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Abstract

In this article, we examine the term of screen pseudo-slant lightlike submanifolds of a
golden semi-Riemannian manifold. Also, we obtain an example. We give some character-
izations about the geometry of such submanifolds.
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1. Introduction

From ancient times, the golden proportion has played very important role in architec-
ture, arts, music etc. J. Kepler described golden structure which was revealed by the
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golden proportion. The number o = which is the real positive root of the equation

xz—m—lzo,

is the golden proportion.

In [16], golden Riemannian manifolds were introduced by M. Crasmereanu and C.E.
Hretcanu (see also [17,18]). In [2], the authors investigate the integrability of such mani-
folds. Also, the constancy of maps between golden Riemannian manifolds was introduced
in [7]. On a golden Riemannian manifold, totally umbilical semi-invariant submanifolds
were studied in [9]. Moreover, some types of lightlike submanifolds of metallic semi-
Riemannian manifolds were examined in [10].

A golden structure P on a semi-Riemannian manifold M is defined as

P*—P-1=0,

and if

g(PU’ W) = g(Uv PW),
then the semi-Riemannian metric is called P-compatible and (M, g, P) is called a golden
semi-Riemannian manifold [19].

In differential geometry, lightlike submanifolds of semi-Riemannian manifolds are an
important research topic. This theory is developed by [12] (see also [15]). Then many
authors studied lightlike submanifolds on different spaces ([4,5,13,14,21]). Moreover, on
golden semi-Riemannian manifolds, lightlike submanifolds have been reported by many
mathematicians (see [8,11,20]).
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In [6], B.Y. Chen defined slant immersions in complex geometry. In [3], A. Lotta
introduced the concept of slant immersions of a Riemannian manifold into an almost
contact metric manifold. Also, in [1] bi-slant submanifolds with the notion of pseudo-slant
submanifolds were introduced.

The purpose of this article is to study screen pseudo-slant lightlike submanifolds of a
golden semi-Riemannian manifold. The article is arranged as follows. In Section 2 there
are some basic definitions about lightlike submanifolds and golden semi-Riemannian man-
ifolds. In Section 3, we give the definition of a screen pseudo-slant lightlike submanifold
and obtain a non-trivial example. In the last section, we obtain main results of our paper.

2. Preliminaries

A submanifold (M™, g) immersed in a semi-Riemannian manifold (M™*™, g) is called
a lightlike submanifold [12], if the metric ¢ induced from g is degenerate and the radical
distribution RadT' M is of rank 7, 1 < r < m. Assume that S(T'M) is a screen distribution
which is a semi-Riemannian orthogonal complementary distribution of RadT M, that is,

TM = S(TM)LRadT M. (2.1)

Considering a screen transversal vector bundle S(T'M*), which is a semi-Riemannian
complementary vector bundle of RadT M in TM+. For every local basis {£;} of RadT M,
there exists a local null frame {N;} of sections with values in the orthogonal complement
of S(TM+*) in (S(TM™))* such that
g(Ni, E;) = 6;; and g(N;,N;) =0,

it follows that there exists a lightlike transversal vector bundle ltr(T'M) locally spanned
by {N;} [12].

Assume that t7(T'M) is a complementary (but not orthogonal) vector bundle to 7'M in
TM|pr. Then, we get

tr(TM) = ltrTM LS(TM™4), (2.2)
TM|y =TM & tr(TM),

which gives

TM = S(TM)L{RadTM & ltr(TM)} LS(TM™). (2.4)

The Gauss and Weingarten formulae are given as
VoV =VyV +h(U, V), (2.5)
VuyN = —ANU + Vi N, (2.6)

for all U,V € I'(TM) and N € TI'(ltr(T'M)), where ViV, AyU € T(T'M) and h(U, V),
VEN € D(tr(TM)). V, V, and V! are linear connections on TM, TM, and tr(TM),
respectively.
In view of (2.5) and (2.6), for all U,V € T(T M), N € T'(ltr(T'M)), and W € T'(S(TM™)),

we get B

VoV =VyV +hH(U, V) + 1 (U, V), (2.7)

