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Abstract
Although the notion of geometric-arithmetic index has been introduced in the chemical
graph theory these past years, it has already proved to be useful. The objective of the
work we present here is twofold: First, obtaining new relations connecting the geometric-
arithmetic index with other topological indices; second, to characterize graphs which are
extremal with respect to those relations.
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1. Introduction
A single number (or a set of numbers) which represents a chemical structure in graph-

theoretical terms via the molecular graph is called a topological descriptor ; besides, if
it correlates with a molecular property, it is called topological index and it is used to
understand physicochemical properties of chemical compounds. The interest of topological
indices lies in the fact that they synthesize some of the properties of a molecule usually
into a single number, or, in some occasions, a few numbers. With this in mind, hundreds of
topological indices have been introduced and studied so far; it is worth noting the seminal
work by Wiener in which he used the sum of all shortest-path distances of a (molecular)
graph in order to model physical properties of alkanes (see [47]).

Topological indices based on end-vertex degrees of edges have been used for 40 years
and some of them are recognized tools in chemical research. Probably, the best known
among such descriptors are the Randić connectivity index (R) and the Zagreb indices.

The first and second Zagreb indices, denoted by M1 and M2 respectively, were intro-
duced by Gutman and Trinajstić in 1972 (see [23]) as

M1(G) =
∑

u∈V (G)
d2

u, M2(G) =
∑

uv∈E(G)
dudv,

where uv stands for the edge of the graph G connecting vertices u and v and du is the
degree of the vertex u.
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Research on the Zagreb indices is abundant. In the works [19–21] and the references
therein one can find details of their mathematical theory and chemical applications.

One can define the first and second variable Zagreb indices as (see e.g. [26, 27,30])

Mα
1 (G) =

∑
u∈V (G)

dα
u , Mα

2 (G) =
∑

uv∈E(G)
(dudv)α,

with α ∈ R.
Variable molecular descriptors were proposed not only as a new way of characterizing

heteroatoms in molecules (see [32, 33]), but also as a method to assess the structural
differences. For further information see e.g. [34] and [30].

Gutman and Tošović [22] tested the correlation abilities of 20 vertex-degree-based topo-
logical indices used in the chemical literature for the case of standard heats of formation
and normal boiling points of octane isomers. It is noteworthy that the second variable
Zagreb index Mα

2 with exponent α = −1 (and to a lesser extent with exponent α = −2)
performs significantly better than the Randić index (R = M−0.5

2 ).
When it comes to the second variable Zagreb index, it has proved to be useful to model

the structure-boiling point of benzenoid hydrocarbons (see [31]). Another use of variable
Zagreb indices seems to be deriving multi-linear regression models [14]. Several papers
discuss the relations between these indices and various properties (see, e.g., [4, 26, 28, 40,
48,49]).

Note that M2
1 is the first Zagreb index M1, M−1

1 is the inverse index ID, M3
1 is the

forgotten index F , etc.; also, M
−1/2
2 is the usual Randić index, M1

2 is the second Zagreb
index M2, M−1

2 is the modified Zagreb index, etc.
The general sum-connectivity index was defined by Trinajstić and Zhou in [51] as

χα(G) =
∑

uv∈E(G)
(du + dv)α.

Observe that χ1 coincides with the first Zagreb index M1, 2χ−1 with the harmonic index
H, χ−1/2 with the sum-connectivity index χ, etc.

The (first) geometric-arithmetic index GA1 = GA is defined in [45] as

GA1(G) = GA(G) =
∑

uv∈E(G)

√
dudv

1
2(du + dv)

.

Although GA was defined roughly ten years ago, it has been the object of study of many
papers. (see, e.g., [10–12,37,45] and the references therein). In fact, it is an object highly
present in current research (see e.g. [5–7, 9, 18] and [24]). There are other geometric-
arithmetic indices, like Zp,q (Z0,1 = GA), but the results in [12, p.598] show that the GA
index gathers the same information on the molecule under study as other Zp,q indices.

The number of possible benzenoid hydrocarbons is huge, although only about 1,000
of them have been identified so far. As an example, there are as many as 5.85 · 1021

benzenoid hydrocarbons with exactly 35 benzene rings [43]. Therefore, the ability to model
their physico-chemical properties can be most helpful in order to foresee characteristics
of currently unknown species. When comparing Randić index to the predicting capacity
of the GA index the latter is reasonably better (see [12, Table 1]). There is a good
linear correlation between the heat of formation of benzenoid hydrocarbons and GA as
the graphic in [12, Fig.7] (from [12, Table 2], [41]) shows (with a correlation coefficient
equal to 0.972).

Furthermore, in the case of standard enthalpy of vaporization, GA index improves the
performance of Randić index by more than 9%. This leads to the belief that one should
consider GA indices when researching QSPR/QSAR.

A main topic in the study of topological indices is to find bounds of the indices in-
volving several parameters. The objective of this paper is twofold: First, to obtain new
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relations connecting the geometric-arithmetic index with other topological indices; second,
to characterize graphs which are extremal with respect to the relations obtained.

