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On the structure of finite groups with the given
numbers of involutions

N. Ahanjideh∗ and M. Foroudi Ghasemabadi†

Abstract
Let G be a finite non-solvable group. In this paper, we show that if
1/8 of elements of G have order two, then G is either a simple group
isomorphic to PSL2(q), where q ∈ {7, 8, 9} or G ∼= GL2(4).Z2. In fact
in this paper, we answer Problem 132 in [1].
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1. Introduction
An involution in a group G is an element of order two. For a finite group G, let T (G)

denote the set of involutions of a group G, t(G) = |T (G)| and let t0(G) = t(G)/|G|. It is
an elementary fact in group theory that a group G in which all of its non-identity elements
have order two, is abelian. We can also see that every finite group which at least 3/4 of
its elements have order two is abelian. But this result can not be extended for the case
t0(G) < 3/4. So finding the structure of the finite groups according to the number of their
involutions can be an interesting question. This problem has received some attention in
existing literature. For instance, Wall [8] classified all finite groups in which more than
half of the elements are involutions.After that, Berkovich in [1] described the structure of
all finite non-solvable groups which at least 1/4 of its elements have order two. Also, in
addition to classifying all finite groups G with t0(G) = 1/4, he put forward he following
problem (Problem 132 in [1]):
Problem. What is the structure of finite groups G with t0(G) = 1/8?
In this paper, we show that:
Main Theorem. If G is a finite non-solvable group with t(G) = |G|/8, then either G is
a simple group isomorphic to PSL2(q), where q ∈ {7, 8, 9} or G ∼= GL2(4).Z2.
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Actually, in [4], Davoudi Monfared has shown that the non-abelian finite simple group
G with t0(G) = 1/8 is isomorphic to PSL2(q), where q ∈ {7, 8, 9}. In [4], the author
has completed the proof using the simplicity of the considered groups. In this paper, we
prove the main theorem using the classification of groups with given 2-Sylow subgroups
of order 8 and the relation between the set of involutions of the given group and its
normal subgroups.

2. Notation and preliminary results
Throughout this paper, we use the following notation: for a finite group G, by O(G)

and O′(G) we denote the maximal normal subgroup of odd order in G and the maximal
normal subgroup of odd index in G, respectively. Also, the set of all p-Sylow subgroups
of G is denoted by Sylp(G), and the set of all involutions of G by T (G). The p-part of
G, denoted by |G|p, is the order of any P ∈ Sylp(G). We indicate by np(G) the number
of p-Sylow subgroups of G. Let t(G) = |T (G)| and let t0(G) = t(G)/|G|. It is evident
that for every finite group G, t0(G) < 1. If H ≤ G and x, g ∈ G, then for simplicity
of notation, we write Hg and xg instead of g−1Hg and g−1xg, respectively. All further
unexplained notation is standard and can be found in [3].

We start with some known facts about the structure of the finite group G with given
2-Sylow subgroups and some facts about the Frobenius groups:

2.1. Lemma. Let G be a finite group and S ∈ Syl2(G). Then:

(i) [7] If S is cyclic, then G is 2-nilpotent (i.e. G has a normal complement to a
2-Sylow subgroup). In particular, G is solvable.

(ii) [9] If S is abelian, then O′(G/O(G)) is a direct product of a 2-group and simple
groups of one of the following types:
(a) PSL2(2n), where n > 1;
(b) PSL2(q), where q ≡ 3 or 5 (mod 8) and q > 3;
(c) a simple group S such that for each involution J of S, CS(J) = 〈J〉 × R,

where R is isomorphic to PSL2(q), where q ≡ 3 or 5 (mod 8).
(iii) [7, P. 462] (The dihedral theorem) If S is a dihedral group, then G/O(G) is

isomorphic to one of the following groups:
(a) a 2-Sylow subgroup of G;
(b) the alternating group A7;
(c) a subgroup of Aut(PSL2(q)) containing PSL2(q), where q is odd.

