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Abstract

A rectifying curve γ in the Euclidean 3-space E3 is defined as a space curve whose position
vector always lies in its rectifying plane (i.e., the plane spanned by the unit tangent vector
field Tγ and the unit binormal vector field Bγ of the curve γ), and an f -rectifying curve γ in
the Euclidean 3-space E3 is defined as a space curve whose f -position vector γ f , defined
by γ f (s) =

∫
f (s)dγ , always lies in its rectifying plane, where f is a nowhere vanishing

real-valued integrable function in arc-length parameter s of the curve γ . In this paper, we
introduce the notion of f -rectifying curves which are null (lightlike) in the Minkowski
3-space E3

1. Our main aim is to characterize and classify such null (lightlike) f -rectifying
curves having spacelike or timelike rectifying plane in the Minkowski 3-Space E3

1.

1. Introduction

Let E3 denote the Euclidean 3-space. Let γ : I −→ E3 be a unit-speed curve parametrized by arc-length function s with at least
four continuous derivatives. Needless to mention, I denotes a non-trivial interval in R, i.e., a connected set in R containing at
least two points. For the curve γ in E3, we consider the Frenet apparatus {Tγ ,Nγ ,Bγ ,κγ ,τγ}, where Tγ is the unit tangent vector
field, Nγ is the unit principal normal vector field, Bγ = Tγ ×Nγ is the unit binormal vector field of the curve γ , and κγ : I −→ R
is a differentiable function with κγ > 0, known as the curvature of γ , and τγ : I −→ R is a differentiable function, called the
torsion of γ . Then the Serret-Frenet formulae for the curve γ are given by ([1]-[4]) T ′γ

N′γ
B′γ

=

 0 κγ 0
−κγ 0 τγ

0 −τγ 0

 Tγ

Nγ

Bγ

 .

The planes spanned by {Tγ ,Nγ}, {Nγ ,Bγ} and {Tγ ,Bγ} are called the osculating plane, the normal plane and the rectifying
plane of the curve γ , respectively ([2, 5]).

In the Euclidean 3-space E3, the notion of a rectifying curve was introduced by B.Y. Chen in [5] as a tortuous curve whose
position vector always lies in the rectifying plane of the curve. That is, for a rectifying curve γ : I −→ E3, the position vector
of γ can be expressed as

γ(s) = λ (s)Tγ(s)+µ(s)Bγ(s), s ∈ I,
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for two differentiable functions λ ,µ : I −→ R in arc-length parameter s of γ .

Several characterizations and classification of the rectifying curves in E3 were studied in [5]-[8]. Meanwhile the notion
of rectifying curves were extended to several sort of Riemannian and pseudo-Riemannian spaces. As for example, many
characterizations and classification of rectifying curves in the Minkowski 3-space E3

1 were studied in [9]-[11].

In this paper, we study null f -rectifying curves in the Minkowski 3-space E3
1. We organize this paper with three sections. In

the first section, we give some basic preliminaries and then introduce the notion of f -rectifying curves which are null (or
lightlike) in E3

1. Thereafter the second section is devoted to investigate some characterizations of null f -rectifying curves in E3
1.

In the concluding section, we classify null f -rectifying curves in terms of their f -position vectors in E3
1.

2. Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 equipped with the standard flat metric g (called the Lorentzian inner

product) defined by

g(v,w) = v1w1 + v2w2− v3w3

for all tangent vectors v = (v1,v2,v3) and w = (w1,w2,w3) to E3
1 (see [12, 13]). A tangent vector v to E3

1 is called a

spacelike vector if and only if g(v,v)> 0 or v = 0,
lightlike vector (null vector) if and only if g(v,v) = 0 and v 6= 0,
timelike vector if and only if g(v,v)< 0 ([12, 13]).

As usual, the norm of a tangent vector v to E3
1 is denoted and defined by ‖v‖=

√
|g(v,v)|. It is trivial to mention that a tangent

vector v to E3
1 is called a unit vector if and only if ‖v‖= 1, i.e., if and only if |g(v,v)|= 1, i.e., if and only if g(v,v) =±1.

