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Abstract

It is given a characterization of all solution of the matrix equation c1Q(n)
g(a1,b1)

+ c2Qm = Q(k)
g(a2,b2)

with unknowns c1,c2 ∈ C∗. Here the

matrix Q(l)
g(a,b), called an l-generalized Fibonacci Q-matrix, is defined by means of the Fibonacci Q-matrix, where l is an integer, and a,b∈R∗.
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1. Introduction and Preliminaries

It is a well known fact that the Fibonacci and generalized Fibonacci numbers have a very common usage in mathematics and applied sciences
(see, for example, [17], [18], and [20]). Also, Fibonacci sequences have amazing applications in coding, encryption, and decryption (see, for
example, [12], [16]). Besides these, Fibonacci numbers arise in the solution of many combinatorial problems, and they are extensively used
in many research areas such as architecture, nature, art, physics and engineering (see, for example, [8] and [17]. In addition, many authors
have been intensively studying these topics [2], [4], [6], [10–12], [14–16], [21–24]. In a word, there are so many works related to these
topics in the literature, for example, [1–24].

In this work, a special problem related to the Fibonacci and generalized Fibonacci numbers is considered. For this reason, it will be sufficient
to remind some concepts and some results without proof to be used in the work.

The Fibonacci sequence is defined by the initial conditions F0 = 0 and F1 = 1, and the recurrence relation Fn = Fn−1 +Fn−2 for n≥ 2 (see,
for example, [3], [20]).
There is the relation

F−n = (−1)n+1Fn (1.1)

for all integers n≥ 1 between the Fibonacci numbers and the Fibonacci numbers with negative subscripts [18]. In addition, the identity

Fm+n+1 = Fm+1Fn+1 +FmFn (1.2)

holds for all n,m ∈ Z [20].
On the other hand, the identity

FaFb−FcFd = (−1)r(Fa−rFb−r−Fc−rFd−r) (1.3)

is well known, where a,b,c and d are integers with a+b = c+d [9].
The sequences, called as generalized Fibonacci sequences, were defined in several ways by different authors. For example, the sequence
defined as

Hn = Hn−1 +Hn−2 for n≥ 3 H1 = p, H2 = p+q
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is said to be generalized Fibonacci number sequence, where p, q are any integers [1]. Similarly, Gupta et al. described the generalized
Fibonacci sequence as

Fk = pFk−1 +qFk−2

for integers k ≥ 2 together with the initial conditions F0 = a,F1 = b, where p, q, a, and b are positive integers [21].
By examining a number sequence that provides the Fibonacci recurrence relation but whose initial conditions are any two numbers, it can be
seen that this number sequence is directly related to the Fibonacci numbers: Let {Gn} be a sequence such that

Gn = Gn−1 +Gn−2 for n≥ 3

with G1 = a and G2 = b. The elements of this number sequence, clearly, are

a,b,a+b,a+2b,2a+3b,3a+5b, . . . .

This number sequence is called the generalized Fibonacci sequence. Looking at the coefficients, it is seen that they have an interesting pattern.
The coefficients of a and b are Fibonacci numbers. The elements of this sequence are determined by the formula Gn = aFn−2 +bFn−1 for
integers n≥ 3 [17].
From now on, the elements of generalized Fibonacci sequence defined as based on a and b, that is, the numbers Gn = aFn−2 +bFn−1, for the
sake of simplicity, will be denoted by G(n)

(a,b).
For all integers n, it was established the relation

Qn =

[
Fn+1 Fn
Fn Fn−1

]
(1.4)

between the matrix Q =

[
1 1
1 0

]
known as the Fibonacci Q-matrix in the literature and classical Fibonacci sequence {Fn} in [3]. For

detailed information about the Fibonacci Q-matrix, see, for example, [5].
According to this property, it is clear that, for all integers n,

aQn−2 +bQn−1 =

[
aFn−1 +bFn aFn−2 +bFn−1

aFn−2 +bFn−1 aFn−3 +bFn−2

]
with a,b ∈ R∗. For the sake of simplicity, throughout the work, we will call this matrix as n-generalized Fibonacci Q-matrix, and denote it
by Q(n)

g(a,b).

