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Abstract  
 

Dry air is widely used in industrial and technological applications. Ideal gas EoS is used in dry air thermodynamic 

property calculations. For most applications, it might be sufficient, but when applications with higher pressure zones 

are considered, error level will increase. Peng-Robinson cubic Eq. of states is considered for better accuracy of the 

thermodynamic properties for dry air in this paper. So, the objective of this study is to suggest a more accurate EoS 

for thermodynamic and heat transfer analyses. Set of computer programs were developed in java language to calculate 

thermodynamic properties like specific volume, internal energy, enthalpy, entropy, Gibbs energy, Helmholtz energy, 

specific heat, thermal conductivity, and viscosity of dry air. The results are compared with the perfect gas EoS and 

the Eq.s developed by The International Association for the Properties of Water and Steam (IAPWS).  
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1. Introduction 

Usually, perfect gas Eq. of state (EoS) is used in order to 

calculate thermodynamic and thermophysical properties of 

dry air because of its simplicity. It might be suitable for many 

applications; however, error level will increase if high-

pressure applications are in the question. An Eq. of state with 

better accuracy of thermodynamic properties will be required 

for extreme cases. Moreover, in thermophysical property 

predictions, the approach is to assume such properties as only 

the function of temperature. But properties like viscosity and 

thermal conductivity heavily depend on pressure as well as 

temperature. Furthermore, such properties are quite a 

nonlinear function of pressure so that a linear interpolation 

type of correction of properties will not be correct. 

Cubic Eq. of states are basically for the gas phase and can 

be accurate enough for high pressure applications as well. It 

is also possible to solve inverse Eq. v(T,P) avoiding of more 

complex iterative root finding process. 

In this paper, Peng-Robinson model is used for critical 

properties and acentric factor for pure gases. The mixing rule 

proposed by Harstad et al. is used to extend the Peng-

Robinson EoS to mixtures [1] and dry air (nitrogen, oxygen, 

argon, carbon dioxide, neon, helium, methane, krypton, 

hydrogen and xenon09 [2]. Peng-Robinson EoS model was 

suggested by Ding-Yu Peng and Donald B. Robinson in 1976 

to achieve simple and accurate predictions such as the 

compressibility factor liquid phase [3-4]. Since 1976, it has 

been widely used in thermodynamic calculations in 

industrial and scientific studies [5].  

The objective of this study is propose an accurate EoS for 

dry air compared to the ideal gas EoS for thermodynamic and 

heat transfer analyse. Set of computer programs were 

developed by using Peng-Robinson EoS for determining 

specific volume, internal energy, enthalpy, entropy, Gibbs 

energy, Helmholtz energy, specific heat, thermal 

conductivity, and viscosity of dry air. The results were 

compared with the perfect gas EoS and others EoSs 

developed by The International Association for the 

Properties of Water and Steam (IAPWS) [6].  

 

2. Methodology  

2.1 Formulation of Eq. of State   

Peng-Robinson cubic Eq. of state was considered for dry 

exhaust gas mixture in this paper. Parameters of the Eq. is 

defined in terms of the critical properties and the acentric 

factor. Cubic Eq. of state has a general form of Eq. as [7] 

𝑃 =
𝑅𝑇

𝑣−𝑏
−

𝑎

𝑣2+𝑢𝑏𝑣+𝑤𝑏2
       (2.1) 

 

Peng-Robinson EoS coefficients: u=2, w=-1 so that Eq. took 

the form: 

 

𝑃 =
𝑅𝑇

𝑣−𝑏
−

𝑎

𝑣2+2𝑏𝑣−𝑏2
      (2.2)  

where 

𝑏 =
0.0780𝑅𝑇𝑐𝑟𝑖𝑡

𝑃𝑐𝑟𝑖𝑡
      (2.3) 

𝑎 =
0.45724𝑅2𝑇𝑐𝑟𝑖𝑡

2

𝑃𝑐𝑟𝑖𝑡
[1 + 𝑓𝜔(1 − 𝑇𝑟

0.5)]2  (2.4) 

𝑓𝜔 = 0.37464 + 1.54226𝜔 − 0.269992𝜔2 (2.5)     
𝜔 is the Pitzer’s acentric factor calculated as: 

 
𝜔 = −𝑙𝑜𝑔10𝑃𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑣𝑎𝑝𝑜𝑟(𝑎𝑡 𝑇𝑟 = 0.7) − 1 (2.6)   
The reduced vapor pressure (𝑃𝑟 = 𝑃 𝑃𝑐𝑟𝑖𝑡⁄ ) at 𝑇𝑟 =
𝑇 𝑇𝑐𝑟𝑖𝑡 = 0.7⁄  is necessary to obtain the values of 𝜔. The Eq. 