Two tangent vectors v and w to E3
1 are said to be orthogonal if and only if g(v,w) = 0. For any two tangent vectors v and w to

E3
1, the vectorial product of v and w is defined by

v×w =

∣∣∣∣∣∣
e1 e2 −e3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣= (v2w3− v3w2)e1 +(v3w1− v1w3)e2 +(v2w1− v1w2)e3,

where ei = (δi1,δi2,δi3) for each i ∈ {1,2,3}, δi j =

{
1 if i = j,
0 if i 6= j

such that e1 × e2 = −e3, e2 × e3 = e1, e3 × e1 =

e2 ([12, 13]).

Let γ : I −→ E3
1 be a curve in E3

1 and γ ′ stands for its velocity vector field. The curve γ is said to be a spacelike curve, a
lightlike curve (null curve) or a timelike curve in E3

1 if and only if its velocity vector γ ′(t) is a spacelike vector, a lightlike
vector (null vector) or a timelike vector, respectively, for each t ∈ I. To elaborate, the curve γ in E3

1 is a

spacelike curve if and only if g(γ ′(t),γ ′(t))> 0 or γ ′(t) = 0,
lightlike curve (null curve) if and only if g(γ ′(t),γ ′(t)) = 0 and γ ′(t) 6= 0,
timelike curve if and only if g(γ ′(t),γ ′(t))< 0

for all t ∈ I (see [12, 13]). Thus, the curve γ is said to be a non-null curve in E3
1 if and only if it is either a spacelike curve or a

timelike curve in E3
1, i.e., if and only if g(γ ′(t),γ ′(t)) 6= 0 for all t ∈ I. If γ is a non-null (spacelike or timelike) curve in E3

1
and we change the parameter t by the function s = s(t) given by s(t) =

∫ t
0 ‖γ ′(u)‖ du such that ‖γ ′(s)‖=

√
|g(γ ′(s),γ ′(s))|=

1, i.e., g(γ ′(s),γ ′(s)) =±1 for all s ∈ I, then the non-null curve γ is said to be parametrized by arc-length function s or a unit-
speed non-null curve in E3

1. Again, if γ is a null (lightlike) curve in E3
1 and we change the parameter t by the function s = s(t)

given by s(t) =
∫ t

0

√
‖γ ′′(u)‖du such that g(γ ′′(s),γ ′′(s)) = 1 for all s ∈ I, then the null curve γ is said to be parametrized by

pseudo arc-length function s or a unit-speed null curve in E3
1.

Let γ : I −→ E3
1 be a unit-speed null or non-null curve in the Minkowski 3-space E3

1 parametrized by arc-length function or
pseudo arc-length function s with Frenet apparatus {Tγ ,Nγ ,Bγ ,κγ ,τγ}, where {Tγ ,Nγ ,Bγ = Tγ ×Nγ} is the dynamic Frenet
frame along the curve γ in E3

1 and κγ , τγ are two differentiable functions in the parameter s called, respectively, the curvature
and the torsion of the curve γ in E3

1. Then to write the Serret-Frenet formulae for the curve γ the following mutually distinct
cases come up for consideration:

Case I: Let γ be a spacelike curve with a spacelike principal normal Nγ in E3
1. Then the Serret-Frenet formulae for the curve

γ are given by  T ′γ
N′γ
B′γ

=

 0 κγ 0
−κγ 0 τγ

0 τγ 0

 Tγ

Nγ

Bγ

 ,
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where g
(
Tγ(s),Tγ(s)

)
= 1, g

(
Nγ(s),Nγ(s)

)
= 1, g

(
Bγ(s),Bγ(s)

)
= −1, g

(
Tγ(s),Nγ(s)

)
= 0, g

(
Tγ(s),Bγ(s)

)
= 0,

g
(
Nγ(s),Bγ(s)

)
= 0 for all s ∈ I.

Case II: Let γ be a spacelike curve with a timelike principal normal Nγ in E3
1. Then the Serret-Frenet formulae for the curve

γ are given by  T ′γ
N′γ
B′γ

=

 0 κγ 0
κγ 0 τγ

0 τγ 0

 Tγ

Nγ

Bγ

 ,

where g
(
Tγ(s),Tγ(s)

)
= 1, g

(
Nγ(s),Nγ(s)

)
= −1, g

(
Bγ(s),Bγ(s)

)
= 1, g

(
Tγ(s),Nγ(s)

)
= 0, g

(
Tγ(s),Bγ(s)

)
= 0,

g
(
Nγ(s),Bγ(s)

)
= 0 for all s ∈ I.

