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Abstract

We study variational inequality by way of metric projection in Banach spaces. The main method is to use
a topological degree theory for the class of operators of monotone type in Banach spaces. More precisely,
some variational inequality associated with the duality operator is considered. As applications, the problem
is discussed in the Lebesgue spaces Lp and the Sobolev spaces W 1,2.
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1. Introduction

One of the most important applications of metric projection operators in Hilbert spaces may be solving
variational inequalities.

Alber [1] constructed some metric projection operators in Banach spaces using the Young-Fenchel trans-
formation and established a relationship between variational inequalities and operator equations involving
metric projection.

Let X be a real re�exive separable Banach space and K a closed convex set in X. We consider a
variational inequality of the form

⟨Ju+ Tu, v − u⟩ ≥ ⟨f, v − u⟩ for all v ∈ K, (1.1)

where J : X → X∗ is the duality operator, T : X → X∗ is a bounded continuous monotone operator, and
f ∈ X∗.

The goal of this paper is to investigate variational problem (1.1) via the corresponding operator equation
associated with a metric projection in Banach spaces. The main tool for solving the operator equation is a
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topological degree theory for the class of operators of monotone type related the operator T due to Berkovits
[3]; see also [8]. The degree theory is based on the Browder degree for operators of monotone type in [5, 6].

The variational problem can be reduced to the operator equation

Ju+ Tu = f in X. (1.2)

Moreover, some applications of (1.1) and (1.2) are discussed in the Lebesgue spaces X = Lp(Ω) and the
Sobolev spaces X = W 1,2(Ω), respectively.

2. Degree theory

Let X be a real Banach space with dual space X∗. The symbol ⟨·, ·⟩X denotes the dual pairing between
X∗ and X in this order. The symbol → (⇀) stands for strong (weak) convergence.

De�nition 2.1. An operator F : Ω ⊂ X → X∗ is said to be:

(1) of class (S+) if for any sequence (un) in Ω such that un ⇀ u in X and

lim sup
n→∞

⟨Fun, un − u⟩ ≤ 0,

we have un → u in X.

(2) quasimonotone if for any sequence (un) in Ω such that un ⇀ u in X, we have

lim sup
n→∞

⟨Fun, un − u⟩ ≥ 0.

(3) monotone if ⟨Fu− Fv, u− v⟩ ≥ 0 for all u, v ∈ Ω.

Notice that the collection of operators of class (S+) is stable under quasimonotone perturbations and any
monotone operator on each weakly closed set is quasimonotone.

Let X be a real re�exive Banach space with dual space X∗. Identifying the bidual space X∗∗ with X,
we write ⟨x, y⟩X∗ for x ∈ X and y ∈ X∗.

De�nition 2.2. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1. An operator F : Ω ⊂
X → X is said to be of class (S+)T if for any sequence (un) in Ω such that un ⇀ u in X, Tun ⇀ y in X∗,
and lim supn→∞⟨Fun, Tun − y⟩ ≤ 0, we have un → u in X.

Actually, it can be shown in [3, 8] that in in�nite dimensional Hilbert spaces the collection of operators
of class (S+)T is larger than that of operators of class (S+).

Given a nonempty set Ω in X, let Ω and ∂Ω denote the closure and the boundary of Ω in X, respectively.
Let Br(a) denote the open ball in X of positive radius r centered at a.

We consider the following classes of operators:

F1(Ω) := {F : Ω ⊂ X → X∗ | F is bounded, continuous, and of class (S+)},
FT (Ω) := {F : Ω ⊂ X → X | F is bounded, demicontinuous, and of class (S+)T },

for any Ω ⊂ DF and any T ∈ F1(Ω), where DF denotes the domain of F . Here, T is called an essential

inner map to F .
We present an example of abstract Hammerstein operator which belongs to FT ; see [3, Lemma 2.2].

Lemma 2.3. Let G be any bounded open set in a real re�exive Banach space X. Suppose that T ∈ F1(G)
and S : DS ⊂ X∗ → X is a bounded demicontinuous quasimonotone operator such that T (G) ⊂ DS. Then

the operator I + S ◦ T belongs to FT (G), where I denotes the identity operator.
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We consider a�ne homotopy H : [0, 1]×G → 2X de�ned by

H(t, u) := (1− t)Fu+ tSu for (t, u) ∈ [0, 1]×G.