VuN = —ANU + VN + D*(U,N),

VuW = —AwU + Vi W + DU, W),
where

H(U.V) = LU V), h(U.V) = S0 (U, V),
D'(U,W) = L(VyW),  D*(U,N) = S(VyN),

where L and S are the projection morphism of tr(TM) on Itr(TM) and S(TM*1), re-

spectively. V! and V* are linear connections on Itr(TM) and S(T M) called the lightlike
connection and screen transversal connection on M, respectively.
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By the use of (2.5), (2.7)~(2.9), and metric connection V, we arrive at
g(h* (U, V), W) + g(V, DU, W) = g(Aw U, V), (2.10)

g(D*(U,N),W) =g(N,AwU). (2.11)

We will denote the projection of TM on S(T'M) by P. For any U,V € I'(TM) and
E € T'(RadT' M), we get

VuPV =V, PV +h*(U,PV), (2.12)
VuE = —A3U + ViE. (2.13)
From (2.12) with (2.13), we have
g(h'(U, PV), B) = g(ApU, PV), (2.14)
§(h*(U.PV),N) = g(ANU, PV), (2.15)
g(h'(U,E),E)=0, ALE=0. (2.16)
By using (2.7), we find

So, V is not a metric connection. -
Let (M, g) be a semi-Riemannian manifold and P be golden structure on M. If

g(PU,V)=g(U,PV), (2.18)

holds, then (M, g, P) called a golden semi-Riemannian manifold. Equation (2.18) is equiv-
alent to

g(PU,PV) =g(PUV)+g(UV). (2.19)
Throughout this article, we suppose that VP = 0.

3. Screen pseudo-slant lightlike submanifolds

Definition 3.1. Let M be a lightlike submanifold of a golden semi-Riemannian mani-
fold M. If the following conditions are satisfied then M is called a screen pseudo-slant
submanifold of a golden semi-Riemannian manifold M.

i) The radical distribution RadTM is an invariant distribution with respect to P, i.e.,

P(RadT M) = RadT M.
i1) There exist D and D non-degenerate orthogonal distributions on M such that
S(TM) = D1D.
iii) The distribution D is anti-invariant, i.e.,
P(D) c S(TM™4).

iv) The distribution D is slant with angle 6 (# %), i.e., for each € M and each non-zero

A

vector X € (D),, the angle 6 between PX and the vector subspace (D), is a constant

A

(# %), which is independent of the choice of x € M and X € (D),.

This constant angle 6 is called the slant ar})gle of dis‘Eribution D. A screen pseudo-slant
lightlike submanifold is said to be proper if D # {0}, D # {0} and 6 # 0.
In view of above definition, we arrive at

TM = RadTM_1D1D. (3.1)
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Example 3.2. Let (Ri%, g) be a semi-Riemannian manifold with signature (—, ..., —, +, ..., +)
and (21,22, ...,710) be standard coordinate system of R0,
Taking
P(.ZU z ) _ O'.I‘l,(]. —U)x27(1_0)$3,(1_0)1§4,(1 —O'){IJ5,
Ly 10 (]- - U)xﬁv oxy, (1 - U)x87 (1 - 0-)"1:97 (]‘ - ‘7)3310

then P is a golden structure on RZ.
Assume that M is a submanifold of R1" given by

r1 =27 =w!', T3 =o0cosaw’ +cosaw’, z3 = ow?

x4 = ow3, x5 =ow?, xg=0sinaw’® + sin aw’,

g = (1—0)w?, z9g=(1-0)w? z10=(1-o0)w
Then TM = Sp{Zl, ZQ, Zg, Z4, Z5, ZG}, where
leaileraim, ZQZU%Jr(l*O')%