Case III: Let γ be a spacelike curve with a null principal normal Nγ in E3
1. Then the Serret-Frenet formulae for the curve γ

are given by  T ′γ
N′γ
B′γ

=

 0 κγ 0
0 τγ 0
−κγ 0 −τγ

 Tγ

Nγ

Bγ

 ,

where g
(
Tγ(s),Tγ(s)

)
= 1, g

(
Nγ(s),Nγ(s)

)
= 0, g

(
Bγ(s),Bγ(s)

)
= 0, g

(
Tγ(s),Nγ(s)

)
= 0, g

(
Tγ(s),Bγ(s)

)
= 0,

g
(
Nγ(s),Bγ(s)

)
= 1 for all s ∈ I. In this case, κγ can take only two values: κγ = 0 if γ is a straight line and κγ = 1 in the

remaining cases.

Case IV: Let γ be a timelike curve in E3
1. Then the Serret-Frenet formulae for the curve γ are given by T ′γ
N′γ
B′γ

=

 0 κγ 0
κγ 0 τγ

0 −τγ 0

 Tγ

Nγ

Bγ

 ,

where g
(
Tγ(s),Tγ(s)

)
= −1, g

(
Nγ(s),Nγ(s)

)
= 1, g

(
Bγ(s),Bγ(s)

)
= 1, g

(
Tγ(s),Nγ(s)

)
= 0, g

(
Tγ(s),Bγ(s)

)
= 0,

g
(
Nγ(s),Bγ(s)

)
= 0 for all s ∈ I.

Case V: Let γ be a null (lightlike) curve in E3
1. Then the Serret-Frenet formulae for the curve γ are given by T ′γ

N′γ
B′γ

=

 0 κγ 0
τγ 0 −κγ

0 −τγ 0

 Tγ

Nγ

Bγ

 , (2.1)

where g
(
Tγ(s),Tγ(s)

)
= 0, g

(
Nγ(s),Nγ(s)

)
= 1, g

(
Bγ(s),Bγ(s)

)
= 0, g

(
Tγ(s),Nγ(s)

)
= 0, g

(
Tγ(s),Bγ(s)

)
= 1,

g
(
Nγ(s),Bγ(s)

)
= 0 for all s ∈ I. In this case, κγ can take only two values: κγ = 0 if γ is a straight null line and κγ = 1 in the

remaining cases.

The two-dimensional pseudo-Riemannian sphere of unit radius and centred at the origin in E3
1 is denoted and defined by

S2
1(1) :=

{
v ∈ E3

1 : g(v,v) = 1
}
,

and the two-dimensional pseudo-hyperbolic space of unit radius and centred at the origin in E3
1 is denoted and defined by

H2
0(1) :=

{
v ∈ E3

1 : g(v,v) =−1
}
.

For more elaborations of the above discussion please see [9]-[13].

An arbitrary plane π in E3
1 is spacelike, timelike or lightlike if the induced Lorentzian metric g|π is respectively positive

definite, non-degenerate of index 1, or degenerate. A unit-speed null curve γ : I −→ E3
1 parametrized by pseudo arc-length

function s is called a rectifying curve in E3
1 if its position vector always lies in its rectifying plane in E3

1, i.e., if its position
vector γ in E3

1 can be expressed as

γ(s) = λ (s)Tγ(s)+µ(s)Bγ(s), s ∈ I,

for some differentiable functions λ ,µ : I −→ R in pseudo arc-length parameter s of γ . Now, for some non-zero integrable
function f : I −→ R in pseudo arc-length function s, the f -position vector of the curve γ in E3

1 is denoted by γ f and is defined
by

γ f (s) :=
∫

f (s) dγ

for all s ∈ I. Keeping in mind this notion of position vector of a curve in E3
1, we define a null f -rectifying curve in E3

1 as
follows:
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Definition 2.1. (Null f -Rectifying Curve) Let γ : I −→E3
1 be a unit-speed null curve in E3

1 parametrized by pseudo arc-length
function s with Frenet apparatus {Tγ ,Nγ ,Bγ ,κγ ,τγ}, and let f : I −→ R be a nowhere vanishing integrable function in pseudo
arc-length parameter s. The curve γ is called an f -rectifying curve in E3

1 if its f -position vector γ f =
∫

f dγ always lies in its
rectifying plane in E3

1, i.e., if its f -position vector γ f =
∫

f dγ in E3
1 can be expressed as

γ f (s) =
∫

f (s) dγ = λ (s)Tγ(s)+µ(s)Bγ(s), s ∈ I,

for two differentiable functions λ ,µ : I −→ R in pseudo arc-length parameter s.