Here and hereafter, G = (V (G), E(G)) will denote a (non-oriented) finite simple (with-
out multiple edges and loops) graph such that each connected component of G has, at
least, an edge. Also, the notation ∆, δ, n, m for the maximum degree, the minimum degree
and the cardinality of the set of vertices and edges of G, respectively will be used.

2. Main results
The following result relates the geometric-arithmetic and the first Zagreb indices.
Recall that a (∆, δ)-biregular graph (or simply a biregular graph) is a bipartite graph

for which any vertex in one side of the given bipartition has degree ∆ and any vertex in
the other side of the bipartition has degree δ.

Theorem 2.1. If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≥ 1
2∆

M1(G), if δ/∆ ≥ t0,

GA(G) ≥ 2
√

∆δ

(∆ + δ)2 M1(G), if δ/∆ < t0,

(2.1)

where t0 is the unique solution of the equation t3 + 5t2 + 11t − 1 = 0 in the interval (0, 1).
The equality in the first bound is attained if and only if G is regular; the equality in the
second bound is attained if and only if G is a biregular graph.

Proof. Since the function h(t) = t3 + 5t2 + 11t − 1 is increasing on the interval [0, 1],
h(0) < 0 and h(1) > 0, there exists a unique solution of the equation t3 + 5t2 + 11t − 1 = 0
in the interval (0, 1). Thus, t0 is well-defined. Since the coefficients of the polynomial h(t)
are rational numbers, and the coefficients of t3 and t0 of the polynomial h(t) are 1 and
−1, respectively, we have that t0 /∈ Q.

We are going to compute the minimum value of the function f : [δ, ∆] × [δ, ∆] → R
given by

f(x, y) =
2√

xy

(x + y)2 .

By symmetry, we can assume that x ≤ y. We have

∂f

∂x
(x, y) = x−1/2y1/2(x + y)2 − 2x1/2y1/22(x + y)

(x + y)4

= x−1/2y1/2(x + y) − 4x1/2y1/2

(x + y)3

= x−1/2y1/2 x + y − 4x

(x + y)3

= x−1/2y1/2 y − 3x

(x + y)3 ,

∂f

∂y
(x, y) = y−1/2x1/2 x − 3y

(x + y)3 .

Since y ≥ x ≥ δ > 0, we have ∂f/∂y < 0. Thus, the minimum value of f is attained on
the set {(x, ∆)| δ ≤ x ≤ ∆}.

If ∆ ≤ 3δ, then ∂f/∂x(x, ∆) < 0 for every x > δ.
If ∆ > 3δ, then ∂f/∂x(x, ∆) > 0 for every δ ≤ x < ∆/3 and ∂f/∂x(x, ∆) < 0 for every

∆/3 < x ≤ ∆.
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Thus, we have in both cases

f(x, y) ≥ min
{
f(∆, ∆), f(δ, ∆)

}
= min

{ 1
2∆

,
2
√

∆δ

(∆ + δ)2

}
.

Hence,
2
√

dudv

du + dv
≥ min

{ 1
2∆

,
2
√

∆δ

(∆ + δ)2

}
(du + dv),

GA(G) ≥ min
{ 1

2∆
,

2
√

∆δ

(∆ + δ)2

}
M1(G).

In order to prove (2.1), it suffices to show that the inequality

1
2∆

≤ 2
√

∆δ

(∆ + δ)2 (2.2)

holds if and only if δ/∆ ≥ t0.
Inequality (2.2) is equivalent to the following statements

(∆ + δ)2 ≤ 4∆
√

∆δ ,
(
1 + δ

∆

)2
≤ 4

√
δ

∆
,

(
1 + δ

∆

)4
≤ 16 δ

∆
,

δ4

∆4 + 4 δ3

∆3 + 6 δ2

∆2 − 12 δ

∆
+ 1 ≤ 0.

Since 0 < δ/∆ ≤ 1, let us consider the function g(t) = t4 + 4t3 + 6t2 − 12t + 1 for t ∈ (0, 1].
Since g(t) = (t − 1)(t3 + 5t2 + 11t − 1) = (t − 1)h(t), we have g(t) ≤ 0 if and only if
t ∈ [t0, 1]. Hence, inequality (2.2) holds if and only if δ/∆ ≥ t0. Note that this condition
is equivalent to δ/∆ > t0, since t0 /∈ Q; therefore, the equality in (2.2) is attained if and
only if δ = ∆.

Therefore, (2.1) holds.
If δ/∆ ≥ t0, then the previous argument gives that f attains its minimum value just at

the point (∆, ∆). Thus, the equality in (2.1) is attained if and only if (du, dv) = (∆, ∆)
for every uv ∈ E(G), i.e., G is regular.

If δ/∆ < t0, then f attains its minimum value just at the points (δ, ∆) and (∆, δ).
Therefore, the equality in (2.1) is attained if and only if {du, dv} = {δ, ∆} for every
uv ∈ E(G), i.e., G is biregular. �

We need the following particular case of Jensen’s inequality.