can be written in the following form as well: 

  
𝑍3 − (1 + 𝐵∗ − 𝑢𝐵∗)𝑍2 + (𝐴∗ + 𝑤𝐵∗2 − 𝑢𝐵∗ − 𝑢𝐵∗2)𝑍 −
𝐴∗𝐵∗ − 𝐵∗2 − 𝑤𝐵∗2 − 𝑤𝐵∗3 = 0   (2.7)  
where 

𝐴∗ =
𝑎𝑃

𝑅2𝑇2
     (2.8)
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𝐵∗ =
𝑏𝑃

𝑅𝑇
      (2.9)  

 𝑍 =
𝑃𝑣

𝑅𝑇
      (2.10) 

 

So far Eq.s given above are for a single gas only.  We will 

use the  Peng-Robinson EoS for dry air as a mixture of 

oxygen, nitrogen, argon, carbon dioxide, etc.. A detail list of 

the component gases and their mole fractions in dry air is 

given in Table 1. More recently, Harstad, Miller, and Bellan 

[1] have presented computationally efficient forms of EoS 

for gas mixtures, particularly of Peng-Robinson EoS. They 

have also shown that it is possible to extend the Eq.s’ validity 

beyond the range of data using departure functions. In this 

study, the mixing rule proposed by Harstad et al. is used to 

extend the PR Eq. of state to mixtures [1]. In particular, the 

parameters a and b can be obtained by 

 
𝑎 = ∑ ∑ 𝑦𝑖𝑦𝑗𝑎𝑖𝑗𝑗𝑖      (2.11) 

𝑏 = ∑ 𝑦𝑖𝑏𝑖𝑖      (2.12)  
where y is the mole fraction in the vapor phase and 

 

𝑏𝑖𝑗 =
0.0780𝑅𝑇𝑐𝑟𝑖𝑡 𝑖𝑗

𝑃𝑐𝑟𝑖𝑡 𝑖𝑗
    (2.13)  

𝑎𝑖𝑗 =
0.45724𝑅2𝑇𝑐𝑟𝑖𝑡 𝑖𝑗

2

𝑃𝑐𝑟𝑖𝑡 𝑖𝑗
[1 + 𝑓𝜔𝑖𝑗(1 − 𝑇𝑟 𝑖𝑗

0.5)]
2
  (2.14) 

𝑓𝜔𝑖𝑗 = 0.37464 + 1.54226𝜔𝑖𝑗 − 0.269992𝜔𝑖𝑗
2       (2.15) 

𝑇𝑟 𝑖𝑗 = 𝑇 𝑇𝑐𝑟𝑖𝑡 𝑖𝑗⁄      (2.16)   
 

The diagonal elements of the “critical coefficients” 

matrices are equal to their corresponding pure substance 

counterparts, i.e., 𝑇𝑐𝑟𝑖𝑡 𝑖𝑖
 = 𝑇𝑐𝑟𝑖𝑡 𝑖

 , 𝑃𝑐𝑟𝑖𝑡 𝑖𝑖 = 𝑃𝑐𝑟𝑖𝑡 𝑖, and 𝜔𝑖𝑖 =
𝜔𝑖 . The off-diagonal elements are evaluated through 

additional rules: 

 

𝑃𝑐𝑟𝑖𝑡 𝑖𝑗 =
𝑍𝑐𝑟𝑖𝑡 𝑖𝑗𝑅𝑇𝑐𝑟𝑖𝑡 𝑖𝑗

 

𝑉𝑐𝑟𝑖𝑡 𝑖𝑗
     (2.17)  

𝑉𝑐𝑟𝑖𝑡 𝑖𝑗
 =

1

8
[(𝑉𝑐𝑟𝑖𝑡 𝑖𝑖

 )1/3 + (𝑉𝑐𝑟𝑖𝑡 𝑗𝑗
 )

1/3
]      (2.18) 

𝑍𝑐𝑟𝑖𝑡 𝑖𝑗
 =

1

2
[𝑍𝑐𝑟𝑖𝑡 𝑖𝑖

 + 𝑍𝑐𝑟𝑖𝑡 𝑗𝑗
 ]          (2.19) 

𝜔 𝑖𝑗
 =

1

2
[𝜔 𝑖𝑖

 +𝜔 𝑗𝑗
 ]         (2.20) 

𝑇𝑐𝑟𝑖𝑡 𝑖𝑗
 = √𝑇𝑐𝑟𝑖𝑡 𝑖𝑖

 𝑇𝑐𝑟𝑖𝑡 𝑗𝑗
 (1 − 𝑘𝑖𝑗)      (2.21) 

 

where interaction coefficient 𝑘𝑖𝑗 can be calculated as: 

