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Abstract
In this paper we want to show the validity of the generalized double-
parametric Hilbert inequality with conjugate exponents in the frame-
work of grand Lebesgue spaces as a particular case of a more general
result involving an homogeneous kernel. We also study the bounded-
ness of an integral operator with the aforementioned kernel.
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1. Introduction
The classical Hilbert inequality on double series is the following

(1.1)
∞∑
m=1

∞∑
n=1

anbm
n+m

< π csc(π/p)

 ∞∑
n=1

apn

 1
p
 ∞∑
m=1

bp
′
m

 1
p′

where p and p′ are conjugate exponents and an, bm > 0. In accordance to [10], this
inequality was included by Hilbert for p = p′ = 2 in his lectures, and it was published
by H. Weyl [25]. The estimate was later on improved by Schur [24] obtaining the sharp
constant π. It is possible to show that the constant π csc(π/p) is sharp for the case p > 1.
The integral analogue for (1.1) is the so-called double-parametric Hilbert inequality

(1.2)
ˆ

R+

ˆ

R+

f(y)g(x)

x+ y
dx dy < π csc(π/p)‖f‖Lp(R+)‖g‖Lp′(R+),

which was shown in [10].
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We can generalize (1.2) substituting 1/(x+ y) by a suitable kernel k, in this case the
constant will depend on k and p. Another generalization is to drop the requirement that
the exponents are conjugate, this leads to the so-called inequalities with non-conjugate
exponents.

In 1992 T. Iwaniec and C. Sbordone [12], in their studies related with the integrability
properties of the Jacobian in a bounded open set Ω, introduced a new type of function
spaces Lp)(Ω), called grand Lebesgue spaces. A generalized version of them, Lp),θ(Ω)
appeared in L. Greco, T. Iwaniec and C. Sbordone [9]. Harmonic analysis related to these
spaces and their associate spaces (called small Lebesgue spaces), was intensively studied
during last years due to various applications, we mention e.g. [1, 3, 4, 5, 6, 7, 14, 17, 22]
and continue to attract attention of various researchers.

For example, in the theory of PDE’s, it turned out that these are the right spaces in
which some nonlinear equations have to be considered (see [8, 9]). Also noteworthy to
mention the extension of the ideas regarding grand Lebesgue spaces into the framework
of the so-called grand Morrey spaces, e.g. [16, 15, 18, 20, 21].

In this paper we show the validity of the generalized double-parametric Hilbert in-
equality with conjugate exponents in the framework of grand and small Lebesgue spaces
as a particular case of a more general result involving an homogeneous kernel. We also
study the boundedness in grand Lebesgue spaces of an integral operator with the afore-
mentioned kernel. Finally, we state an open problem related with the so-called inequalities
with non-conjugate exponents.

2. Grand and Small Lebesgue Spaces
In this section we will introduce grand and small Lebesgue spaces, for more properties,

see e.g. [2, 4, 14].

2.1. Definition. By Φ we denote the class of continuous positive functions on (0, p− 1)
such that limx→0+ ϕ(x) = 0.

2.2. Definition. Let (X,A , µ) be a finite measure space and ϕ ∈ Φ. The grand Lebesgue
space, denoted by Lp),ϕ(X), is the set of all real-valued measurable functions for which

‖f‖Lp),ϕ(X) := sup
0<ε<p−1

ϕ(ε)

 

X

|f(x)|p−ε dµ(x)


1
p−ε

<∞,

where
ffl
ω
f dµ(x) := 1

µ(ω)

´
ω
f dµ(x) stands for the integral average of the function f in ω.

Taking ϕ : (0, p − 1) → (0,+∞) with x 7→ x and the induced Lebesgue measure in a
bounded subset of the Euclidean space, we recover the space introduced by T. Iwaniec
and C. Sbordone in [12] and we get the space introduce in [9] when x 7→ xθ.

2.3. Definition. Let (X,A , µ) be a finite measure space and 1 < p < ∞. If ϕ ∈ Φ, we
define the small Lebesgue space Lp)

′,ϕ(X) as

Lp)
′,ϕ(X) =

{
g ∈M0 |‖g‖Lp)′,ϕ (X) < +∞

}



where M0 is the set of all measurable functions, whose values lie in [−∞,∞] finite a.e.
in X, and
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We want to mention that there is another characterization of grand and small Lebesgue
spaces, using rearrangement functions, see e.g. [6].

3. Hilbert integral inequality
In this section we show the validity of the generalized double-parametric Hilbert in-

tegral inequality.
We need some definitions, namely:

3.1. Definition. Let g be a function with domain in [a, b] ⊂ R and range [α, β] ⊂ R. If
µ(E) = 0 implies that µ(g(E)) = 0 for all E ⊂ [a, b], then g is said to be an N -function
or to satisfy the condition N .