Lemma 2.2. If f is a convex function in an interval I and x1, . . . , xm ∈ I, then

f
(x1 + · · · + xm

m

)
≤ 1

m

(
f(x1) + · · · + f(xm)

)
.

Theorem 2.3. If G is a graph with m edges, maximum degree ∆ and minimum degree δ,
then

GA(G) ≥ m2

∆H(G)
, if δ/∆ ≥ t0,

GA(G) ≥ 4
√

∆δ m2

(∆ + δ)2H(G)
, if δ/∆ < t0,

(2.3)

where t0 is the unique solution of the equation t3 + 5t2 + 11t − 1 = 0 in the interval (0, 1).
The equality in the first bound is attained if and only if G is regular; the equality in the
second bound is attained if and only if G is a biregular graph.

Proof. The argument in the proof of Theorem 2.1 gives
du + dv

2
√

dudv
≤

(
min

{ 1
2∆

,
2
√

∆δ

(∆ + δ)2

})−1 1
du + dv

,
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for every uv ∈ E(G). Since f(x) = 1/x is a convex function in R+, Lemma 2.2 gives
m

GA(G)
= m∑

uv∈E(G)
2
√

dudv
du+dv

≤ 1
m

∑
uv∈E(G)

du + dv

2
√

dudv

≤ 1
2m

(
min

{ 1
2∆

,
2
√

∆δ

(∆ + δ)2

})−1 ∑
uv∈E(G)

2
du + dv

= 1
2m

(
min

{ 1
2∆

,
2
√

∆δ

(∆ + δ)2

})−1
H(G).

The argument in the proof of Theorem 2.1 gives

min
{ 1

2∆
,

2
√

∆δ

(∆ + δ)2

}
= 1

2∆
, if δ/∆ ≥ t0,

min
{ 1

2∆
,

2
√

∆δ

(∆ + δ)2

}
= 2

√
∆δ

(∆ + δ)2 , if δ/∆ < t0,

Thus, (2.3) holds.
If the graph is regular or biregular, then we have, respectively,

m2

∆H(G)
= m2

∆m/∆
= m = GA(G),

4
√

∆δ m2

(∆ + δ)2H(G)
= 4

√
∆δ m2

(∆ + δ)2 2m/(∆ + δ)
= 2

√
∆δ

∆ + δ
m = GA(G).

If the equality in the first bound in (2.3) is attained, then the argument in the proof of
Theorem 2.1 gives that G is regular.

If the equality in the second bound in (2.3) is attained, then the equality in the proof
of Theorem 2.1 gives that G is biregular. �
Theorem 2.4. If G is a graph with m edges and minimum degree δ, then

GA(G) ≥ m − M1(G) − 2M
1/2
2 (G)

2δ
,

and the equality is attained if and only if G is regular.

Proof. We have
2
√

dudv

du + dv
+

(√
du −

√
dv

)2

du + dv
= 1,

GA(G) +
∑

uv∈E(G)

(√
du −

√
dv

)2

du + dv
= m.

Since ∑
uv∈E(G)

(√
du −

√
dv

)2

du + dv
≤ 1

2δ

∑
uv∈E(G)

(√
du −

√
dv

)2

= 1
2δ

( ∑
uv∈E(G)

(
du + dv

)
− 2

∑
uv∈E(G)

√
dudv

)
= M1(G) − 2M

1/2
2 (G)

2δ
,

we conclude

GA(G) ≥ m − M1(G) − 2M
1/2
2 (G)

2δ
.

If G is regular, then

m − M1(G) − 2M
1/2
2 (G)

2δ
= m − 2δm − 2δm

2δ
= m = GA(G).
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If the equality is attained, then du + dv = 2δ; thus, du = δ for every u ∈ V (G), and G
is a regular graph. �

Remark 2.5. Since M1(G) − 2M
1/2
2 (G) =

∑
uv∈E(G)

(√
du −

√
dv

)2, we have M1(G) −
2M

1/2
2 (G) ≥ 0.

Theorem 2.6. If α > 0 and G is a graph with m edges and minimum degree δ, then

GA(G) ≥ 2δm(α+1)/αχα(G)−1/α,

and the equality is attained if and only if G is regular.

Proof. Let us define p = (α + 1)/α > 1. Hölder inequality gives

m =
∑

uv∈E(G)

( √
dudv

du + dv

)1/p(du + dv√
dudv

)1/p

≤
( ∑

uv∈E(G)

√
dudv

du + dv

)1/p( ∑
uv∈E(G)

(du + dv√
dudv

)1/(p−1))(p−1)/p
,

mp ≤ 1
2

GA(G)
( 1

δ1/(p−1) χ1/(p−1)(G)
)p−1

= 1
2δ

GA(G)χ1/(p−1)(G)p−1.

The result follows from this inequality and the equality p − 1 = 1/α.
If the graph is regular, then

2δm(α+1)/αχα(G)−1/α = 2δm1/αm
(
(2δ)αm

)−1/α = m = GA(G).