In the next section, we shall see that if the function f vanishes on I, then the ratio
τγ

κγ

for the curve γ in E3
1 is constant, and

hence it becomes a helix in E3
1. This is why we have taken here the function f as nowhere vanishing integrable function on I.

And if the function f is a non-zero constant on I, then the ratio
τγ

κγ

for the curve γ in E3
1 is a non-constant linear function in

pseudo arc-length parameter s, and hence it reduces to a rectifying curve in E3
1.

3. Characterizations of null f -rectifying curves in the Minkowski 3-space E3
1

First, we mention (and then prove) a theorem in which we characterize unit-speed null (lightlike) f -rectifying curves in the
Minkowski 3-space E3

1 in terms of the norm functions, tangential components and binormal components of their f -position
vectors.

Theorem 3.1. Let γ : I −→ E3
1 be a unit-speed null f -rectifying curve in E3

1 parametrized by pseudo arc-length function s with
the curvature function κγ ≡ 1 and the torsion function τγ , and let f : I −→ R be a nowhere vanishing integrable function in
pseudo arc-length parameter s with primitive function F. Then the following statements hold:

1. The norm function ρ = ‖γ f ‖ is given by

ρ(s) =
√
|2cF(s)|

for all s ∈ I, where c is a non-zero constant.
2. The tangential component g(γ f ,Tγ) of the f -position vector γ f of the curve γ is a non-zero constant.
3. The torsion function τγ is non-zero, and the binormal component g(γ f ,Bγ) of the f -position vector γ f of the curve γ is

given by

g
(
γ f (s),Bγ(s)

)
= F(s) =

∫
f (s)ds

for all s ∈ I.

Conversely, if f : I −→ R is a nowhere vanishing integrable function in pseudo arc-length function s with primitive function F,
and if γ : I −→ E3

1 is a unit-speed null curve in E3
1 and with the curvature function κγ ≡ 1 and the torsion function τγ , and any

one of the statements 1, 2 or 3 holds, then γ is an f -rectifying curve in E3
1.

Proof. Let us first assume that γ : I −→ E3
1 be a unit-speed null f -rectifying curve in E3

1 parametrized by pseudo arc-length
function s with the curvature function κγ ≡ 1 and the torsion function τγ , where f : I −→ R is a nowhere vanishing integrable
function in pseudo arc-length parameter s with primitive function F . Then the f -position vector γ f of the curve γ can be
expressed as

γ f (s) =
∫

f (s) dγ = λ (s)Tγ(s)+µ(s)Bγ(s), s ∈ I, (3.1)

for two derivable functions λ ,µ : I −→ R in pseudo arc-length parameter s. Differentiating both the sides of the equation (3.1)
with respect to s and then applying the Serret-Frenet formulae (2.1), we obtain

f (s)Tγ(s) = λ
′(s)Tγ(s)+

(
λ (s)−µ(s)τγ(s)

)
Nγ(s)+µ

′(s)Bγ(s) (3.2)

for all s ∈ I. Equating the coefficients of like-terms from both the sides of equation (3.2), we find

λ
′(s) = f (s), λ (s)−µ(s)τγ(s) = 0, µ

′(s) = 0
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which implies 
λ (s) =

∫
f (s) ds = F(s) ,

τγ(s) =
λ (s)
µ(s)

,

µ(s) = a non-zero constant = c (suppose)

(3.3)

for all s ∈ I. We have the following:

1. Using the equation (3.1) and the relations (3.3), the norm function ρ = ‖γ f ‖ is given by

ρ
2(s) =

∥∥γ f (s)
∥∥2

=
∣∣g(γ f (s),γ f (s)

)∣∣= |2cF(s)|

for all s ∈ I. That is,

ρ(s) =
√
|2cF(s)|

for all s ∈ I, where c is a non-zero constant.
2. Using the equation (3.1) and the relations (3.3), the tangential component g(γ f ,Tγ) of the f -position vector γ f of γ is

given by

g
(
γ f (s),Tγ(s)

)
= µ(s) = c

for all s ∈ I. Hence, the tangential component g(γ f ,Tγ) of the f -position vector γ f of the curve γ is a non-zero constant.
3. From the relations (3.3) it is evident that τγ(s) 6= 0 for all s ∈ I. Using the equation (3.1) and the relations (3.3), the

binormal component g(γ f ,Bγ) of the f -position vector γ f of γ is given by

g
(
γ f (s),Bγ(s)

)
= λ (s) = F(s)

for all s ∈ I.