In particular if G is simple, then G is isomorphic to either A7 or PSL2(q),
where q > 3 is odd.

(iv) [2] If G is a non-abelian simple group, S is an elementary belian group of order
q = 2n and for every x ∈ S − {1}, CG(x) = S, then G ∼= PSL2(q).

2.2. Remark. [7, P. 480] In Lemma 2.1(ii), for the simple groups of third type, Janko
and Thompson showed that q is either 5 or 32n+1. In the case where q = 5, R has been
shown to be a particular group of order 23.3.5.7.11.19, by Janko, which is named the
Janko group J1. If q = 32n+1, then there is one other infinite family of simple groups,
2G2(32n+1), for n > 0, discovered by Ree. It has been proved that these groups are the
only examples.

2.3. Lemma. [7, Theorem 3.1, P. 339] Let G be a Frobenius group with the kernel K
and the complement H. Then K is nilpotent. In particular, if |H| is even, then K is
abelian.

In 1993, Berkovich proved the following lemmas:



2.4. Lemma. [1] If G is a non-solvable group, then t0(G) ≥ 1/4 if and only if G =
PSL(2, 5)× E, where exp(E) ≤ 2;

In the following two lemmas, we collect some facts about finite groups and the number
of their involutions which are known and we just give hints of their proofs.

2.5. Lemma. Let G1 and G2 be two finite groups and let H be a normal subgroup of
G1. Then the following hold:

(i) t(G1 ×G2) = t(G1)t(G2) + t(G1) + t(G2);
(ii) if [G1 : H] is an odd number, then t(G1) = t(H);
(iii) if |G1| is even, then t(G1) is an odd number. In particular if t0(G1) = 1/8, then

|G1|2 = 8;
(vi) let x ∈ G1 and clH(x) = {h−1xh : h ∈ H}. Then |clH(x)| = [H : CH(x)].

Proof. Since T (G1 × G2) = {(x, y) : x ∈ T (G1), y ∈ T (G2)} ∪ {(x, 1) : x ∈ T (G1)} ∪
{(1, y) : y ∈ T (G2)}, the proof of (i) is straightforward. For the proof of (ii), it is easy to
see that if [G1 : H] is an odd number, then Syl2(G1) = Syl2(H) and hence, (ii) follows.
For the proof of (iii), since for every x ∈ G1 − T (G1), x and x−1 are distinct elements
in G1 − T (G1), and 1 ∈ G1 − T (G1), we deduce that |G1 − T (G1)| is an odd number
and hence, t(G1) = |G1| − |G1 − T (G1)| is an odd number, too. Also if t0(G1) = 1/8,
then |G1| = 8t(G1) and hence, |G1|2 = 8, so (iii) follows. It remains to prove (iv). We
can see that the function ϕ : {hCH(x) : h ∈ H} −→ clH(x) such that for every hCH(x),
ϕ(hCH(x)) = hxh−1 is a bijection and hence, |clH(x)| = [H : CH(x)], as claimed in
(iv). �

2.6. Lemma. Let G be a finite group with a normal subgroup H of odd order and
Ḡ = G/H. If by x̄, we denote the image of an element x of G in Ḡ, then we have the
following:

(i) For every involution x̄ ∈ T (Ḡ), there exists an involution y ∈ G such that x̄ = ȳ;
(ii) if H 6= 1 and P ∈ Syl2(G) is an abelian non-cyclic group or a dihedral group of

order 8, then t(Ḡ)|H| 	 t(G);
(iii) if clḠ(x̄1), ..., clḠ(x̄n) are distinct conjugacy classes of involutions in Ḡ, then we

can assume that x1, ..., xn are distinct involutions in G and there exist natural
number t1, ..., tn such that t1, ..., tn ≤ |H| and

∑n
i=1 |clḠ(x̄i)|ti = t(G).