𝑘𝑖𝑗 = 1 −
(𝑉𝑐𝑟𝑖𝑡 𝑖𝑖

 𝑉𝑐𝑟𝑖𝑡 𝑗𝑗
 )

1/2

𝑉𝑐𝑟𝑖𝑡 𝑖𝑗
      (2.22)    

Partial derivatives with respect to a are 

 
𝜕𝑎

𝜕𝑇
= −

1

𝑇
∑ ∑ (𝑦𝑖𝑦𝑗𝑎𝑖𝑗

𝑓𝜔𝑖𝑗√𝑇𝑟 𝑖𝑗

1+𝑓𝜔𝑖𝑗(1−√𝑇𝑟 𝑖𝑗)
)𝑗𝑖   (2.23)        

𝜕2𝑎

𝜕𝑇2
=

0.457236𝑅2

2𝑇
∑ ∑ (𝑦𝑖𝑦𝑗𝑎𝑖𝑗(1 − 𝑓𝜔𝑖𝑗)

𝑇𝑐𝑟𝑖𝑡 𝑖𝑗
 

𝑃𝑐𝑟𝑖𝑡 𝑖𝑗
√𝑇𝑟 𝑖𝑗)𝑗𝑖   

(2.24)        
The basic formulas to calculate cubic roots analytically 

are as follows (Tartaglia & Cardano (1530)): 

 

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3       (2.25) 

𝑎 = 𝑎2/𝑎3     𝑏 = 𝑎1/𝑎3    𝑐 = 𝑎0/𝑎3    (2.26) 

𝑦 = 𝑐 + 𝑏𝑥 + 𝑎𝑥2 + 𝑥3       (2.27) 

𝑄 =
𝑎2−3𝑏

9
    𝑧 = 2𝑎3 − 9𝑎𝑏 + 27𝑐  (2.28)  

𝑅 = 𝑧/54       (2.29)        
𝑖𝑓(𝑅2 < 𝑄3) 
 

{
 
 

 
 𝜃 = 𝑐𝑜𝑠−1 (

𝑅

√𝑄3
)

𝑥0 = −2√𝑄𝑐𝑜𝑠[𝜃 3⁄ ] − 𝑎/3

𝑥1 = 2√𝑄𝑐𝑜𝑠[(𝜃 − 2𝜋) 3⁄ ] − 𝑎/3

𝑥2 = 2√𝑄𝑐𝑜𝑠[(𝜃 − 2𝜋) 3⁄ ] − 𝑎/3}
 
 

 
 

   

      (2.30)        

𝑒𝑙𝑠𝑒

{
 
 
 
 
 

 
 
 
 
 𝐴 = −(𝑅 + √𝑅2 − 𝑄3)

1/3

𝑖𝑓(𝑎 == 0)𝐵 = 0
𝑒𝑙𝑠𝑒 𝐵 = 𝑄/𝐴

𝑥0 = (𝐴 + 𝐵 − 𝑎/3)

𝑥1 = [(−
𝐴 + 𝐵

2
) − 𝑎/3] + [

√3(𝐴 − 𝐵)

2
] 𝑖

𝑥2 = [(−
𝐴 + 𝐵

2
) − 𝑎/3] − [

√3(𝐴 − 𝐵)

2
] 𝑖
}
 
 
 
 
 

 
 
 
 
 

 

 
To solve the Peng-Robinson EoS for dry air as a mixture 

of gases, the specific heat,  𝐶𝑝(𝑇), for each component gas is 

required. This is obtained from NIST (National Institute of 

Standards and Technology) thermochemical tables [7]. Since 

 𝐶𝑝(𝑇) value is for the ideal gas, ideal gas mixing rule 

applied to establish  𝐶𝑝(𝑇) value of the mixture from the 

given gases. For each individual gas, the following partial 

difference curve fitting formula is used. 

 

 𝐶𝑝𝑖(𝑇) = 𝐴𝑖 + 𝐵𝑖10
−3𝑇 +

𝐶𝑖10
5

𝑇2
+𝐷𝑖10

−6𝑇2    𝑇𝐿𝑖 ≤ 𝑇 ≤ 𝑇𝐻𝑖 
      (2.31)   
     Component mole fractions and critical properties of dry 

air are given in Table 1.  

 
Table 1. Composition and critical properties of dry air. 