If the equality is attained, then the previous argument gives
√

dudv = δ for every
uv ∈ E(G). Thus, du = δ for every u ∈ V (G), and G is a regular graph. �

As a consequence of Theorem 2.6, we obtain the following result appearing in [36,
Theorem 3.7].

Corollary 2.7. If G is a graph with m edges and minimum degree δ, then

GA(G) ≥ 2δm2

M1(G)
,

and the equality is attained if and only if G is regular.

Theorem 2.8. If p ≥ 2 and G is a graph with m edges and minimum degree δ, then

GA(G) ≥ 2 δ1/2mpM
(2p−1)/(2p−2)
1 (G)1−p.

Proof. Hölder inequality gives

m =
∑

uv∈E(G)

( √
dudv

du + dv

)1/p(du + dv√
dudv

)1/p

≤
( ∑

uv∈E(G)

√
dudv

du + dv

)1/p( ∑
uv∈E(G)

(√
du

dv
+

√
dv

du

)1/(p−1))(p−1)/p
.

Since p ≥ 2, we have 0 < 1/(p − 1) ≤ 1 and so

mp ≤
( ∑

uv∈E(G)

√
dudv

du + dv

)( ∑
uv∈E(G)

((du

dv

)1/(2p−2)
+

(dv

du

)1/(2p−2)))p−1
.
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Since ∑
uv∈E(G)

((du

dv

)1/(2p−2)
+

(dv

du

)1/(2p−2))
≤ δ−1/(2p−2) ∑

uv∈E(G)

(
d1/(2p−2)

u + d1/(2p−2)
v

)
= δ−1/(2p−2) ∑

u∈V (G)
d1/(2p−2)

u du

= δ−1/(2p−2)M
(2p−1)/(2p−2)
1 (G),

we have
mp ≤ 1

2
GA(G)

(
δ−1/(2p−2)M

(2p−1)/(2p−2)
1 (G)

)p−1

= 1
2

δ−1/2GA(G)M (2p−1)/(2p−2)
1 (G)p−1.

�

We will need the following elementary result. We include a proof for the sake of com-
pleteness.

Lemma 2.9. Let f : [a, b] → R be a C2 function such that f ′ = gh for some C1 functions
g, h with g ≥ 0 and h′ ≥ 0 on [a, b]. Then maxt∈[a,b] f(t) = max{f(a), f(b)}.

Proof. If h ≥ 0, then f ′ ≥ 0 and maxt∈[a,b] f(t) = f(b) = max{f(a), f(b)}.
If h ≤ 0, then f ′ ≤ 0 and maxt∈[a,b] f(t) = f(a) = max{f(a), f(b)}.
Otherwise, h(a) < 0 and h(b) > 0 since h′ ≥ 0 on [a, b]. Thus, there exists t0 ∈ (a, b)

such that h(t0) = 0. Since h′ ≥ 0 on [a, b], we have h ≤ 0 on [a, t0] and h ≥ 0 on [t0, b].
Hence, f is non-increasing on [a, t0] and non-decreasing on [t0, b], and the conclusion
holds. �

Theorem 2.10. Let G be a graph with maximum degree ∆ and minimum degree δ, and
α ∈ R. Then

GA(G) ≥ δ−2αMα
2 (G), if α ≤ −1/2,

GA(G) ≥ min
{

δ−2α,
2

(∆δ)α−1/2(∆ + δ)

}
Mα

2 (G), if − 1/2 < α ≤ 0,

GA(G) ≥ min
{

∆−2α,
2

(∆δ)α−1/2(∆ + δ)

}
Mα

2 (G), if 0 < α < 1/2,

GA(G) ≥ ∆−2αMα
2 (G), if α ≥ 1/2.

Every bound is attained for every regular graph G. Furthermore, the bounds in the first
and fourth cases are attained if and only if G is regular.

Proof. We are going to compute the maximum value of the function f : [δ, ∆]×[δ, ∆] → R
given by

f(x, y) = (xy)α

√
xy

x+y

= (xy)α−1/2(x + y) = xα+1/2yα−1/2 + xα−1/2yα+1/2.

If α ≤ −1/2, then f is a decreasing function in each variable, and so, f(x, y) ≤ f(δ, δ) =
2δ2α and

Mα
2 (G) ≤ δ2αGA(G).

If α ≥ 1/2, then f is an increasing function in each variable, and so, f(x, y) ≤ f(∆, ∆) =
2∆2α and

Mα
2 (G) ≤ ∆2αGA(G).
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Let us consider the case −1/2 < α < 1/2. We have
∂f

∂x
(x, y) = (α + 1/2)xα−1/2yα−1/2 + (α − 1/2)xα−3/2yα+1/2

= xα−3/2yα−1/2(
(α + 1/2)x + (α − 1/2)y

)
,

∂f

∂y
(x, y) = yα−3/2xα−1/2(

(α + 1/2)y + (α − 1/2)x
)
.

