calculated chi-square values for goodness of fit are shown. As a result, when asimptotic
information is used instead of empirical information, better results and increasing fitting with the

geometric distribution has been found in some cases.
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Table 4. p and mean first passage time, calculated chi-square.

Starting Entering p and mean Calculated Chi-Square Istherea Ho Accept/Reject
State State Recovery?
Empirical | Asymptotic Empirical | Asymptotic Empirical | Asymptotic
1 4 gggig gég% 2,6454 8,4598 No Accept Accept
1 3 g;?gg ggggg 1,5677 5,4141 No Accept Accept
1 2 giggg gggéé 18,0558 17,9924 Yes Reject Reject
1 1 géigg g;gig 6,2998 6,9287 No Accept Accept
2 4 gé;gg ggigg 8,4457 8,5979 No Accept Accept
2 3 ggggg ggg;g 3,7202 8,9447 No Accept Accept
2 2 gsgég ggggg 11,0709 10,9860 Yes Accept Accept
2 1 2;2}12 gég?‘; 2,3666 4,3596 No Accept Accept
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Table 4. (Continued) p and mean first passage time, calculated chi-square.

Starting Entering p and mean Calculated Chi-Square Istherea Ho Accept/Reject
State State Recovery?
Empirical Asymptotic | Empirical Asymptotic Empirical Asymptotic
3 4 gsigg ggggi 7,0480 6,9785 Yes Accept Accept
3 3 ggggg ggggz 8,2947 8,2933 Yes Accept Accept
3 2 g%g;g gzgggg 8,8780 9,4969 No Accept Accept
3 1 g%zgg gﬁg? 5,9229 7,7020 No Accept Accept
4 4 gg%g gg?ég 10,1737 10,1541 Yes Accept Accept
4 3 g%ig ggggg 5,7475 6,4780 No Accept Accept
4 2 gg?gg ggggg 3,4301 3,1158 Yes Accept Accept
4 1 gégg% géggz 4,5537 6,3915 No Accept Accept
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Using Easy Fit software, fitting distributions for first passage time are shown below.

Table 5. First Passage Time Distribution

Cases | Starting | Entering First Passage Kolmogorov-Smirnov
State State Time Goodness of Fit

Distribution p value

1 1 4 Beta 0,91583

2 1 3 Weibull 0,90204

3 1 2 Chi-Squared 0,98186

4 1 1 Johnson SB 0,92867

5 2 4 Johnson SB 0,96254

6 2 3 Johnson SB 0,81151

7 2 2 Beta 0,97800

8 2 1 Gen.Gamma 0,85360

9 3 4 Weibull 0,91920

10 3 3 Kumaraswamy 0,70628

11 3 2 Gen.Gamma 0,89069

12 3 1 Burr 0,91058

13 4 4 Gamma 0,96357

14 4 3 Weibull 0,67077

15 4 2 Gamma 0,92335

16 4 1 Johnson SB 0,97891

Distributions given in the column of first passage time distribution are fitting with distributions
corresponding to cases because p values are greater than 5% (all of them having values at least over
67%.). Graphs of fitting distribution for first passage time and their parameter values are shown below.
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3. CONCLUSIONS AND SUGGESTIONS

In this study, the concept of first passage was examined. It was also emphasized the
importance of the first passage time in Markov Chains and Stochastic Processes.
Later by using data from the ISE for an application, transition matrix of Markov
chain was estimated. Under the assumption that the frequency distribution of the
first passage time fits with the geometric distribution, the fittings of the first
passage time obtained from empirical information and the first passage time
obtained from asymptotic information to the geometric distribution was compared
with a chi-square analysis. With respect to the results of this comparision, for some
states of the first passage time the values obtained from the asymptotic information
comply better with the geometric distribution. Looking at the results in the Table
3.4, approximately 40 percent of cases the asymptotic information is superior to the
empirical information. Researchers who wish to use the first passage times might
need to do their analysis by taking asymptotic information into account. Using
Easy Fit software, fitness of the first passage time distributions according to
Kolmogorov-Smirnov Goodness of Fit test were examined and thus, the first
passage time distributions corresponding to cases were found. Graphics of
continuous distribution which comply with frequency of first passage time were
also provided. From these graphs first passage time distribution was seen to be a
positively skewed or reverse j-shaped distribution.

Since it is also possible to obtain geometric distributions from some continuous
distributions [21]. We will attempt to obtain the first passage time distributions in
our subsequent papers.
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