Proof. For the proof of (i), it suffices to establish that for the case where x̄ is an arbitrary
element in T (Ḡ) and x is not an involution. Since x̄ ∈ T (Ḡ) and |H| is odd, we can see
that x2 ∈ H and O(x) = 2m, where m is an odd number greater than 1. Thus there exist
the integer numbers r and s = 2k+1 (for some integer k) such that 2r+sm = 1 and hence,
x = (x2)r(x2)mkxm, which implies that x̄ = x̄m and hence, (i) follows, because y = xm

is an involution in G. For the proof of (ii), suppose, contrary to our claim, that t(G) ≥
t(Ḡ)|H|. A routine argument shows that T (G) = {xh : x̄ ∈ T (Ḡ), h ∈ H}. According to
the structure of P , we can choose distinct involutions x and y in P such that O(xy) = 2.
Since x, y, xy ∈ T (G), for every h ∈ H, we have O(xh) = O(yh) = O(xyh) = 2. This
implies that h−1 = xyhyx = xyhxhyh = xyxyh = h. But |H| is odd, so H = 1. Now,
we are going to prove (iii). By (i), we can assume that x1, ..., xn are distinct involutions
in G such that T (Ḡ) =

⋃n
i=1 clḠ(x̄i) and for every 1 ≤ i, j ≤ n such that i 6= j, we have

clḠ(x̄i)∩clḠ(x̄j) = ∅. For x ∈ T (G), put Inv(x,H) := {h ∈ H : O(xh) = 2} and for every
1 ≤ i ≤ n, put ti := |Inv(xi, H)|. Obviously, for every x ∈ T (G), 1 ∈ Inv(x,H) ⊆ H.
Thus t1, ..., tn ≤ |H| are natural numbers. Also, it is evident that for every g ∈ G and
x ∈ T (G), |Inv(x,H)| = |Inv(xg, H)| and for every y ∈ T (G), there exists 1 ≤ i ≤ n such
that ȳ ∈ clḠ(x̄i), so there exists x̄ḡ

i ∈ clḠ(x̄i) such that (xg
i )−1y ∈ Inv(xg

i , H) and hence,



T (G) = {xg
i h : h ∈ Inv(xg

i , H)}. Now, we can see that t(G) =
∑n

i=1 |clḠ(x̄i)|ti, which is
the desired conclusion. �

2.7. Lemma. Let q be an odd number and q > 3. Then

(i) t(PSL2(q)) =

{
q(q − 1)/2, if q ≡ 3 (mod 4)
q(q + 1)/2, if q ≡ 1 (mod 4)

;

(ii) there exist involutions x1, x2 ∈ T (PGL2(q)) such that t(PGL2(q)) = |clPGL2(q)(x1)|+
|clPGL2(q)(x2)| and, |clPGL2(q)(x1)| = q(q−1)/2 and |clPGL2(q)(x2)| = q(q+1)/2.

Proof. The Dickson’s result about the maximal subgroups of PSL2(q) (see [5]) shows
that the dihedral group Dq+1 of order (q + 1), where q 6= 7, 9 and the dihedral group
Dq−1 of order (q−1), where q ≥ 13 are maximal subgroups of PSL2(q). First let q ≥ 13.
Obviously, if q ≡ 3 (mod 4), then (q+1)/2 is even and hence, the center of Dq+1 contains
an involution x+ and if q ≡ 1 (mod 4), then (q−1)/2 is even and hence, the center ofDq−1

contains an involution x−. This shows that if q ≡ 3 (mod 4), then CPSL2(q)(x
+) = Dq+1

and if q ≡ 1 (mod 4), then CPSL2(q)(x
−) = Dq−1. But gcd(2, q) = 1 and hence, every

involution of PSL2(q) is a semi-simple element of PSL2(q). Thus for every involution
x of PSL2(q), there exists a maximal torus containing x. It is known that the maximal
torus of PSL2(q) are cyclic groups of order (q± 1)/gcd(2, q− 1). Thus in the case where
q ≡ 3 (mod 4), the involutions are contained in the maximal torus of order (q + 1)/2
and in the case where q ≡ 1 (mod 4), the involutions are contained in the maximal torus
of order (q − 1)/2. On the other hand, it is known that the maximal torus of PSL2(q)
of the same order are conjugate and hence, all involutions in PSL2(q) are conjugate in
PSL2(q). Therefore, if q ≡ 3 (mod 4), then t(PSL2(q)) = |clPSL2(q)(x

+)| = q(q − 1)/2

and if q ≡ 1 (mod 4), then t(PSL2(q)) = |clPSL2(q)(x
−)| = q(q + 1)/2, as claimed in (i).