By symmetry, we can assume that x ≤ y.
Assume now −1/2 < α ≤ 0. Thus, (α + 1/2)x + (α − 1/2)y ≤ (α + 1/2)y + (α − 1/2)y =

2αy ≤ 0 and so, ∂f/∂x ≤ 0. Therefore, the maximum value of f is attained on the set
{x = δ, δ ≤ y ≤ ∆}.

Since the function (α+1/2)y+(α−1/2)δ is increasing on y ∈ [δ, ∆] and ∂f/∂y(δ, y) and
(α+1/2)y+(α−1/2)δ have the same sign, Lemma 2.9 gives f(δ, y) ≤ max{f(δ, δ), f(δ, ∆)}.
Thus,

f(x, y) ≤ max
{
2δ2α, (∆δ)α−1/2(∆ + δ)

}
.

Finally, assume 0 < α < 1/2. Thus, (α+1/2)y+(α−1/2)x ≥ (α+1/2)x+(α−1/2)x =
2αx > 0 and so, ∂f/∂y > 0. Therefore, the maximum value of f is attained on the set
{y = ∆, δ ≤ x ≤ ∆}.

Since the function (α+1/2)x+(α−1/2)∆ is increasing on x ∈ [δ, ∆] and ∂f/∂x(x, ∆) and
(α+1/2)x+(α−1/2)∆ have the same sign, Lemma 2.9 gives f(x, ∆) ≤ max{f(δ, ∆), f(∆, ∆)}.
Therefore,

f(x, y) ≤ max
{
2∆2α, (∆δ)α−1/2(∆ + δ)

}
.

This finishes the proof of the inequalities.
If the graph is regular, then

2
(∆δ)α−1/2(∆ + δ)

= δ−2α = ∆−2α

and
∆−2αMα

2 (G) = ∆−2α∆2αm = GA(G).
The properties of the function f give that, in the first and fourth cases, each equality

is attained if and only if either du = dv = δ for every uv ∈ E(G) or du = dv = ∆ for every
uv ∈ E(G), and so, G is regular. �

Theorem 2.10 has the following consequence for the Randić, second Zagreb and recip-
rocal Randić indices.
Corollary 2.11. Let G be a graph with maximum degree ∆ and minimum degree δ. Then

GA(G) ≥ δR(G),
GA(G) ≥ ∆−2M2(G),

GA(G) ≥ ∆−1M
1/2
2 (G).

The equality in each bound is attained if and only if G is regular.
Note that the first inequality in Corollary 2.11 appears in [39, Theorem 6].

3. Other bounds
The Albertson index is defined in [2] (see also [3]) as

Alb(G) =
∑

uv∈E(G)
|du − dv| .

This index is also known as third Zagreb index (see [16]) and misbalance deg index (see [46]
and [44]). This is a significant predictor of standard enthalpy of vaporisation for octane
isomers (see [46]). This index is much used as a measure of non-regularity of a graph.
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Theorem 3.1. If G is a graph with m edges and minimum degree δ, then

GA(G) ≥ m − 1
2δ

Alb(G),

and the equality is attained if and only if G is regular.

Proof. We have seen in the proof of Theorem 2.4 that

GA(G) +
∑

uv∈E(G)

(√
du −

√
dv

)2

du + dv
= m.

We have ∣∣√du −
√

dv

∣∣∣∣√du −
√

dv

∣∣ ≤
∣∣√du −

√
dv

∣∣(√
du +

√
dv

)
,∑

uv∈E(G)

(√
du −

√
dv

)2 ≤
∑

uv∈E(G)

∣∣du − dv

∣∣ = Alb(G).

Hence,

GA(G) = m −
∑

uv∈E(G)

(√
du −

√
dv

)2

du + dv

≥ m − 1
2δ

∑
uv∈E(G)

(√
du −

√
dv

)2 ≥ m − 1
2δ

Alb(G).

If G is regular, then GA(G) = m and Alb(G) = 0 and so, the equality is attained.
If the equality is attained, then du + dv = 2δ for every uv ∈ E(G); thus, du = δ for

every u ∈ V (G) and so, G is a regular graph. �
Theorem 3.2. If G is a graph with maximum degree ∆ and minimum degree δ, then

Alb(G) ≤ ∆2 − δ2

2
√

∆δ
GA(G),

and the equality is attained if and only if G is a regular or biregular graph.

Proof. We have∣∣du − dv

∣∣
2
√

dudv
du+dv

=
∣∣du − dv

∣∣(du + dv)
2
√

dudv
=

∣∣d2
u − d2

v

∣∣
2
√

dudv
= 1

2

∣∣∣∣∣∣
√

d3
u

dv
−

√
d3

v

du

∣∣∣∣∣∣
≤ 1

2

√
∆3

δ
−

√
δ3

∆

 = ∆2 − δ2

2
√

∆δ
,

Alb(G) ≤ ∆2 − δ2

2
√

∆δ
GA(G).

If G is a regular or biregular graph, then
∆2 − δ2

2
√

∆δ
GA(G) = ∆2 − δ2

2
√

∆δ

2
√

∆δ

∆ + δ
m = (∆ − δ) m = Alb(G).