If F, S ∈ FT (G) with T ∈ F1(G), then H(t, ·) belongs to FT (G) for all t ∈ [0, 1]. We say that a�ne homotopy
H has common essential inner map T .

Berkovits [3] introduced a topological degree theory for the class FT with an elliptic super-regularization
method due to Browder and Ton [7]. This will be a key tool of our main result in the next section.

Theorem 2.4. Let X be a real separable re�exive Banach space such that both X and X∗ are locally uniformly

convex. Let G be any bounded open set in X. For every F ∈ FT (G), where T ∈ F1(G), there exists a unique

degree function d such that the following properties are satis�ed:

(a) (Existence) If d(F,G, h) ̸= 0, then the equation Fu = h has a solution in G.

(b) (Additivity) If G1 and G2 are two disjoint open subsets of G such that h /∈ F (G \ (G1 ∪G2)), then we
have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

(c) (Homotopy invariance) Suppose that H : [0, 1]×G → X is an a�ne homotopy of class (S+)T with a
common essential inner map T ∈ F1(G). If h : [0, 1] → X is a continuous map such that h(t) /∈ H(t, ∂G)
for all t ∈ [0, 1], then the value of d(H(t, ·), G, h(t)) is constant for all t ∈ [0, 1].

(d) (Normalization) For any h ∈ G, we have d(I,G, h) = 1.

Proof. The existence proof is mainly based on the (S+)-degree; see [2, 4] for more details on the (S+)-degree.
It is shown in [3] that the value of d(F,G, h) is independent of the choice of essential inner map T . Moreover,
the uniqueness of the degree function d follows from the uniqueness of the (S+)-degree.

For our aim, we need Borsuk's theorem for operators of class (S+)T ; see [3, Theorem 8.1].

Theorem 2.5. Let G be a bounded open set in X that is symmetric with respect to the origin 0 ∈ G. Suppose

that F belongs to FT (G) and is odd on ∂G with 0 /∈ F (∂G), where T ∈ F1(G). Then d(F,G, 0) is an odd

number.

Let X be a real re�exive Banach space such that both X and X∗ are locally uniformly convex. Let
J : X → X∗ denote the (normalized) duality operator determined by

⟨Ju, u⟩ = ∥u∥2 and ∥Ju∥ = ∥u∥ for all u ∈ X.

It is known in [5, 9] that J is a bounded continuous odd operator of class (S+). A typical example of the
duality operator in uniformly convex Banach spaces is J : Lp → Lq, Ju = ∥u∥2−p|u|p−2u, where p, q ∈ (1,∞)
and p−1 + q−1 = 1.

3. Main Result

In this section, we study the variational inequality by way of metric projection in Banach spaces. The
method is to use the degree theory for the class FT in the previous section.

In what follows, let X be a real separable Banach space such that both X and X∗ are uniformly convex
and let K be a nonempty closed convex set in X. Let V : X∗ ×X → R be de�ned by the formula

V (φ, ξ) := ∥φ∥2 − 2⟨φ, ξ⟩+ ∥ξ∥2.

Let PK : X∗ → K be the metric projection as follows:

PKφ := φ̃ for φ ∈ X∗
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induced by
V (φ, φ̃) = inf

ξ∈K
V (φ, ξ).

It is known in [1] that the projection PK : X∗ → K is bounded, continuous, and monotone.
To begin with, we establish the relationship between variational inequality and the corresponding operator

equation in terms of the metric projection in Banach spaces; see [1, Theorem 8.1].

Lemma 3.1. Suppose that A : X → X∗ is an operator, α is a positive number, and f ∈ X∗. Then u0 ∈ K
is a solution of the variational inequality

⟨Au− f, ξ − u⟩ ≥ 0 for all ξ ∈ K

if and only if u0 ∈ X is a solution of the operator equation

u = PK(Ju− α(Au− f)),

where J : X → X∗ is the duality operator and PK : X∗ → K is de�ned as above.