If q ≤ 11, then ATLAS [3], completes the proof of (i). For the proof of (ii), since the
dihedral group D2(q+1) of order 2(q+1) and the dihedral group D2(q−1) of order 2(q−1),
where q > 5 are the maximal subgroups of PGL2(q), and the maximal torus of PGL2(q)
are cyclic groups of order (q ± 1), the same argument as in the proof of (i) shows that
T (PGL2(q)) = clPGL2(q)(x

+) ∪ clPGL2(q)(x
−), where x+ and x− are central involutions

of D2(q+1) and D2(q−1), and also CPGL2(q)(x
+) = D2(q+1) and CPGL2(q)(x

−) = D2(q−1).
Thus t(PGL2(q)) = |clPGL2(q)(x

+)| + |clPGL2(q)(x
−)| = q(q − 1)/2 + q(q + 1)/2. This

completes the proof of (ii). Also, if q = 5, then according to ATLAS [3], the result is
obvious. �

3. Proof of the main theorem
Let P ∈ Syl2(G). Under the assumption of the main theorem, t0(G) = 1/8 and hence,

Lemma 2.5(iii) shows that |P | = 8. Thus, the proof falls naturally into three cases: P is
an abelian group, the quaternion group or the dihedral group of order 8:

Case 1. If P is abelian, then since G is non-solvable, we deduce from Lemma 2.1(i)
that P is not cyclic. Also, Lemma 2.1(ii) implies that O′(G/O(G)) is a direct product
of a 2-group and simple groups of one of the types mentioned in 2.1(ii)(a-c). For abbre-
viation, put H := O(G), K/H := O′(G/O(G)) and let x̄ be the image of an element x
of G in G/H. Obviously |H| and [G : K] are odd numbers. So Lemma 2.5(i) guarantees
that t(G) = t(K). On the other hand, t(G) = |G|/8 and hence, t(K) = |G|/8. This
implies that t0(K) = [G : K]/8. If [G : K] 6= 1, then since [G : K] is an odd number and
t0(K) < 1, we deduce that [G : K] ∈ {3, 5, 7}. This forces t0(K) to be greater than 1/4.
Now, we apply Lemma 2.4 to conclude that K ∼= PSL2(5)×E, where exp(E) ≤ 2. Since
|G|2 = 8 and [G : K] is odd, we have |K|2 = 8 as well and hence, |E| = 2 and |K| = 120.
Thus Lemmas 2.5(i) and 2.7(i) allow us to conclude that t(K) = 31. But as was obtained



above, t(K) = t0(K)|K| = [G : K]|K|/8 ∈ {3|K|/8, 5|K|/8, 7|K|/8} = {45, 75, 105},
which is a contradiction. This shows that [G : K] = 1. Thus G/H = O′(G/H). Now
according to Lemma 2.1(ii) and Remark 2.2, we have the following possibilities for G/H:

(i) G/H ∼= F × PSL2(2n), where n > 1 and F is a 2-group. Then since |G|2 = 8,
we obtain that either (n, |F |) = (2, 2) or (n, |F |) = (3, 1). If (n, |F |) = (2, 2),
then by [3], all involutions in PSL2(4) are conjugate and hence, Lemma 2.6(iii)
leads us to find involutions x1, x2, x3 in T (G) and natural numbers r, s, t such
that 1 ≤ r, s, t ≤ |H| and t(G) = r|clG/H(x̄1)| + s|clG/H(x̄2)| + t|clG/H(x̄3)|, so
r/15 + s + t = |H|. We claim that either s > |H|/3 or t > |H|/3. Suppose,
contrary to our claim, that s ≤ |H|/3 and t ≤ |H|/3. Thus, we have r/15 ≥
|H|/3, which implies that r ≥ 5|H|, a contradiction. Therefore, without loss of
generality, we can assume that s > |H|/3. According to the proof of Lemma
2.6(iii), s = |H2|, where H2 = {h ∈ H : O(x2h) = 2}. Put G2 := 〈x2, H〉.
Then since for every h ∈ H2, x2hx2h = 1, we have h−1x2h = h−2x2. So
s = |H2| ≤ |clH(x2)| = [H : CH(x2)] and hence, |CH(x2)| < 3, which forces
CH(x2) = 1. Thus G2 is a Frobenius group with the kernel H. It follows from
Lemma 2.3, H is abelian. Thus it is easy to see that H2 is a subgroup of H and
hence, |H2| divides |H|. Moreover, since s > |H|/3, we have |H| = |H2| = s.
Thus r/15 + t+ s = |H| forces r = t = 0, which is a contradiction. It remains to
consider the case where (n, |F |) = (3, 1). Since ATLAS [3] shows that t(G/H) =
|PSL2(8)|/8, |H|t(G/H) = t(G). Thus by Lemma 2.6(ii), H = 1 and hence, in
this case, G ∼= PSL2(8).

(ii) G/H ∼= F × PSL2(q), where F is a 2-group and, q ≡ 3 or 5 (mod 8) and q > 3.
Then since |G/H|2 = |G|2 = 8, we obtain that |F | = 2. Since PSL2(5) ∼=
PSL2(4), as mentioned in (i), we can see that G/H 6∼= PSL2(5) × F . This
allows us to assume that q > 5. Thus by Lemmas 2.5(i) and 2.7(i), t(G/H) =
2(|clPSL2(q)(x)|) + 1 = 2q(q ± 1)/2 + 1, where x ∈ T (PSL2(q)). Thus Lemma
2.6(ii) gives that eitherH 6= 1 and 2(|clPSL2(q)(x)|)+1 > 2|PSL2(q)|/8 orH = 1
and 2(|clPSL2(q)(x)|) + 1 = 2|PSL2(q)|/8. Obviously, 2(|clPSL2(q)(x)|) + 1 6=
2|PSL2(q)|/8. Therefore, H 6= 1 and hence, 4 | |CPSL2(q)(x)| ≤ 8. This ensures
that |CPSL2(q)(x)| = 4. Now applying Lemma 2.1(iv) to PSL2(q) shows that
q = 4, which is a contradiction.

(iii) G/H is isomorphic to the Janko group J1. Then by ATLAS [3], t(G/H) =

7.11.19 and hence, t(G/H) < |J1|
8

, which is a contradiction with Lemma 2.6(ii).
(iv) G/H is isomorphic to the Ree group 2G2(q), where q = 32n+1, for n > 0.

Then applying Lemma 2.1(ii)(c) and Remark 2.2 show that for each involution
J of 2G2(q), C2G2(q)(J) = 〈J〉 × R, where R is isomorphic to PSL2(q) and
the 2-Sylow subgroups of 2G2(q) are 2-elementary abelian. Thus the 2-Sylow
subgroup PH/H of G/H contains 7 elements of order 2. On the other hand, all
2-Sylow subgroups of G/H are conjugate in G/H and hence, every involution
of G/H is conjugate with one of the involutions in PH/H. Thus t(G/H) ≤
|
⋃

x̄∈PH/H−{1̄} clG/H(x̄)| ≤ 7|G/H|
2|PSL2(q)| = 7|G/H|

q(q2−1)
, which is less than |G/H|

8
, a

contradiction with Lemma 2.6(ii).

Consequently, the above results show that if P is abelian, then G is a simple group iso-
morphic to PSL2(8).