If the equality is attained, then the previous argument gives that {du, dv} = {∆, δ} for
every uv ∈ E(G); thus, G is a regular or biregular graph. �

The following well-known result provides a converse of Cauchy-Schwarz inequality (see,
e.g., [29, Lemma 3.4]).

Lemma 3.3. If aj , bj ≥ 0 and ωbj ≤ aj ≤ Ωbj for 1 ≤ j ≤ k, then( k∑
j=1

a2
j

)1/2( k∑
j=1

b2
j

)1/2
≤ 1

2

√
Ω
ω

+
√

ω

Ω

 k∑
j=1

ajbj .
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If aj > 0 for some 1 ≤ j ≤ k, then the equality holds if and only if ω = Ω and aj = ωbj

for every 1 ≤ j ≤ k.

Multiplicative versions of the first and the second Zagreb indices, Π1 and Π2, were first
considered in [42], defined as

Π1(G) =
∏

u∈V (G)
d2

u, Π2(G) =
∏

uv∈E(G)
dudv.

Also, the multiplicative sum-Zagreb index Π∗
1 was introduced in [15] as

Π∗
1(G) =

∏
uv∈E(G)

(du + dv).

Theorem 3.4. If G is a graph with m edges, maximum degree ∆ and minimum degree δ,
then

GA(G) ≥ m

∆
Π1(G)δ/(4m),

and the equality is attained if and only if G is regular.

Proof. The multiplicative version of the first Zagreb index satisfies

Π1(G) =
∏

u∈V (G)
d2

u =
∏

uv∈E(G)
d2/du

u d2/dv
v ≤

( ∏
uv∈E(G)

dudv

)2/δ
.

Using the fact that the geometric mean is at most the arithmetic mean, we obtain
1
m

GA(G) = 1
m

∑
uv∈E(G)

2
√

dudv

du + dv
≥

( ∏
uv∈E(G)

2
√

dudv

du + dv

)1/m

≥
( 1

∆m

∏
uv∈E(G)

√
dudv

)1/m
= 1

∆

(( ∏
uv∈E(G)

dudv

)2/δ)δ/(4m)

≥ 1
∆

Π1(G)δ/(4m).

If the equality holds, then du + dv = 2∆ for every uv ∈ E(G); hence, du = ∆ for every
u ∈ V (G) and the graph is regular.

If the graph is regular, then
m

∆
Π1(G)δ/(4m) = m

∆

( ∏
uv∈E(G)

∆2/∆∆2/∆
)∆/(4m)

= m = GA(G).

�
Theorem 3.5. If α > 0 and G is a graph with m edges and maximum degree ∆, then

GA(G) ≥ m(2α+1)/(2α)

∆ M−α
2 (G)1/(2α) ,

and the equality is attained for some α if and only if G is regular.

Proof. Using the fact that the geometric mean is at most the arithmetic mean, we obtain
1
m

GA(G) = 1
m

∑
uv∈E(G)

2
√

dudv

du + dv
≥

( ∏
uv∈E(G)

2
√

dudv

du + dv

)1/m

≥
( 1

∆m

∏
uv∈E(G)

√
dudv

)1/m
,

GA(G)2α ≥
( m

∆

)2α( ∏
uv∈E(G)

(dudv)α
)1/m

.
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Using the fact that the harmonic mean is at most the geometric mean, we deduce

GA(G)2α ≥
( m

∆

)2α( ∏
uv∈E(G)

(dudv)α
)1/m

≥
( m

∆

)2α m∑
uv∈E(G)(dudv)−α

=
( m

∆

)2α m

M−α
2 (G)

.

If the equality holds, then du + dv = 2∆ for every uv ∈ E(G); hence, du = ∆ for every
u ∈ V (G) and the graph is regular.

If the graph is regular, then

m(2α+1)/(2α)

∆ M−α
2 (G)1/(2α) = m1/(2α)m

∆(∆−2αm)1/(2α) = m = GA(G).

�

We need the following result in [35, Theorem 3.3].

Lemma 3.6. If G is a graph with maximum degree ∆ and minimum degree δ, then
δα

2
Mα+1

1 (G) ≤ Mα
2 (G) ≤ ∆α

2
Mα+1

1 (G) if α > 0,

∆α

2
Mα+1

1 (G) ≤ Mα
2 (G) ≤ δα

2
Mα+1

1 (G) if α < 0,

and the equality holds for some α if and only if G is regular.

Corollary 3.7. If α > 0 and G is a graph with m edges, maximum degree ∆ and minimum
degree δ, then

GA(G) ≥ 21/(2α)δ1/2m(2α+1)/(2α)

∆ M1−α
1 (G)1/(2α) ,

and the equality holds for some α if and only if G is regular.

Proof. Theorem 3.5 and Lemma 3.6 give

GA(G) ≥ m(2α+1)/(2α)

∆ M−α
2 (G)1/(2α) ≥ m(2α+1)/(2α)

∆
(1

2 δ−αM1−α
1 (G)

)1/(2α) = 21/(2α)δ1/2m(2α+1)/(2α)

∆ M1−α
1 (G)1/(2α) .