We consider a variational inequality of the form

⟨Ju+ Tu, v − u⟩ ≥ ⟨f, v − u⟩ for all v ∈ K, (3.1)

where J : X → X∗ is the duality operator, T : X → X∗ is an operator, and f ∈ X∗.
According to Lemma 3.1, u ∈ K is a solution of (3.1) if and only if u ∈ K is a solution of the operator

equation
u = PK(Ju− α(Ju+ Tu− f)), (3.2)

where α is a positive number and PK is the metric projection.
We are now in a position to prove the main result in Banach spaces, where the degree theory is applied

together with Borsuk's theorem. For the Hilbert space case, we refer to [3, Example 8.3].

Theorem 3.2. Let K be a closed convex set in X with 0 ∈ K that is symmetric with respect to 0. Suppose

that J : X → X∗ is the duality operator and T : X → X∗ satis�es the following conditions:

(a) T is bounded, continuous, and quasimonotone and take α > 1;

(b)

lim inf
∥u∥→∞

⟨Tu, u⟩
∥u∥

> −∞;

(c) there is a positive number R0 such that

T (−u) = −Tu for all u ∈ X with ∥u∥ ≥ R0.

Then for any f ∈ X∗, variational inequality (3.1) has at least one solution in K.

Proof. Let f ∈ X∗ be given. Set

F := I + PK(αT + (α− 1)J − αf) and Tα := αT + (α− 1)J.

Note by hypothesis (a) that Tα : X → X∗ is bounded, continuous, and of class (S+), and PK : X∗ → K is
bounded, continuous, monotone, and odd. Lemma 2.3 implies that F ∈ FTα(G) for any bounded open set
G in X.

To apply the degree theory, we have to show that there exists a constant R with R ≥ R0 such that

u+ PK(Tαu− tαf) ̸= 0 for all t ∈ [0, 1] and all u ∈ ∂BR(0). (3.3)
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Assume to the contrary that for a sequence (Rn) in R with Rn ≥ R0 and Rn → ∞ as n → ∞, there exist
sequences (tn) in [0, 1] and (un) in X with ∥un∥ = Rn such that

un + PK(Tαun − tnαf) = 0 for each n ∈ N.

This implies that
PK(Tαun − tnαf) = −un ∈ K and PK(J0) = 0.

It is known in [1] that the following relation holds for all φ1, φ2 ∈ X∗:

⟨φ1 − φ2, PK(φ1)− PK(φ2)⟩ ≥ 2R2δ

(
∥PK(φ1)− PK(φ2)∥

2R

)
, (3.4)

where R =
√
(∥PK(φ1)∥2 + ∥PK(φ2)∥2)/2. Here, δ denotes the modulus of convexity of the space X and

0 ≤ δ < 1.
Putting φ1 = Tαun − tnαf and φ2 = J0 in (3.4), we get

⟨Tαun − tnαf,−un⟩ ≥ δ
( 1√

2

)
∥un∥2

and hence

−α⟨Tun, un⟩
∥un∥

+ ∥αf∥ ≥
(
α− 1 + δ

( 1√
2

))
∥un∥. (3.5)

By hypothesis (b), we have

lim sup
∥u∥→∞

−⟨Tu, u⟩
∥u∥

< +∞.

Hence it follows from (3.5) and α > 1 that

lim sup
n→∞

∥un∥ ≤ 1

α− 1
lim sup
n→∞

[
−α⟨Tun, un⟩

∥un∥
+ ∥αf∥

]
< +∞,

which contradicts our assumption that ∥un∥ → ∞ as n → ∞. Therefore, assertion (3.3) must be true.
Now we obtain from the homotopy invariance property of the degree d in Theorem 2.4 with (3.3) that

d(F,BR(0), 0) = d(I + PK ◦ Tα, BR(0), 0). (3.6)

Note by hypothesis (c) that the operator I + PK ◦ Tα belongs to FTα(BR(0)) and it is odd on ∂BR(0).
Borsuk's Theorem 2.5 says that d(I + PK ◦ Tα, BR(0), 0) is an odd number, which implies by (3.6) that

d(F,BR(0), 0) ̸= 0.