Name Mol % Tc Pc Zc ω 

Nitrogen 78.084 126.2 33.9 0.29 0.039 

Oxygen 20.946 154.6 50.4 0.288 0.025 

Argon 0.934 150.8 48.7 0.291 0.001 

Carbon dioxide 0.0397 304.1 73.8 0.274 0.239 

Neon 0.001818 44.4 27.6 0.311 -0.029 

Helium 0.000524 5.19 2.27 0.302 -0.365 

Methane 0.000179 190.4 46 0.288 0.011 

Krypton 0.000001 209.4 55 0.288 0.005 

Hydrogen 0.0000005 33 12.9 0.303 -0.216 

Xenon 0.00000009 289.7 58.4 0.287 0.008 

The values of Cp are predicted from Eq. (2.31) and the 

values for nitrogen and oxygen are shown in Figures 1 and 3 

respectively. The error values are given in Figures 2 and 4. 

The curve fitting coefficents of argon, nitrogen and oxygen 

are given in Table 2, 3 and 4, respectively.  

Table 2. Cp (kJ/kmol K) partial continuous curve fitting 

Eq. constants for Argon. 

i Ai Bi Ci Di TL,i  TH,i 

0 20.786 0.00E+00 0.00E+00 0.00E+00 100 6000 
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Figure 1. Change of CP with temperature for Nitrogen 

kJ/(kmol K). 

 

Figure 2. Change of error levels of predictions  with 

temperature of Cp in Nitrogen kJ/(kmol K). 

 

Table 3. Cp (kJ/kmol K) curve fitting Eq. constants for 

Nitrogen. 

i Ai Bi Ci Di TL,i  TH,i 

0 29.40863 -2.25144 -0.01247 4.52088 100 350 

1 27.64616 0.88235 0.77007 4.76442 350 700 

2 21.60170 14.87841 3.81280 -4.16546 700 1200 

3 29.83076 5.42156 -15.04309 -1.08961 1200 1700 

4 35.47674 0.97358 -42.54762 -0.09746 1700 2200 

5 34.92820 1.31940 -38.18419 -0.15991 2200 2700 

6 36.26252 0.58150 -50.89836 -0.04573 2700 3200 

7 35.65734 0.76616 -34.66593 -0.05981 3200 3700 

8 36.41804 0.43259 -44.18470 -0.02015 3700 4200 

9 38.07768 -0.15296 -80.31180 0.03679 4200 4700 

10 37.76028 -0.04994 -73.10115 0.02776 4700 5200 

11 39.97385 -0.85455 -77.57593 0.10125 5200 6000 

 

 

Figure 3. Change of CP with temperature for Oxygen 

kJ/(kmol K). 

 

Figure 4. Change of error levels of predictions  with 

temperature of Cp in Oxygen kJ/(kmol K). 

 

Table 4. Cp (kJ/kmol K) curve fitting Eq. constants for 

Oxygen. 

i Ai Bi Ci Di TL,i  TH,i 

0 30.43604 -11.22375 -0.04709 26.32148 100 350 

1 21.00131 23.61241 2.04654 -10.13517 350 700 

2 29.74259 7.978910 -6.12334 -2.24031 700 1200 

3 36.31276 0.050814 -19.65528 0.45704 1200 1700 

4 33.34540 2.32860 -4.52664 -0.03714 1700 2200 

5 31.03636 3.80481 11.95127 -0.30141 2200 2700 

6 29.75055 4.50498 24.83303 -0.40859 2700 3200 

7 32.14685 3.46653 -12.25985 -0.28271 3200 3700 

8 43.52700 -0.66976 -268.79475 0.14080 3700 4200 

9 54.76822 -4.21849 -604.90568 0.45650 4200 4700 

10 63.26081 -6.72640 -894.08145 0.66490 4700 5200 

11 71.31479 -8.89365 -1220.2917 0.82844 5200 6000 

 

2.2 Formulations of Thermodynamic Properties 

Now we can establish other thermodynamic properties of 

dry air which is not given directly by the Peng-Robinson 

EoS. Entropy of dry air is expressed as 

 

𝑑𝑠 =
𝐶𝑣(𝑇)

𝑇
𝑑𝑇 + (

𝜕𝑃(𝑇,𝑣)

𝜕𝑇
)
𝑣
𝑑𝑣    (2.32) 

𝑑𝑠 =
𝑅−𝐶𝑝(𝑇)

𝑇
𝑑𝑇 + (

𝜕𝑃(𝑇,𝑣)

𝜕𝑇
)
𝑣
𝑑𝑣   (2.33)
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𝑠(𝑇, 𝑉) = 𝑠0 + ∫
𝐶𝑝(𝑇)−𝑅

𝑇
𝑑𝑇

𝑇

𝑇0
+ ∫ (

𝜕𝑃

𝜕𝑇
)
𝑣
𝑑𝑣

𝑣

𝑣0
    (2.34)  

 