If the graph is regular, then

21/(2α)δ1/2m(2α+1)/(2α)

∆ M1−α
1 (G)1/(2α) = 21/(2α)δ1/2m1/(2α)m

δ(δ−αδn)1/(2α) = 21/(2α)δ1/2m1/(2α)m

δ δ−1/2(2m)1/(2α) = m = GA(G).

If the equality holds, then we have the equality in Theorem 3.5, and thus the graph is
regular. �

Theorem 3.8. If G is a graph, then

GA(G) ≥ 2M
1/4
2 (G)2

M1(G)
,

and the equality is attained if G is a regular or biregular graph.

Proof. Cauchy-Schwarz inequality gives

M
1/4
2 (G)2 =

( ∑
uv∈E(G)

(dudv)1/4

(du + dv)1/2 (du + dv)1/2
)2

≤
( ∑

uv∈E(G)

√
dudv

du + dv

)( ∑
uv∈E(G)

(du + dv)
)

= 1
2

GA(G)M1(G).
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If G is regular or biregular, then

2M
1/4
2 (G)2

M1(G)
=

2
(
(∆δ)1/4m

)2

(∆ + δ)m
= 2

√
∆δ

∆ + δ
m = GA(G).

�

The following technical result appears in [36, Corollary 2.3].

Lemma 3.9. Let g be the function g(x, y) = 2√
xy

x+y with 0 < a ≤ x, y ≤ b. Then

2
√

ab

a + b
≤ g(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b, or x = b
and y = a, and the equality in the upper bound is attained if and only if x = y. Besides,
g(x, y) = g(x′, y′) if and only if x/y is equal to either x′/y′ or y′/x′.

As a consequence of Lemma 3.9 we obtain the following bounds for the geometric-
arithmetic index [10] (see also [12, p.609-610]).

Proposition 3.10. If G is a graph with m edges, maximum degree ∆ and minimum degree
δ, then

2m
√

∆δ

∆ + δ
≤ GA(G) ≤ m. (3.1)

The equality in the first inequality is attained if and only if G is regular or biregular. The
equality in the second inequality is attained if and only if G is regular.

The forgotten topological index (or F-index) was introduced in [23], at the same time
as Zagreb indices. There, it was defined as

F (G) =
∑

u∈V (G)
d3

u.

As the first Zagreb index it was used when finding the total π-electron energy (see [23]).
It was thought to assess the extent of the branching of the carbon-atom skeleton of the
associated molecule. Recently, when Furtula and Gutman ([17]) showed that the acetic
factor and the entropy could be predicted similarly by either the F -index or the first Zagreb
index, attention was finally given to the former. Both of them yield correlation coefficients
greater than 0.95. Besides, [17] pointed out that the F-index could be employed to predict
the logarithm of the octanol-water partition coefficient (see also [1]) very accuarately. For
more bounds of the F -index see, e.g., [1, 8, 38].

We report a mistake in the lower bound of GA in [39, Theorem 5]. By using the
argument in the proof of that theorem, we obtain the following inequality involving the
forgotten topological index.

Theorem 3.11. If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≥
4∆2δ2

√(
F (G) + 2M2(G)

)
M−1

2 (G)
(∆ + δ)2(∆2 + δ2)

,

and the equality is attained if and only if G is regular.

Proof. We have by Lemma 3.9
4∆δ

(∆ + δ)2 ≤ 4dudv

(du + dv)2 ≤ 1,
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for every uv ∈ E(G). Hence,

2
√

dudv

du + dv
≥ 4∆δ

(∆ + δ)2
du + dv

2
√

dudv
, GA(G) ≥ 4∆δ

(∆ + δ)2

∑
uv∈E(G)

du + dv

2
√

dudv
.

Moreover, ∑
uv∈E(G)

(du + dv)2 =
∑

uv∈E(G)
(d2

u + d2
v) + 2

∑
uv∈E(G)

dudv

=
∑

u∈V (G)
d3

u + 2M2(G)

= F (G) + 2M2(G).
Since

δ2 ≤ (du + dv)/2
1/

√
dudv

= du + dv

2
√

dudv ≤ ∆2,

Lemma 3.3 gives

∑
uv∈E(G)

du + dv

2
√

dudv
≥

( ∑
uv∈E(G)

(du+dv)2

4

)1/2( ∑
uv∈E(G)

1
dudv

)1/2

1
2

(
∆
δ + δ

∆

)
=

∆δ
√(

F (G) + 2M2(G)
)
M−1

2 (G)
∆2 + δ2 ,

and the desired inequality follows.
If the graph is regular, then

4∆2δ2
√(

F (G) + 2M2(G)
)
M−1

2 (G)
(∆ + δ)2(∆2 + δ2)

=

√(
2∆2m + 2∆2m

)
m/∆2

2
= m = GA(G).