By the existence property of the degree d, equation (3.2) has a solution u in K. We conclude that the point
u is a solution of variational inequality (3.1). This completes the proof.

Corollary 3.3. Suppose that J : X → X∗ is the duality operator and T : X → X∗ satis�es conditions

(a)�(c) of Theorem 3.2. Then for every f ∈ X∗, the operator equation

Ju+ Tu = f

has a solution in X.

Proof. Apply Theorem 3.2 with K = X.
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4. Applications

We are concerned with the following variational inequality

⟨Ju+ Tu, v − u⟩ ≥ ⟨f, v − u⟩ for all v ∈ K,

where J : X → X∗ is the duality operator on a real separable uniformly convex Banach space X and K is a
closed convex set in X, and f ∈ X∗.

Concerning the operator T , we suppose that g : R → R is a real-valued function such that

(g1) g is continuous and odd on R;
(g2) there exist numbers a, c ∈ R with a ≥ 0 and c > 0 such that

|g(u)| ≤ a+ c|u|p−1 for all u ∈ R;

(g3) g is monotonically increasing on R, that is,

g(u) ≤ g(v) for all u, v ∈ R with u ≤ v;

(g4) there exists a positive number r such that

g(u)u ≥ 0 for all u ∈ R with |u| ≥ r.

Theorem 4.1. Let X = Lp(Ω) and b ∈ Lq(Ω), where Ω is a nonempty measurable set in RN with measΩ < ∞
and p, q ∈ (1,∞) with p−1 + q−1 = 1. Let K be a closed convex set in X with 0 ∈ K that is symmetric

with respect to 0. Suppose that g : R → R is a real-valued function that satis�es conditions (g1)�(g4). Let

J, T : X → X∗ and f : X → R be de�ned by

⟨Ju, v⟩ = ∥u∥2−p

∫
Ω
|u|p−2uv dx,

⟨Tu, v⟩ =
∫
Ω
g(u)v dx,

⟨f, v⟩ =
∫
Ω
bv dx,

for u, v ∈ X. Then the variational inequality

⟨Ju+ Tu, v − u⟩ ≥ ⟨f, v − u⟩ for all v ∈ K (4.1)

has a solution in K.

Proof. It is clear that X and X∗ are separable uniformly convex Banach spaces, J : X → X∗ is the
duality operator, and f is a bounded linear functional on X. Under hypotheses (g1)�(g3), the operator T is
continuous, bounded, monotone, and odd. Let A = {x ∈ RN : |u(x)| ≥ r}. Then it follows from (g2) and
(g4) that the following estimate holds for all u ∈ X:

⟨Tu, u⟩ =
∫
Ω\A

g(u)u dx+

∫
A
g(u)u dx

≥
∫
Ω\A

g(u)u dx

≥ −
∫
Ω
(a+ crp−1)r dx,

which implies, in view of measΩ < ∞, that

lim inf
∥u∥→∞

⟨Tu, u⟩
∥u∥

> −∞;

Applying Theorem 3.2, variational inequality (4.1) has a solution u in K.
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We close this section with the solvability of operator equation in Hilbert spaces.

Theorem 4.2. Let X = W 1,2(Ω) and b ∈ L2(Ω), where Ω is a bounded region in RN . Suppose that g : R → R
is a real-valued function that satis�es conditions (g1)�(g4) with p = 2. Let J, T : X → X∗ and f : X → R be

de�ned by

⟨Ju, v⟩ =
∫
Ω

(
uv +

N∑
i=1

DiuDiv

)
dx,

⟨Tu, v⟩ =
∫
Ω
g(u)v dx,

⟨f, v⟩ =
∫
Ω
bv dx,

for u, v ∈ X. Then the operator equation

Ju+ Tu = f (4.2)

has a solution in X.

Proof. Obviously, X is a separable uniformly convex Banach space, J is the duality operator, and f is a
bounded linear functional. As before, T is continuous, bounded, monotone, odd, and

lim inf
∥u∥→∞

⟨Tu, u⟩
∥u∥

> −∞.

Applying Corollary 3.3, equation (4.2) has a solution in X.
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