The last term of Eq. (2.34) can be evaluated as   
 

∫ (
𝜕𝑃

𝜕𝑇
)
𝑣
𝑑𝑣

𝑣

𝑣0
= ∫ [

𝑅

𝑣−𝑏
− (

1

𝑣2+2𝑏𝑣−𝑏2
) (

𝜕𝑎

𝜕𝑇
)
𝑣
] 𝑑𝑣

𝑣

𝑣0
=

∫ [
𝑅

𝑣−𝑏
] 𝑑𝑣

𝑣

𝑣0
− (

𝜕𝑎

𝜕𝑇
)
𝑣
∫ (

1

𝑣2+2𝑏𝑣−𝑏2
)

𝑣

𝑣0
𝑑𝑣   (2.35) 

∫ (
1

𝑣2+2𝑏𝑣−𝑏2
)

𝑣

𝑣0
𝑑𝑣 = ∫ (

1

(𝑣+𝑏)2−2𝑏2
)

𝑣

𝑣0
𝑑𝑣   (2.36) 

 𝑋 = (𝑣 + 𝑏)     𝐴 = √2𝑏     (2.37) 

 ∫
1

𝑋2−𝐴2
𝑑𝑋 = ∫

1

(𝑋−𝐴)(𝑋+𝐴)
𝑑𝑋 =

1

2𝐴
[∫

1

𝑋−𝐴
𝑑𝑋 +

∫
1

𝑋+𝐴
𝑑𝑋]       (2.38) 

∫ (
1

𝑣2+2𝑏𝑣−𝑏2
)

𝑣

𝑣0
𝑑𝑣 =

1

2√2𝑏
[𝑙𝑛

(𝑣+𝑏−√2𝑏)

(𝑣+𝑏+√2𝑏)
− 𝑙𝑛

(𝑣0+𝑏−√2𝑏)

(𝑣0+𝑏+√2𝑏)
]

      (2.39) 
  

(
𝜕𝑃

𝜕𝑇
)
𝑣
=

𝑅

𝑣−𝑏
−

𝜕

𝜕𝑎
(

𝑎

𝑣2+2𝑏𝑣−𝑏2
) (

𝜕𝑎

𝜕𝑇
)
𝑣
=

𝑅

𝑣−𝑏
−

(
1

𝑣2+2𝑏𝑣−𝑏2
) (

𝜕𝑎

𝜕𝑇
)
𝑣

     (2.40) 

 

Internal energy of dry air can be derived similarly as 

 

𝑑𝑢 = 𝐶𝑣(𝑇)𝑑𝑇 + (𝑇 (
𝜕𝑃(𝑇,𝑣)

𝜕𝑇
)
𝑣
− 𝑃(𝑇, 𝑣)) 𝑑𝑣  (2.41)  

𝑑𝑢 = (𝑅 − 𝐶𝑝(𝑇))𝑑𝑇 + (𝑇 (
𝜕𝑃(𝑇,𝑣)

𝜕𝑇
)
𝑣
− 𝑃(𝑇, 𝑣)) 𝑑𝑣 (2.42)     

𝑢(𝑇, 𝑣) = 𝑢0 + ∫ (𝐶𝑝(𝑇) − 𝑅)𝑑𝑇
𝑇

𝑇0
+ ∫ (𝑇 (

𝜕𝑃(𝑇,𝑣)

𝜕𝑇
)
𝑣
−

𝑣

𝑣0

𝑃(𝑇, 𝑣)) 𝑑𝑣      (2.43) 

 

Second integral part of the Eq. 2.43 can be evaluated as  

  

∫ [𝑇 (
𝜕𝑃

𝜕𝑇
)
𝑣
− 𝑃]

𝑣

𝑣0
= ∫ [

𝑅𝑇

𝑣−𝑏
− (

1

𝑣2+2𝑏𝑣−𝑏2
) 𝑇 (

𝜕𝑎

𝜕𝑇
)
𝑣
− (

𝑅𝑇

𝑣−𝑏
−

𝑣

𝑣0

𝑎

𝑣2+2𝑏𝑣−𝑏2
)] 𝑑𝑣 = ∫ [[𝑎 − 𝑇 (

𝜕𝑎

𝜕𝑇
)
𝑣
] (

1

𝑣2+2𝑏𝑣−𝑏2
)𝑇 (

𝜕𝑎

𝜕𝑇
)
𝑣
] 𝑑𝑣

𝑣

𝑣0

      (2.44) 

∫ [𝑇 (
𝜕𝑃

𝜕𝑇
)
𝑣
− 𝑃]

𝑣

𝑣0
=

[𝑎−𝑇(
𝜕𝑎

𝜕𝑇
)
𝑣
]

2√2𝑏
[𝑙𝑛

(𝑣+𝑏−√2𝑏)