Conversely, we assume that f : I −→ R is a nowhere vanishing integrable function in pseudo arc-length function s with
primitive function F , and we also assume that γ : I −→ E3

1 is a unit-speed null (lightlike) curve in E3
1 and with the curvature

function κγ ≡ 1 and the torsion function τγ , and the statement 1 or 2 holds. For the statement 1, we have

g
(
γ f (s),γ f (s)

)
= 2cF(s) (3.4)

for all s ∈ I, where c is a non-zero constant. Differentiating both the sides of the equation (3.4), and using the relations
γ ′f (s) = f (s)Tγ(s) and F ′(s) = f (s) for all s ∈ I, we obtain

g
(
γ f (s),T (s)

)
= c (3.5)

for all s ∈ I. This is nothing but the statement 2. So, in either case, we find the equation (3.5). Now, differentiating both the
sides of the equation (3.5) with respect to s, and applying the relations γ ′f (s) = f (s)Tγ(s), T ′γ (s) = κγ(s)Nγ(s), κγ(s) = 1 and
g
(
Tγ(s),Tγ(s)

)
= 0 for all s ∈ I, we obtain

f (s) g
(
Tγ(s),Tγ(s)

)
+κγ(s) g

(
γ f (s),Nγ(s)

)
= 0

=⇒ g
(
γ f (s),Nγ(s)

)
= 0

for all s ∈ I. This asserts us that γ is an f -rectifying curve in E3
1.

Finally, we assume that the statement 3 holds. Then for all s ∈ I, we have

g
(
γ f (s),Bγ(s)

)
= F(s). (3.6)

Differentiating both the sides of the equation (3.6) with respect to s, and in virtue of the relations γ ′f (s) = f (s)Tγ(s), B′γ(s) =
−τγ(s)Nγ(s), τγ(s) 6= 0, g

(
Tγ(s),Bγ(s)

)
= 1 and F ′(s) = f (s) for all s ∈ I, we obtain

f (s)g
(
Tγ(s),Bγ(s)

)
− τγ(s)g

(
γ f (s),Nγ(s)

)
= f (s)

=⇒ g
(
γ f (s),Nγ(s)

)
= 0

for all s ∈ I. This asserts us that γ is an f -rectifying curve in E3
1.
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In the next theorem, we characterize a unit-speed null f -rectifying curve in the Minkowski 3-space E3
1 by virtue of the ratio

τγ

κγ

of the curvature function κγ and the torsion function τγ .

Theorem 3.2. Let γ : I −→ E3
1 be a unit-speed null curve in E3

1 parametrized by pseudo arc-length function s with the
curvature function κγ ≡ 1 and the torsion function τγ . Also, let f : I −→ R be a nowhere vanishing integrable function
in pseudo arc-length parameter s with primitive function F. Then, up to isometries of E3

1, the curve γ is congruent to an

f -rectifying curve in E3
1 if and only if the ratio

τγ

κγ

satisfies

τγ(s)
κγ(s)

=
1
c

F(s)

for all s ∈ I, where c is a non-zero constant.

Proof. Let us first assume that γ : I −→ E3
1 be a unit-speed null f -rectifying curve in E3

1 parametrized by pseudo arc-length
function s with the curvature function κγ ≡ 1 and the torsion function τγ , and f : I −→ R is a nowhere vanishing integrable
function in pseudo arc-length parameter s with primitive function F . Then from the second one of the relations (3.3), we have

τγ(s)
κγ(s)

=
λ (s)
µ(s)

=
1
c

F(s)

for all s ∈ I, where c is a non-zero constant.

Conversely, we assume that γ : I −→ E3
1 be a unit-speed null curve in E3

1 parametrized s with the curvature function κγ ≡ 1
and the torsion function τγ , where f : I −→R is a nowhere vanishing integrable function in pseudo arc-length parameter s with

primitive function F such that the ratio
τγ

κγ

is given by

τγ(s)
κγ(s)

=
1
c

F(s)

for all s ∈ I, where c is a non-zero constant. Then by applying the Serret-Frenet formulae (2.1), we obtain

d
ds

(
γ f (s)−F(s)Tγ(s)− cBγ(s)

)
= 0

for all s ∈ I. This proves that, up to isometries of E3
1, γ is an f - rectifying curve in E3

1.