2. Being a Matrix Q(k)
g(a2,b2)

of Linear Combination of a Matrix Q(n)
g(a1,b1)

and a Matrix Qm

Let’s consider the problem of characterizing the linear combination of the matrices Q(n)
g(a1,b1)

and Qm as a matrix Q(k)
g(a2,b2)

, where n, m, and k
are integers, c1, c2 are unknowns, and ai,bi ∈ R∗, i = 1,2:

c1Q(n)
g(a1,b1)

+ c2Qm = Q(k)
g(a2,b2)

(2.1)

It is clear that this matrix equation leads to the linear equations system

c1(a1Fn−2 +b1Fn−1)+ c2Fm = a2Fk−2 +b2Fk−1
c1(a1Fn−3 +b1Fn−2)+ c2Fm−1 = a2Fk−3 +b2Fk−2

(2.2)

in the variables c1 and c2. The determinant of the coefficients matrix of the system (2.2) is∣∣∣∣ a1Fn−2 +b1Fn−1 Fm
a1Fn−3 +b1Fn−2 Fm−1

∣∣∣∣= (−1)n(−a1Fm−n+2 +b1Fm−n+1). (2.3)

The determinant (2.3) is zero if a1Fm−n+2 = b1Fm−n+1. Otherwise, it is not zero. If the determinant is not zero, then it is obvious that the
matrix equation (2.1) has the unique solution

c1 =
(−1)k−n(−a2 Fm−k+2+b2Fm−k+1)

−a1Fm−n+2+b1Fm−n+1
and c2 =

−a1G(k−n+2)
(a2 ,b2)

+b1G(k−n+1)
(a2 ,b2)

−a1Fm−n+2+b1Fm−n+1
.

Now, let a1Fm−n+2 = b1Fm−n+1. In this case, it must be m−n 6=−2. Otherwise, we get the contradiction b1 = 0. Hence a1 =
b1Fm−n+1
Fm−n+2

is
obtained. Thus, the augmented matrix of the linear equations system (2.2) is obtained as[ b1(Fm−n+1Fn−2+Fn−1Fm−n+2)

Fm−n+2
Fm a2Fk−2 +b2Fk−1

b1(Fm−n+1Fn−3+Fn−2Fm−n+2)
Fm−n+2

Fm−1 a2Fk−3 +b2Fk−2

]
.

To rearrange this matrix considering the equality (1.2) leads to the augmented matrix[
b1Fm

Fm−n+2
Fm a2Fk−2 +b2Fk−1

b1Fm−1
Fm−n+2

Fm−1 a2Fk−3 +b2Fk−2

]
. (2.4)
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Now, let us first assume that m 6= 0. Then it is clear that the matrix in (2.4) is row equivalent to the matrix b1Fm
Fm−n+2

Fm a2Fk−2 +b2Fk−1

0 0
(−1)m−1G(k−m)

(a2 ,b2)
Fm


in view of the equality (1.3). Hence, if G(k−m)

(a2,b2)
6= 0, then there is no solution of the system (2.2). Thus, for the equation system to

have a solution, it must be G(k−m)
(a2,b2)

= a2Fk−m−2 +b2Fk−m−1 = 0, or equivalently, k−m 6= 2. Otherwise, we get the contradiction b2 = 0.
Consequently, we obtain the general solution as

(c1,c2) =

(
t,−b2(−1)k−m

Fk−m−2
− tb1

Fm−n+2

)
, t ∈ R∗

taking (1.3) into account.
Next, if m = 0, then the augmented matrix (2.4) turns into the matrix[

0 0 a2Fk−2 +b2Fk−1
b1

F2−n
1 a2Fk−3 +b2Fk−2

]
.