(𝑣+𝑏+√2𝑏)
− 𝑙𝑛

(𝑣0+𝑏−√2𝑏)

(𝑣0+𝑏+√2𝑏)
]  

      (2.45) 
Enthalpy of dry air is expressed as 

 

ℎ(𝑇, 𝑣) = 𝑢 + 𝑣𝑃(𝑇, 𝑣)     (2.46) 

ℎ(𝑇, 𝑣) = ℎ(𝑇, 𝑣) − 𝑇𝑃(𝑇, 𝑣)   (2.47) 

 

Specific heat at constant pressure is expressed as 

 

 𝐶𝑝(𝑇) = ∑ 𝑦𝑖
𝑛−1
𝑖=0  𝐶𝑝𝑖(𝑇) = ∑ 𝑦𝑖

𝑛−1
𝑖=0 [𝐴𝑖 + 𝐵𝑖10

−3𝑇 +

𝐶𝑖10
5

𝑇2
+ 𝐷𝑖10

−6𝑇2]  𝑇𝐿0 ≤ 𝑇 ≤ 𝑇𝐻0  (2.48) 

 

Specific heat at constant volume is expressed as 

 

 𝐶𝑣(𝑇) =  𝐶𝑝(𝑇) − 𝑅 = ∑ 𝑦𝑖
𝑛−1
𝑖=0  𝐶𝑣𝑖(𝑇)   (2.49) 

 

Where 𝐶𝑣𝑖(𝑇) is the specific heat at constant volume of each 

component gases.  

 

 𝐶𝑣(𝑇) = ∑ 𝑦𝑖
𝑛−1
𝑖=0 (𝐴𝑖 − 𝑅 + 𝐵𝑖10

−3𝑇 +
𝐶𝑖10

5

𝑇2
+

𝐷𝑖10
−6𝑇2)      (2.50) 

∫ 𝐶𝑣(𝑇)𝑑𝑇 = ∑ [(𝐴𝑖 − 𝑅)(𝑇𝐻𝑖 − 𝑇𝐿𝑖) +
𝐵𝑖

2
10−3(𝑇𝐻𝑖

2 −𝑚−1
𝑖=0

𝑇

𝑇𝐿0

𝑇𝐿𝑖
2 ) − 𝐶𝑖10

5 (
1

𝑇𝐻𝑖
−

1

𝑇𝐿𝑖
) +

𝐷𝑖10
−6

3
(𝑇𝐻𝑖

3 − 𝑇𝐿𝑖
3 )] + [𝐴𝑚(𝑇 − 𝑇𝐿𝑚) +

𝐵𝑚

2
10−3(𝑇2 − 𝑇𝐿𝑚

2 ) − 𝐶𝑚10
5 (

1

𝑇
−

1

𝑇𝐿𝑚
) +

𝐷𝑚10
−6

3
(𝑇3 − 𝑇𝐿𝑚

3 )]

      (2.51)  
for 𝑇0 = 𝑇𝐿0 = 100 𝐾 and 𝑇𝐿𝑚 ≤ 𝑇 ≤ 𝑇𝐻𝑚 

∫ 𝐶𝑣(𝑇)𝑑𝑇 = ∑ 𝑦𝑖
𝑛−1
𝑖=0 ∫ 𝐶𝑣𝑖(𝑇)𝑑𝑇

𝑇

𝑇0

𝑇

𝑇0
   (2.52)   

 for 𝑇0 = 𝑇𝐿0 = 100 𝐾 and 𝑇𝐿𝑚 ≤ 𝑇 ≤ 𝑇𝐻𝑚 

∫
𝐶𝑣(𝑇)𝑑𝑇

𝑇
= ∑ 𝑦𝑖

𝑛−1
𝑖=0 ∫

𝐶𝑣𝑖(𝑇)𝑑𝑇

𝑇

𝑇

𝑇0

𝑇

𝑇0
        (2.53) 

 

To adopt Eqs. (2.52) and (2.53) to any other reference point 

Tr 

∫ 𝐶𝑣𝑖(𝑇)𝑑𝑇 =
𝑇

𝑇𝑟
∫ 𝐶𝑣𝑖(𝑇)𝑑𝑇 − ∫ 𝐶𝑣𝑖(𝑇)𝑑𝑇

𝑇𝑟
𝑇0

𝑇

𝑇0
            (2.54a) 

∫
𝐶𝑣𝑖(𝑇)

𝑇
𝑑𝑇 =

𝑇

𝑇𝑟
∫

𝐶𝑣𝑖(𝑇)

𝑇
𝑑𝑇 − ∫

𝐶𝑣𝑖(𝑇)

𝑇
𝑑𝑇

𝑇𝑟
𝑇0

𝑇

𝑇0
             (2.54b) 

 
2.4 Formulations of Thermophysical Properties 

To estimate the thermal conductivity and viscosity of dry 

air, equations suggested by Kadoya et al [8] are used.  