Remark 3.3. Let γ : I −→ E3
1 be a unit-speed null curve in E3

1 parametrized by pseudo arc-length function s with curvature
function κγ ≡ 1 and the torsion function τγ . If the function f vanishes identically on I, then its primitive function F is a

constant on I. Hence, by the previous theorem, the ratio
τγ

κγ

for the curve γ in E3
1 is given by

τγ(s)
κγ(s)

=
1
c

F(s) = a constant

for all s ∈ I. Consequently, the curve γ reduces to becomes a helix in E3
1 ([1]).

Again, if the function f is a non-zero constant on I, then its primitive function F is given by

F(s) = c1s+ c2

for all s ∈ I, where c1 and c2 are constants. Hence, by the previous theorem, the ratio
τγ

κγ

for the curve γ in E3
1 is given by

τγ(s)
κγ(s)

=
1
c

F(s) =
1
c
(c1s+ c2) = as+b

for all s ∈ I, where a =
c1

c
(6= 0) and b =

c2

c
are constants. Thus, the ratio

τγ

κγ

is a non-constant linear function in pseudo

arc-length parameter s. Consequently, the curve γ reduces to a rectifying curve in E3
1 ([11]).
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4. Classification of null f -rectifying curves in the Minkowski 3-space E3
1

In this section, we determine explicitly all unit-speed null f -rectifying curves in the Minkowski 3-space E3
1 in terms of their

f -position vectors. The main theorem reads as follows:

Theorem 4.1. Let γ : I −→ E3
1 be a unit-speed null curve in E3

1 parametrized by pseudo arc-length function s and f : I −→ R
be a nowhere vanishing integrable function in s with primitive function F. Then γ is an f -rectifying curve in E3

1 having a
spacelike (or timelike) f -position vector γ f if and only if, up to a parametrization, its f -position vector γ f is given by

γ f (t) =
√

2cF(0) et y(t)

for all possible t, where c is a positive constant, F(0)> 0 and y = y(t) is a unit-speed timelike (respectively spacelike) curve
in the pseudo-sphere S2

1(1) (respectively the pseudo-hyperbolic space H2
0(1)).

Proof. First, we assume that γ is a unit-speed null f -rectifying curve in E3
1 having a spacelike f -position vector γ f , where

f : I −→ R is a nowhere vanishing integrable function in s with primitive function F . Then we have

g
(
γ f (s),γ f (s)

)
> 0, g

(
Tγ(s),Tγ(s)

)
= 0

for all s ∈ I, and from the proof of the Theorem 3.1, we obtain

ρ
2(s) =

∥∥γ f (s)
∥∥2

=
∣∣g(γ f (s),γ f (s)

)∣∣= 2cF(s), (4.1)

for all s ∈ I, where we may choose c as an arbitrary positive constant. Now, we define a curve y = y(s) by

y(s) :=
γ f (s)
ρ(s)

(4.2)

for all s ∈ I. Then we have

g(y(s),y(s)) =
g
(
γ f (s),γ f (s)

)
ρ2(s)

= 1, (4.3)

for all s ∈ I. Therefore, y = y(s) is a curve in the pseudo-sphere S2
1(1). Differentiating both the sides of the equation (4.3) with

respect to s, we obtain

g
(
y(s),y′(s)

)
= 0 (4.4)

for all s ∈ I. Now, from the equations (4.1) and (4.2), we find

γ f (s) = y(s)
√

2cF(s) (4.5)

for all s ∈ I. Differentiating both the sides of the equation (4.5) with respect to s, we get

f (s)Tγ(s) = y′(s)
√

2cF(s) +
c f (s)y(s)√

2cF(s)
, (4.6)

for all s ∈ I. From the equations (4.3), (4.4) and (4.6), we obtain

g
(
y′(s),y′(s)

)
=− f 2(s)

4F2(s)
(4.7)

for all s ∈ I. This indicates that y is a timelike curve. From the equation (4.7), we find∥∥y′(s)
∥∥=√|g(y′(s),y′(s))|= f (s)

2F(s)

for all s ∈ I. Let t be arc-length parameter of the curve y in S2
1(1) given by

t =
∫ s

0

∥∥y′(u)
∥∥du.