Case 2. Let P be a quaternion group of order 8. Then since P ≤ NG(P ), 8 | |NG(P )|.
Thus n2(G) ≤ |G|/8. If there exist P1, P2 ∈ Syl2(G) such that P1 ∩P2 6= 1, then P1 ∩P2

contains an element of order 2. On the other hand, the quaternion group has exactly



one element of order 2. This implies that t(G) < n2(G) ≤ |G|/8, which is a contradic-
tion. Thus the intersection of every two 2-Sylow subgroups of G is trivial and hence,
t(G) = n2(G). So by our assumption, n2(G) = |G|/8, which forces |NG(P )| = 8 and
hence, NG(P ) = P . This implies that for every x ∈ G − P , x−1Px ∩ P = 1 and hence,
G is a Frobenius group and P is its complement. It follows immediately from the fact
which the kernel of G and P are nilpotent that G is solvable, which is a contradiction
with our assumption.

Case 3. Let P be a dihedral group of order 8. Put H := O(G). Then by Lemma
2.1(iii), we have the following possibilities for G/H:

(i) G/H is a 2-group. Thus G/H is solvable. But H = O(G) is a solvable group,
because by our assumption |H| is odd. We thus get that G is solvable, which is
a contradiction with our assumption.

(ii) G/H ∼= A7. Then it is easy to check that t(G/H) = t(A7) = 7.6.5.4
8

< |A7|
8

,
which is a contradiction with Lemma 2.6(ii).

(iii) G/H is isomorphic to a subgroup of Aut(PSL2(q)) containing PSL2(q), where
q is odd. It is known that Aut(PSL2(q)) ∼= PGL2(q).Zn, where q = pn, for a
prime p. In the following, we will consider the cases q ≡ ±1 (mod 8) and q ≡ ±3
(mod 8), separately:

(a) Let q ≡ ±1 (mod 8). Then since |PSL2(q)|2 = |G|2 = 8, we deduce that
G/H = K/H.Zm, where K/H ∼= PSL2(q) and m is an odd divisor of n and
hence, the same conclusion as that of in the proof of Case 1 can be drawn to
conclude that [G : K] = 1. Thus G/H ∼= PSL2(q). So from Lemma 2.7(i), we
obtain that

t(G/H) =

{
q(q − 1)/2, if q ≡ −1 (mod 8)
q(q + 1)/2, if q ≡ 1 (mod 8)

.

If H 6= 1, then Lemma 2.6(ii) yields t(G/H) > |G/H|/8 and hence,{
q + 1 < 8, if q ≡ −1 (mod 8)
q − 1 < 8, if q ≡ 1 (mod 8)

,

which is impossible. This forcesH to be a trivial group and hence, G ∼= PSL2(q).
Thus Lemma 2.7(i) leads to

|PSL2(q)|/8 = t(PSL2(q)) =

{
q(q − 1)/2, if q ≡ −1 (mod 8)
q(q + 1)/2, if q ≡ 1 (mod 8)

,

so {
q + 1 = 8, if q ≡ −1 (mod 8)
q − 1 = 8, if q ≡ 1 (mod 8)

.

Consequently, q ∈ {7, 9} and hence, G ∼= PSL2(7) or PSL2(9).

(b) Let q ≡ ±3 (mod 8). Since q = pn ≡ ±3 (mod 8), an easy computa-
tion shows that n is odd and hence, according to |PSL2(q)|2 = 4, we deduce
that G/H = K0/H.Zm, where K0/H ∼= PGL2(q) and m is an odd divisor of n.
Now, as in the proof of Case 1, we see that m = 1 and hence, G/H = K0/H =
K/H.Z2, where K/H ∼= PSL2(q). Now we conclude from Lemmas 2.6(ii) and
2.7(ii) that t(PGL2(q)) = q(q − 1)/2 + q(q + 1)/2 = q2 ≥ |G|

8|H| = |PGL2(q)|
8

.
This shows that q2 ≥ q(q2 − 1)/8, so q ∈ {3, 5}. If q = 3, then PGL2(3) ∼= S4

and hence, G/H is solvable. Also the fact that |H| is odd, forces H to be solv-
able and hence, G is solvable, which is a contradiction with our assumption.