 

𝑇𝑟 , 𝜌𝑟) = 𝐻[0𝑇𝑟) + 𝜌𝑟)]   (2.55) 

where  


0
(𝑇𝑟) = 𝐴0𝑇𝑟 + 𝐴1𝑇𝑟

0.5 + 𝐴2 +
𝐴3

𝑇𝑟
+

𝐴4

𝑇𝑟
2 +

𝐴5

𝑇𝑟
3 +

𝐴6

𝑇𝑟
4  (2.56) 

 

As it can be seen in Eq. (2.56), the  
0
(low pressure 

viscosity) depends on only temperature, and the ∆ is the 

difference between low and high pressure viscosity  

 

∆(𝜌𝑟) = ∑ 𝐵𝑖𝜌𝑟
𝑖4

𝑖=1      (2.57) 
 

There is a similar approach for thermal conductivity.  

   

k(𝑇𝑟 , 𝜌𝑟) = [𝑘0(𝑇𝑟) + ∆k(𝜌𝑟)]   (2.58) 

where  

𝑘0(𝑇𝑟) = 𝐶0𝑇𝑟 + 𝐶1𝑇𝑟
0.5 + 𝐶2 +

𝐶3

𝑇𝑟
+

𝐶4

𝑇𝑟
2 +

𝐶5

𝑇𝑟
3 +

𝐶

𝑇𝑟
4  (2.59)   

∆k(𝜌𝑟) = ∑ 𝐷𝑖𝜌𝑟
𝑖4

𝑖=1      (2.60) 
𝜌𝑟 = 𝜌/𝜌∗    𝑇𝑟 = 𝑇/𝑇

∗     (2.61) 

 

In Eqs. (2.55) to (2.60), 𝜌∗ is equal to 314.3 kg/𝑚3, 

Λ is equal to 25.9778 (10−3𝑊/(𝑚𝐾), H is equal to 6.1609 

(10-6 Pas) and 𝑇∗ is equal to 132.5 K. The coefficients of 

Eqs. (2.55) to (2.60) are given in Table 5. 

 

Table 5. Coefficients of Eqs.(2.55) to (2.60). [8] 

i Ai Bi Ci Di 

0 0.128517 0.465601 0.239503 0.402287 

1 2.60661 1.26469 0.006497 0.356603 

2 -1 -0.511425 1 -0.163159 

3 -0.709661 0.2746 -1.92615 0.138059 

4 0.662534  2.00383 -0.020172 

5 -0.197846  -1.07553  

6 0.0077014  0.229414  
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Table 6. Additional properties derived from Peng-

Robinson EoS 

Properties Formula 

Speed of 

sound[10] 𝜐𝑠 = √−(
𝑣2𝐶𝑝

𝐶𝑣𝑀
)(
𝜕𝑃

𝜕𝑣
)
𝑇

= √(
𝑣2𝐶𝑝

𝐶𝑣𝑀
)(

𝑅𝑇

(𝑣 − 𝑏)2
−

2𝑎(𝑣 + 𝑏)

(𝑣2 + 2𝑏𝑣 − 𝑏2)2
) 

Thermal 
expansion 

coefficient 

𝛽 = −
1

𝜌
(
𝜕𝜌

𝜕𝑇
)
𝑃

 

Isothermal 

compressibility 𝛽𝑇 = √

𝑣

(
𝜕𝑃
𝜕𝑣
)
𝑇

=
√

𝑣

(
𝑅𝑇

(𝑣 − 𝑏)2
−

2𝑎(𝑣 + 𝑏)
(𝑣2 + 2𝑏𝑣 − 𝑏2)2

)
 

 

3. Results 

Several programs were developed in java language to 

carry out the predictions. The names of programs are given 

in Table 6. Air_IAPWS was developed by using IAPWS 

formulations [6] and air_PG is for the perfect gas EoS for air. 

The details of these programs are not described here, but they 

are given for comparison purposes.  

 

Table 6. Programs developed for calculating dry air 

properties. 

Model Name Reference and Description 

air_IAPWS IAPWS Formulation [6] 

air_PR Peng-Robinson EoS for mixtures [11] 

air_PG Perfect gas EoS as a single gas. 

 

Figure 5. Peng-Robinson EoS program graphic output for 

P=100 kPa and T=300 K. 

 

Results obtained for several thermodynamic properties 

by using different EoSs are  compared in Table 7.  

 

Table 7. Comparisons of the three different EoS for dry air. 

 Model 
 P  
(kPa) 

T  

(deg. 