87

Zy =050+ (1—0)g, Zi=oz+(1—0)52

0x10”

o) o)
Z5—Ucosa6 +asmaa Zg—cosoz(9 +smaa

Thus, RadT'M = Sp{Z,} and S(TM) Sp{Zg,Zg, Zy, Zs, Zg} and ltr(TM) is spanned
by
1, 0 0

S(TM+) is spanned by

_ ls) 2 0 _ o) 2 0
Wwh ~ D23 + (1 — U) Jzn” Wy ~ 9z + (1 —U) Jrg’
_ o) 2 0
W3__815+(1_O-) Fr10

It follows that PZ; = oZy, which implies that RadT M is invariant. Also, we can state
that D = {Zy, Z3, Z4} such that PZy = Wi, PZy = Wa, PZy = Ws, which gives D is
anti-invariant and D = {Zs, Zg} is a slant distribution with slant angle 2c. Therefore M
is a screen pseudo-slant lightlike submanifold of R1.

For any vector field U € I'(T'M) tangent to M, we take
PU = RU +1TU, (3.2)
where RU and TU are the tangent1al and the transversal part of PU, respectively. We
denote the projections on Radl M, D and D in TM by Ri, R2, and Rj, respectlvely
Similarly, we show that the projections of tr(TM) on ltr(TM), P(D) and D by Q1, Qo,
and Qog, respectively, where D is a non-degenerate orthogonal complementary subbundle
of P(D) in S(TM™). So, for any U € I'(TM), we have
U=RU+ RU + R3U. (3.3)
Applying P to (3.3), we get
PU = PR\U + PRyU + PR3U,
which yields
PU = PR1U + PRyU +wR3U + TR3U, (3.4)
where wR3U and T R3U denotes the tangential and the transversal component of PR3U.
So, we arrive at
PRU € I'(RadTM), PRyU e T'(P(D)) c S(TM*1),
wR3U € T'(D), TR3U € T(D).
Also, for any W € T'(tr(T'M)), we get
W = fiW + oW + f3W. (3.5)
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Applying P to (3.5), we have
PW =PfW + PfoW + PfsW,
which yields
PW = PHW + PfaW + BfsW + CfsW, (3.6)

where BfsW and C'f3W denotes the tangential and the transversal component of P f3W.
Thus we get

A

PHW e T(itr(TM)), PfW eI'(D),
BfsW € T'(D), CfsW e I'(D).
Now, using (3.4) and (3.6) with (2.7)~(2.9), we obtain following;
V*UtPRlv + Rl(vUU}RgV) = RI(ATRg\/U) + Rl(ApR2vU)

+PRVyY, (3.7)

Ro(App,vU) + R2(ApR,yU) + Re(ATR,vU) = Ra(VywR3V)
_Pfth(U7 V)v (38)

R3(App,vU) + Rs(Apgr,vU) + R3(Arg,vU) = Rs(VywRsV)
—wR3(VyV) — Bfsh®(U,V),(3.9)
KU, PRV) + D' (U, PRyV) + hY(U,wR3V) + D'(U,TR3V) = PR'(U,V),  (3.10)

FfVE PRV + f2V5 TRV = PRyVyV — fo2h* (U, PR,V)
— foh®(U,wR3V), (3.11)

£V PRV + 3V TRV — TRsVyV = Cfsh®(U, V) — f3h*(U,wRsV)
— f3h*(U, PR{V). (3.12)

4. Main theorems
In this section, we give the main results of our article.

Theorem 4.1. Let M be a screen pseudo-slant lightlike submanifold of a golden semi-
Riemannian manifold M. Then the distribution RadT M is integrable if and only if, for
all E1,Ey € T'(RadT M),
i) foh®(E2, PR1E1) = foh®(Er, PR1Ey),
ii) f3h®(E2, PR1E1) = f3h®(Ey, PR1Ey),
iii) R3App g, Bo = R3App g, E1.