Then we obtain

t =
∫ s

0

f (u)
2F(u)

du

=⇒ t =
1
2

lnF(s)− 1
2

lnF(0)

=⇒ F(s) = F(0)e2t . (4.8)
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It is obvious that F(0)> 0. Substituting the result (4.8) in (4.5), we obtain the f -position vector of γ as follows:

γ f (t) = y(t)
√

2cF(0) e2t =
√

2cF(0) et y(t)

for all possible t, where c is a positive constant, F(0)> 0 and y = y(t) is a unit-speed timelike curve in the pseudo-sphere
S2

1(1).

Conversely, we assume that γ is a unit-speed null curve in E3
1 such that for some nowhere vanishing integrable function

f : I −→ R in s with primitive function F the f -position vector γ f of γ is given by

γ f (t) :=
√

2cF(0) et y(t) (4.9)

for all possible t, where c is a positive constant, F(0)> 0 and y = y(t) is a unit-speed timelike curve in the pseudo-sphere
S2

1(1). Since y = y(t) is a unit-speed timelike curve in the pseudo-sphere S2
1(1), we have g(y′(t),y′(t)) =−1, g(y(t),y(t)) = 1

and consequently g(y(t),y′(t)) = 0 for all t. Therefore, from the equation (4.9), we have

g
(
γ f (t),γ f (t)

)
= 2cF(0)e2t (4.10)

for all t. Now, we may reparametrize the curve γ by

t =
1
2
(lnF(s)− lnF(0)) ,

where s stands for arc-length parameter of γ . Then from (4.10), we have

g
(
γ f (s),γ f (s)

)
= 2cF(s)

for all s ∈ I. Therefore, the norm function ρ = ‖γ f ‖ is given by

ρ
2(s) =

∥∥γ f (s)
∥∥2

=
∣∣g(γ f (s),γ f (s)

)∣∣= |2cF(s)|

for all s ∈ I, that is,

ρ(s) =
√
|2cF(s)|

for all s ∈ I, where c is a positive constant. Therefore, by applying Theorem 3.1, we conclude the nature of γ as an f -rectifying
curve in E3

1.

The proof is analogous when γ is considered as a unit-speed null f -rectifying curve in E3
1 having a timelike f -position vector

γ f .

5. Conclusion

In this paper, we introduced the notion of null (lightlike) f -rectifying curves in the Minkowski 3-Space E3
1 for some nowhere

vanishing integrable function f : I −→ R in pseudo arc-length parameter s with primitive function F . Then we characterized
such curves in E3

1. In Theorem 3.1, we have shown that for a unit-speed f -rectifying curve γ in E3
1, the norm function of its

f -position vector γ f is expressed in terms of the primitive function F , the tangential component of its f -position vector γ f is a
non-zero constant and the binormal component of its f -position vector γ f is nothing but the primitive function F . Thereafter,
in Theorem 3.2, it is shown that for a unit-speed f -rectifying curve γ in E3

1, the ratio τγ

κγ
of the curvature function κγ and the

torsion function τγ is a non-zero constant multiple of the primitive function F . Finally, in Theorem 4.1, we classified all such
unit-speed null f -rectifying curves having spacelike or timelike f -position vectors in E3

1.

Acknowledgement

We would like to express our heartiest gratitude to Prof. Subenoy Chakraborty, Professor, Department of Mathematics,
Jadavpur University, INDIA, for guiding us with his pearls of wisdom during the preparation of this article. We are also
grateful to the anonymous honourable referees for their valuable time dedicated to this article and for their thorough comments
which helped to improve this article.

References

[1] A. Pressley, Elementary Differential Geometry, 2nd ed., Springer, 2010.
[2] M. P. do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition, Courier Dover Publications, 2016.
[3] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 2, 3rd ed., Publish or Perish, Houston, Texas, 1999.
[4] R. S. Millman, G. D. Parker, Elements of Differential Geometry, Prentice-Hall, Inc., New Jersey, 1977.



16 Fundamental Journal of Mathematics and Applications

[5] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110 (2003), 147–152.
[6] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math., 48 (2017), 209-214.
[7] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica, 33 (2005), 77-90.
[8] S. Deshmukh, B. Y. Chen, S. Alshamari, On rectifying curves in Euclidean 3-space, Turk. J. Math., 42 (2018), 609-620.
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