If the equality is attained, then Lemma 3.3 gives δ2 = ∆2 and G is a regular graph. �

Theorem 3.12. If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≥ F (G)
2∆2 − (∆ − δ)Alb(G)

2∆δ
,

and the equality is attained if and only if G is regular.

Proof. Since
d2

u + d2
v

2∆
≤ d2

u + d2
v

du + dv
= 2dudv

du + dv
+ (du − dv)2

du + dv
≤ 2∆

√
dudv

du + dv
+ (du − dv)2

du + dv
,

for every uv ∈ E(G), we have
F (G)
2∆

≤ ∆ GA(G) +
∑

uv∈E(G)

(du − dv)2

du + dv
.

Since ∑
uv∈E(G)

(du − dv)2

du + dv
≤ ∆ − δ

2δ

∑
uv∈E(G)

|du − dv| = ∆ − δ

2δ
Alb(G),

we conclude
F (G)
2∆

≤ ∆ GA(G) + (∆ − δ)Alb(G)
2δ

.

If the graph is regular, then
F (G)
2∆2 − (∆ − δ)Alb(G)

2∆δ
= F (G)

2∆2 = 2∆2m

2∆2 = m = GA(G).
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The previous argument gives that if the bound is attained, then du + dv = 2∆ for every
uv ∈ E(G). Thus, du = ∆ for every u ∈ V (G) and G is regular. �

The following Kober’s inequality appears in [25] (see also [50, Lemma 1]).

Lemma 3.13. If aj > 0 for 1 ≤ j ≤ k, then

( k∑
j=1

√
aj

)2
≥

k∑
j=1

aj + k(k − 1)
( k∏

j=1
aj

)1/k
.

A family of degree–based structure–descriptors, named Adriatic indices, was put for-
ward in [44,46]. Twenty of them were selected as significant predictors. One of them, the
inverse sum indeg index, ISI, was singled out in [44] as a significant predictor of total
surface area of octane isomers. This index is defined as

ISI(G) =
∑

uv∈E(G)

du dv

du + dv
=

∑
uv∈E(G)

1
1

du
+ 1

dv

.

In the last years there is an increasing interest in the mathematical properties of this
index.

Theorem 3.14. If G is a graph with m edges and maximum degree ∆, then

GA(G) ≥
√

2
∆

(
ISI(G) + m(m − 1)Π2(G)1/m

Π∗
1(G)1/m

)
,

and the equality is attained if and only if G is a regular graph.

Proof. Lemma 3.13 gives

ISI(G) + m(m − 1)Π2(G)1/m

Π∗
1(G)1/m

=
∑

uv∈E(G)

dudv

du + dv
+ m(m − 1)

( ∏
uv∈E(G)

dudv

du + dv

)1/m
≤

( ∑
uv∈E(G)

(dudv)1/2

(du + dv)1/2

)2

=
( 1√

2
∑

uv∈E(G)

2
√

dudv

du + dv

( du + dv

2

)1/2)2
≤ ∆

2
GA(G)2.

If G is regular, then√
2
∆

(
ISI(G) + m(m − 1)Π2(G)1/m

Π∗
1(G)1/m

)
=

√
2
∆

(∆m

2
+ m(m − 1) (∆2m)1/m

((2∆)m)1/m

)
= m = GA(G).

If the equality is attained, then the previous argument gives du + dv = 2∆ for every
uv ∈ E(G), i.e., du = ∆ for every u ∈ V (G) and so, G is a regular graph. �

We need the following Diaz-Metcalf inequality [13].

Lemma 3.15. If aj and bj are real numbers such that haj ≤ bj ≤ Haj for 1 ≤ j ≤ m,
then

m∑
j=1

b2
j + hH

m∑
j=1

a2
j ≤ (h + H)

m∑
j=1

ajbj ,

where equality holds if and only if bj = haj or bj = Haj for 1 ≤ j ≤ m.
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Theorem 3.16. If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≥
M2(G) + 4∆2δ2χ−2(G)

∆2 + δ2 ,

and the equality is attained if and only if each connected component of G is δ-regular or
∆-regular. In particular, if G is connected, then the equality is attained if and only if G
is regular.

Proof. If we define
aj = 1

du + dv
, bj = 2

√
dudv ,

then
4δ2 ≤ bj/aj = 2

√
dudv (du + dv) ≤ 4∆2,

and so, Lemma 3.15 gives

4
∑

uv∈E(G)
dudv + 16∆2δ2 ∑

uv∈E(G)

1
(du + dv)2 ≤ (4∆2 + 4δ2)

∑
uv∈E(G)

2
√

dudv

du + dv
,

M2(G) + 4∆2δ2χ−2(G) ≤ (∆2 + δ2)GA(G).

By Lemma 3.15, the equality is attained if and only if 2
√

dudv (du + dv) = 4δ2 or
2
√

dudv (du + dv) = 4∆2 for each uv ∈ E(G), and this is equivalent to du = dv = δ or
du = dv = ∆ for each uv ∈ E(G), i.e., each connected component of G is δ-regular or
∆-regular. �
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