Proof. Assume that M is a screen pseudo-slant lightlike submanifold of a golden semi-
Riemannian manifold M and Ey, Es € T'(RadTM).
i) In view of (3.11), we get

PRV g, Ey = foh®(Ey, PR1E3). (4.1)
Interchanging E; to Es, we obtain
PRV, E = foh®(Ea, PR1EY). (4.2)

From (4.1) and (4.2), we obtain
PRy[Eq, Eo] = fa(h®*(E1, PR1E2) — h*(Es, PRy EY)).
i1) Similarly, by the use of (3.12), we have
f3h*(By, PRy Ey) = Cf3h*(Ey, Es) + TR3V g, Bs, (4.3)
from which we get
fsh*(Ba, PR1EY) = Cfsh*(Ey, Ey) + TR3V i, . (4.4)
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From (4.3) and (4.4), we find
TRs[Ey, Es] = f3(h*(E1, PR\ Es) — h*(Es, PR Ey)).
i1i) Moreover, from (3.9), we have

R3(ApR, g, E2) = —wR3VE, Ey — Bfsh®(Ey, Es), (4.5)
from which, we get

R3App 5, By = —wR3V i, By — Bfsh®(Ea, Ey). (4.6)
From (4.5) and (4.6), we obtain

wRs[Ey, Es| = R3(App, g, E2) — R3(Apr, g, E1).
So, we arrive at the required equations. [l

Theorem 4.2. Let M be a screen pseudo-slant lightlike submanifold of a golden semi-
Riemannian manifold M. Then the distribution D is integrable if and only if, for all
UV el'(D),

i) Ri(Apr,uV) = Ri(Appy,vU) and R3(Apr,uV) = R3(App,vU),
ii) f3(V{, PRoU) = f3(Vi;PRyV).

Proof. Assume that M is a screen pseloldo-slant lightlike submanifold of a golden semi-
Riemannian manifold M and U,V € I'(D).
i) By the use of (3.7), we get

Ri(Apr,uV) =—-PRVyV. (4.7)
Interchanging U and V', we have
Ri(Apgr,vU) =—-PR;VyU. (4.8)
From (4.1) and (4.2), we obtain
Ri(Apr,uV) — Ri(Apr,vU) = PRy[U,V].
In view of (3.9), we get
R3(AprouV) + Bfsh®(U, V) = —wR3(VuyV),
from which we have
R3(Apr,uV) — R3(Apr,vU) = wRs[U, V].
i1) Moreover, using (3.12), we have
[V PRV + Cfsh*(U,V) = TR3VyV,
from which, we arrive at
fsVi PRV — fsVi,PRoU = TR3[U, V.
Thus, we obtain the desired results. ]

Theorem 4.3. Let M be a screen pseudo-slant lightlike submanifold of a golden semi-
Riemannian manifold M. Then the distribution D 1is integrable if and only if, for all
UV eT'(D),

i) Ri(VywR3V — VywR3U) = Ri(Arr,vU — ArryuV),
ii) fo(VE TRV — Vi TR3U) = fo(h*(V,wRsU) — h*(U, wR3V')).
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Proof. Assume that M is a screen psetAldo—slant lightlike submanifold of a golden semi-
Riemannian manifold M and U,V € I'(D).
i) If we consider (3.7), we have

Ry (VUZUR;J,V) =R; (ATgst) + PR{VyV. (4.9)
Interchanging U and V', we have
Ri(VywR3U) = RI(ATR3UV) + PR VyU. (4.10)

In view of (4.9) with (4.10), we find
Ri(VywR3V — VywR3U) — Ri(Arr,vU — Arr,uV) = PRy [U, V.
i1) Also, using (3.11), we get

foVETR3V + foh®(U,wRsV) = PRaVyV,

with
foVyTR3U + foh®(V,wRsU) = PRV U.

From last two equations, we arrive at

fo(VETR3V — Vi TR3U) + fo(h*(U,wR3V) — h*(V,wR3U)) = PRy[U, V].
So, we obtain the required results. ]

Now, we find some conditions for foliations determined by distributions to be totally
geodesic.