According to this, in case a2Fk−2 + b2Fk−1 6= 0 , there is no solution of the matrix equation (2.1). So, let us consider the case a2Fk−2 +
b2Fk−1 = 0. In this case, it is obvious that k 6= 2. Otherwise, the contradiction b2 = 0 is obtained. Thus, we get the general solution of the
matrix equation (2.1) as

(c1,c2) =

(
t,−b2(−1)k

Fk−2
− tb1

F2−n

)
, t ∈ R∗

taking (1.3) into account. So, we have proved the following theorem.

Theorem 2.1. Consider the matrix equation

c1Q(n)
g(a1,b1)

+ c2Qm = Q(k)
g(a2,b2)

, (2.5)

where n, m, and k are integers, c1,c2 ∈ C∗ are unknowns, and ai,bi ∈ R∗, i = 1,2. Then, the following statements are true.

(i) If a1Fm−n+2 6= b1Fm−n+1, then the matrix equation (2.5) has a unique solution such that c1 =
(−1)k−n(−a2 Fm−k+2+b2Fm−k+1)

−a1Fm−n+2+b1Fm−n+1
and

c2 =
−a1G(k−n+2)

(a2 ,b2)
+b1G(k−n+1)

(a2 ,b2)
−a1Fm−n+2+b1Fm−n+1

.

(ii) If a1Fm−n+2 = b1Fm−n+1, then the matrix equation (2.5) has no solution for G(k−m)
(a2,b2)

6= 0, and has finitely many solution such that

(c1,c2) =

(
t,− b2(−1)k−m

Fk−m−2
− tb1

Fm−n+2

)
, t ∈ R∗, provided however that G(k−m)

(a2,b2)
= 0.

Example 2.2. The following three cases illustrate Theorem 2.1.

1. Let a1 = 5,b1 = 7,a2 = 3,b2 = 4,m = 7,n = 5,k = 4. Since 5F4 6= 7F3 , according to (i) of Theorem 2.1, it is obtained c1 =−3 and
c2 = 8. In fact, it is obvious that c1 and c2 satisfy the equality

c1Q(5)
g(5,7)+ c2Q7 = Q(4)

g(3,4)

that is, the equality

c1

[
50 31
31 19

]
+ c2

[
21 13
13 8

]
=

[
18 11
11 7

]
.

2. Let a1 = 6,b1 = 9,a2 = 3,b2 = 4,m = 7,n = 5,k = 4. Since 6F4 = 9F3 and G(−3)
(3,4) = 3F−5 +4F−4 6= 0 (in view of (1.1)), there is no

solution of the system (2.1) according to (ii) of Theorem 2.1. In fact, it is obvious that there is no solution of the matrix equation

c1Q(5)
g(6,9)+ c2Q7 = Q(4)

g(3,4),

or equivalently, the matrix equation

c1

[
63 39
39 24

]
+ c2

[
21 13
13 8

]
=

[
18 11
11 7

]
.

3. Let a1 = 6,b1 = 9,a2 = 1,b2 = 2,m = 7,n = 5,k = 6. Since 6F4 = 9F3 and G(−1)
(1,2) = F−3 +2F−2 = 0 (in view of (1.1)), according to

(ii) of Theorem 2.1, the general solution of the system (2.1) is obtained as (c1,c2) = (t,1−3t), t ∈ R∗. In fact, it is clearly seen that
the matrix equation

c1Q(5)
g(6,9)+ c2Q7 = Q(6)

g(1,2),

or equivalently the matrix equation

c1

[
63 39
39 24

]
+ c2

[
21 13
13 8

]
=

[
21 13
13 8

]
has the general solution such that (c1,c2) = (t,1−3t), t ∈ R∗.
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NOTE. In case a1 = b1, a2 = b2, the matrix equation (2.1) turns into the matrix equation d1Qn +d2Qm = Qk. So, it this case, the problem
considered in this work is reduced to the problems handled in [6] and [15]. Therefore, the problem discussed here can be considered as, in a
sense, a generalization of the problems dealt with in [6] and [15]. On the other hand, in case a2 = b2, the matrix equation (2.1) turns into the
matrix equation e1Q(n)

g(a1,b1)
+ e2Qm = Qk. Notice that by using Theorem 2.1, we can have an idea about the solutions of the latter matrix

equation.
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