It remains to consider the case where q = 5. Let q = 5. For abbreviation as-
sume that G/H = PGL2(5) and K/H = PSL2(5). According to Lemma 2.7(ii),
t(PGL2(5)) 6= |PGL2(5)|/8 and hence, H 6= 1. Let x̄ be the image of an element
x of G in G/H. Note that PSL2(q) is a normal subgroup of PGL2(q) and hence,
every 2-Sylow subgroup P̄ of PGL2(q) contains an involution x̄ ∈ P̄ ∩PSL2(q).
Thus, we conclude from Lemmas 2.6(iii) and 2.7(ii) that there exist involutions
x̄1 ∈ T (PSL2(q)) and x̄2 ∈ T (PGL2(q)), and natural numbers s, t such that
1 ≤ s, t ≤ |H|, |clPGL2(q)(x̄1)| = |PGL2(5)|

2(5−1)
and |clPGL2(q)(x̄2)| = |PGL2(5)|

2(5+1)
, and

s|PGL2(5)|
2(5−1)

+ t|PGL2(5)|
2(5+1)

= s|clPGL2(q)(x̄1)| + t|clPGL2(q)(x̄2)| = t(G) = |G|/8.
This gives

3s + 2t = 3|H|.(3.1)

By Lemma 2.6(i), we have x1, x2 ∈ T (G). For i ∈ {1, 2}, put Hi := {h ∈ H :
O(xih) = 2}. Then as mentioned in the proof of Lemma 2.6(iii), |H1| = s and
|H2| = t. Put G1 := 〈x1, H〉. Since t ≤ |H|, we see |H| ≤ 3|H| − 2t = 3s and
hence, s ≥ |H|/3. Thus one of the following possibilities holds:

(I) s > |H|/3. Obviously if h ∈ H1, then x1hx
−1
1 = h−1, so hx1h

−1 = x1h
−2

and hence, |H|/3 < s = |H1| ≤ |clG1(x1)|. Thus [G1 : CG1(x1)] > |H|/3. This
shows that |CG1(x1)| < 6. On the other hand, 2 | |CG1(x1)|, |G1| = 2|H| and
|H| is an odd number. This gives |CG1(x1)| = 2 and hence, CG1(x1) = 〈x1〉.
It follows that CH(x1) = 1. This forces G1 to be a Frobenius group with the
kernel H. Thus H is abelian, by Lemma 2.3 and hence, it follows easily that
H1 is a subgroup of H, so |H1| divides |H|. But |H| is an odd number and
|H1| = s > |H|/3. Thus |H1| = |H| and hence, (3.1) shows that t = 0, which is
impossible.

(II) s = |H|/3. Then (3.1) shows that |H| + 2t = 3|H| and hence, t =
|H|. This gives that H2 = H. Thus for every h ∈ H, O(x2h) = 2, so
hx2 = h−1. Let h1, h2 ∈ H, then h−1

2 h−1
1 = (h1h2)x2 = hx2

1 hx2
2 and hence,

h−1
2 h−1

1 = h−1
1 h−1

2 . This shows that H is abelian. Thus for every k1, k2 ∈
H1, (k1k2)x1 = kx1

1 kx1
2 = k−1

1 k−1
2 = (k1k2)−1, so O(x1k1k2) = 2 and hence,

k1k2 ∈ H1. Obviously, k−1
1 ∈ H1 and hence, H1 ≤ H. As above, we can

assume that there exist g, y ∈ K and h ∈ H such that x1x
g
1 = xy

1h, because
there exists ḡ ∈ PSL2(q) such that x̄1x̄

ḡ
1 is an involution in PSL2(q) and

hence, since T (PSL2(q)) = clPSL2(q)(x̄1), we deduce that there exists y ∈ K
such that x1x