Theorem 4.4. Let M be a screen pseudo-slant lightlike submanifold of a golden semi-
Riemannian manifold M. Then the distribution RadT M defines a totally geodesic foliation
if and only if

G(DY(Ey, Ry Z) + DY(Ey,TR3Z), PEy) = —g(h'(E1,wR3Z), PEy),
for all Ey,Ey € I'(RadT' M) and Z € T'(S(TM)).
Proof. Let M be a screen pseudo-slant lightlike submanifold of a golden semi-Riemannian
manifold M. We know that RadT M defines a totally geodesic foliation if and only if

VElEQ € F(RadTM),

for all £y, Ey € T'(RadT M).
Because of V is a metric connection, by the use of (2.7), (2.19) with (3.4), we have

§(Vi,E2,Z) = G(PV g, Es, PZ) — §(PVp, B3, 7).
So, we get
9(Vp By, Z) = §(Ve,PEy, PZ)—§(Vp PEy, Z)
= g(Vg,PR2Z, PE) + §(VE,wR3Z, PE>)
+§(VE, TR3Z, PEs) — g(Vg, PRy Z, Es)
~g(VE,wR3Z, PEy) — g(VE, TR3Z, F)
= g(D'(Ey, PRyZ), PEy) + g(h'(Ey,wRsZ), PE>)
+9(D'(B1, TR3Z), PEs) — §(D'(E1, PReZ), E)
—g(h(B1,wR3Z), Fa) — g(D'(E1, TR3Z), Es).
In view of last equation, we get the proof of theorem. O
Theorem 4.5. Let M be a screen pseudo-slant lightlike submanifold of a golden semi-

Riemannian manifold M. Then the distribution D defines a totally geodesic foliation if
and only if

i) g(h*(U,wZ),PV) = —g(V§TZ,PV), and h*(U, Z) € T(D),
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1) D*(U, PN) has no component in P(D) and D3(U, N) € T'(D),
for all U,V € T(D) and Z € T(D) and N € T(itr(TM)).

Proof. Let M be a screen pse;udo—slant lightlike submanifold of a golden semi-Riemannian
manifold M. We know that D defines a totally geodesic foliation if and only if

VoV e T(D),

for all U,V € T(D).
By the use of (2.7) with (2.19), we have
g(VUV,Z) = —g(PVUZ,PV) +§(VUZ7PV)
= —g(VuPZ,PV)+g(VuZ,PV)
= G(W(U,wZ), PV) + §(V5TZ, PV)
+9(h*(U, Z), PV),
which gives (7).
Also, from (2.7) with (2.19), we get
9(VuV.Z) = —g(VuPN,PV)+g(VuN,PV)

which implies (ii). O

Theorem 4.6. Let M be a screen pseudo-slant lzghtlzke submanifold of a golden semi-
Riemannian manifold M. Then the distribution D defines a totally geodesic foliation if
and only if

i) ApzU has no component in D and V§,PZ € r'(D),
i) ApnU has no component in D and D*(U, PN) € D(D),

for all U,V € T'(D) and Z € T(D) and N € T(itr(TM)).

Proof. Let M be a screen pseudo-slant lightlike submanifold of a golden semi-Riemannian
manifold M. We know that D defines a totally geodesic foliation if and only if

VuV e (D),

for all U,V € T(D).
In view of (2.7) with (2.19), we have
9(VuV,2) = —g(VuPZ,PV)+g(VuPZV)
= g(ApzU,wV)+ g(VyPZ,TV)
+§(APZU3 V)7
which yields (7).
On the other hand, using (2.7) with (2.19), we get
9(VuV.Z) = —g(VuPN,PV)+g(VuN,PV)
= _g(APNUa wV) + g(DS(Ua PN)7 TV)
_g(APNU7 V))

which implies (i7). O
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