3.2. Definition. We will call to a measure µ, a N-dilation measure, if µ(E) = 0 implies
that µ(tE) = 0, R 3 t > 0, where tE is the dilation of the set E.

We will also need the following proposition, see e.g. [11, Corollaries 20.4 and 20.5].

3.3. Proposition. Let [a, b] be an interval in R and let ϕ be a monotone continuous
N-function with domain [a, b] and range [α, β] (α < β). Thus for f ∈ L1([α, β],A , µ),
we have (f ◦ ϕ)|ϕ′| ∈ L1([a, b],A , µ), and

β̂

α

f(y) dµ(y) =

bˆ

a

f ◦ ϕ(x)|ϕ′(x)| dµ(x).

We now prove the validity of the generalized double-parametric Hilbert inequality.

3.4. Theorem. Let µ be a N-dilation finite measure on [0,∞), ϕ ∈ Φ and k : [0,∞)×
[0,∞) → [0,∞) be homogeneous of degree -1. If f ∈ Lp),ϕ(R+, µ) and g ∈ Lp)

′,ϕ(R+, µ)
then

(3.1)
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ˆ
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.

with

(3.2) c = inf
0<ε<p−1

ˆ

R+

w
− 1
p−ε k(1, w) dµ(w).

Proof. We first prove the theorem for g ∈ L(p′,ϕ(R+, µ) and then bootstrap the result to
g ∈ Lp)

′,ϕ(R+, µ).



Let g ∈ Lp)
′,ϕ(R+, µ) and |g| =

∑
k∈N gk be any decomposition with gk ≥ 0 for all

k ∈ N. Taking
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where we used an appropriate change of variables, the fact that the kernel k is of degree
-1 and also the Proposition 3.3 together with the assumption that µ is a N -dilation
measure.

For each 0 < ε < p− 1, we have

IM,N 6 µ(R+)
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which gives
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Since

(3.4)
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we get from (3.3), the definition of grand and small Lebesgue spaces that

(3.5)
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Taking now infimum in (3.5), we obtain (3.1) for the case of g ∈ L(p′,ϕ(R+, µ).

Let now g ∈ Lp
′),ϕ(R+, µ) and let us define the truncated function

ψn(x) =

{
|g(x)| if |g(x)| 6 n,
n if |g(x)| > n,

which is in L(p′(X) due to the embedding L∞(X) ⊂ L(p′(X).

Moreover, for all 0 6 ψ 6 |g| we have ‖ψ‖
L(p′ (X) 6‖g‖
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Since g(x) = limn→∞ ψn(x), by the Beppo-Levi theorem we get∣∣∣∣∣∣∣
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3.5. Remark. As an example, taking dµ(x) = e−x dx with the usual Lebesgue measure,
and k(x, y) = 1/(x+ y) we get

ˆ

R+

x
1
p−ε

1 + x
e−x dx 6

ˆ

R+

x
1
p−ε

1 + x
dx = π csc(π/(p− ε)).

thus satisfying the conditions in the Theorem 3.4.

We now prove a theorem regarding the boundedness of an integral operator based on
the kernel k.

3.6. Theorem. Let µ be a N-dilation finite measure on [0,∞), ϕ ∈ Φ and k : [0,∞)×
[0,∞)→ [0,∞) be homogeneous of degree -1. If f ∈ Lp),ϕ(R+, µ) and define the integral
operator K has

Kf(y) =

ˆ

R+

k(x, y)f(x) dµ(x).

Then
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with
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ˆ
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w
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Proof. For fixed 0 < ε < p− 1, we have

(3.8)

‖Kf‖Lp−ε(R+,µ)
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where we have used the Minkowski integral inequality, a proper change of variable and
the homogeneity of the kernel k. From (3.8) we get

ϕ(ε)
1
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6 ϕ(ε)
1
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and now (3.6) follows taking (3.7) into account applying supremum over 0 < ε < p − 1
in both sides. �

Open Problem: The case of non-conjugate exponents is an open problem. For ex-
ample, what is the analogue in grand Lebesgue spaces for the following result.

Let p > 1, r > 1 and λ = 1
p

+ 1
r
, then

ˆ

R+

ˆ

R+

kλ(x, y)f(x)g(y) dx dy 6

 ∞̂
0

u
1
λq k(1, u) du


λ

‖f‖Lp(R+)‖g‖Lr(R+)

where k(x, y) is a non-negative homogeneous kernel of degree -1.
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