g
1 ∈ xy

1H. First let H1H
g
1 � H, then we see that |H|/3 divides

3|H1 ∩Hg
1 | and |H1 ∩Hg

1 | divides |H1| = |H|/3. Thus either |H1 ∩Hg
1 | = |H|/9

or |H1 ∩ Hg
1 | = |H|/3. If |H1 ∩ Hg

1 | = |H|/9, then |H1H
g
1 | = |H| and hence,

H1H
g
1 = H, which is a contradiction. Thus |H1 ∩ Hg

1 | = |H|/3. This forces
[H1 : H1 ∩ Hg

1 ] = 1, which shows that H1 = H1 ∩ Hg
1 . So H1 = Hg

1 . It
follows immediately that for every h ∈ H1, there exists h1 ∈ H1 such that
h = hg

1 and hence, (x1x
g
1)−1h(x1x

g
1) = (xg

1)−1h−1xg
1 = (x−1

1 h−1
1 x1)g = hg

1 = h,
because if h ∈ H1, then O(x1h) = 2, which shows that x−1

1 hx1 = h−1. This
implies that H1 ≤ CH(x1x

g
1) and hence, |clH(x1x

g
1)| ≤ 3. But as mentioned

above, x1x
g
1 = xy

1h. Thus, since H is an abelian group of an odd order, we
deduce that for every u ∈ Hy

1 , u
−1x1x

g
1u = u−1xy

1hu = u−1xy
1uh = u−2xy

1h,
so |H|/3 = |Hy

1 | ≤ |clH(x1x
g
1)|. From this, we conclude that |H|/3 ≤ 3

and hence, |H| ∈ {3, 9}, because 3 | |H| and 2 - |H|. If |H| = 9, then
|clH(x1x

g
1)| = 3. But H is an abelian normal subgroup of G and x1x

g
1 = xy

1h.



Thus CH(x1) = CH(xy
1)y
−1

= CH(xy
1h)y

−1

and hence, |CH(x1)| = 3. Thus

x1 6∈ CG(H).(3.2)

Also, H ≤ CG(H) and hence, CG(H)
H

� G
H

= PGL2(5). Thus CG(H)
H

= PGL2(5),
CG(H)

H
= PSL2(5) or CG(H)

H
= 1. If CG(H)

H
= PSL2(5) = K/H or CG(H)

H
=

PGL2(5) = G/H, then K ≤ CG(H) and hence, x1 ∈ CG(H), contrary to
(3.2). Thus CG(H)

H
= 1, which means that CG(H) = H. But |H| = 9 and

hence, H ∼= Z3 × Z3 or H ∼= Z9. So by N − C-theorem, we obtain PGL2(5) =
G/H = NG(H)/CG(H) . Aut(H) ∼= GL2(3) or Z8. This forces 5 to divide
|GL2(3)| or |Z8|, a contradiction. If |H| = 3, then applying the same reasoning
as above shows that CG(H)

H
= PSL2(5) ∼= SL2(4), which leads us to see that

G ∼= (Z3×SL2(4)).Z2
∼= GL2(4).Z2. Now, a trivial verification in GAP [6] shows

that t(GL2(4).Z2) = 2|GL2(4)|/8. Thus G can be isomorphic to GL2(4).Z2.
Now consider the case where H1H

g
1 = H, then a slight change in the above

statements shows that |H| ∈ {9, 27} and |H1 ∩ Hg
1 | = |H|/9. If |H| = 9,

then applying the previous argument leads us to get a contradiction. Thus
|H| = 27 and hence, our assumption forces H to be isomorphic to Z9 × Z3 or
Z3 × Z3 × Z3. Now, the same argument as above gives that H = CG(H). Thus
PGL2(5) = G

H
= NG(H)

CG(H)
. Aut(H). But |Aut(Z3 × Z3 × Z3)| = 11232 and

|Aut(Z9 × Z3)| = |GL3(3)| = 108, so |PGL2(5)| - |Aut(H)|, a contradiction.
Consequently, the above cases show that either G is a simple group isomorphic to
PSL2(q), where q ∈ {7, 8, 9} or G ∼= GL2(4).Z2, as desired.
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