K ) 

v 
 (m3/kg ) 

h  
(kJ/kg ) 

u  
(kJ/kg)  

s  
(kJ/(kg.K)) 

air_PR 100 300 0.86068 27.49786 19.76670 0.09428 

air_PG 100 300 0.86114 27.01007 19.30280 0.09809 

air_IAPWS 100 300 0.86088 27.01361 19.28572 0.09810 

air_PR 500 300 0.17178 26.32825 18.77558 -0.36967 

air_PG 500 300 0.17222 27.01007 19.30280 -0.36388 

air_IAPWS 500 300 0.17197 26.11119 18.48476 -0.36653 

air_PR 1000 300 0.08568 24.88375 17.54150 -0.57105 

air_PG 1000 300 0.08611 27.01007 19.30280 -0.56285 

air_IAPWS 1000 300 0.08587 24.99335 17.48330 -0.56881 

air_PR 3000 300 0.02832 19.30848 12.66731 -0.89554 

air_PG 3000 300 0.02870 27.01007 19.30280 -0.87821 

air_IAPWS 3000 300 0.02850 20.62849 13.47535 -0.89723 

air_PR 100 500 1.43560 230.79834 165.57513 0.61237 

air_PG 100 500 1.43524 230.10497 164.98788 0.61632 

air_IAPWS 100 500 1.43571 230.10855 164.89739 0.61633 

air_PR 500 500 0.28741 230.17163 164.80265 0.15019 

air_PG 500 500 0.28704 230.10497 164.98788 0.15434 

air_IAPWS 500 500 0.28752 229.90383 164.50290 0.15356 

air_PR 1000 500 0.14389 229.39896 163.84406 -0.04900 

air_PG 1000 500 0.14352 230.10497 164.98788 -0.04462 

air_IAPWS 1000 500 0.14400 229.65482 164.01187 -0.04637 

air_PR 3000 500 0.04822 226.42496 160.08668 -0.36516 

air_PG 3000 500 0.04784 230.10497 164.98788 -0.35998 

air_IAPWS 3000 500 0.04834 228.73108 162.07077 -0.36553 

 

In the following figures, the Peng-Robinson EoS is 

compared with the perfect gas EoS and IAPWS for the dry 

air EoS. IAPWS equation is based on the experimental data. 

The results of Peng-Robinson EoS are falling between the 

results of perfect gas EoS and IAPWS. This is the expected 

behavior for such a general EoS based on acentric factor. 

 

Figure 6. Enthalpy difference of Peng-Robinson and perfect 

gas EoS (for above 1000 kPa). 

 

Figure 7. Enthalpy differences of Peng-Robinson and perfect 

gas EoS.
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Figure 8. Entropy difference of Peng-Robinson and perfect 

gas EoS. 

 

Figure 9. Speed of sound difference of Peng-Robinson and 

perfect gas EoS. 

 

Figure 10. Enthalpy difference of Peng-Robinson and 

IAPWS EoS. 

 

Figure 11. Entropy difference of Peng-Robinson and IAPWS 

EoS. 

4. Conclusions 

There are accurate EoS already available for air as a real 

gas. However, this package can be utilized as a calibration 

tool for a gas mixture to be used in combustion processes. 

Another basic application of such an EoS is to use it as a base 

to define humid air, which will be carried out by the authors 

in a separate publication.  

Computer models for different set of real gas EoS by 

IAPWS and perfect gas formulations are also derived and 

results are compared. The results from the Peng-Robinson 

equation are between the results of perfect gas EoS and 

IAPWS. This is the expected for such a general EoS based 

on the acentric factor. 

All the coefficients of EoSs for property estimations of 

dry air are given with details, which can be used for 

computational purposes. Whole set of computer codes 

developed in java programming language for researchers are 

available at: www.turhancoban.com. 

 

Nomenclature 

a  Cubic Eq. coefficient (Pa kmol/m3) 

b Cubic Eq. coefficient (m3 /kmol) 

Cp Specific heat capacity at constant pressure (J/kg K) 

Cpi Individual gas specific heat capacity at constant 

pressure (J/kg K) 

Cv  Specific heat capacity at constant volume (J/kg K) 

Cvi  Individual gas specific heat capacity at constant 

volume (J/kg K) 

Fw A function of w specific for Peng-Robinson EoS 

h  Enthalpy (kJ/kg) 

k  Thermal conductivity (W/m K) 

M  Molecular weight (kg/kmol) 

P Pressure (kPa) 

R Universal gas constant (8.314 J/mol K) 

s  Entropy (kJ/kg K) 

T  Temperature (K) 

T*  132,5 K 

u  Internal energy (kJ/kg) 

v Specific volume (m3/kg) 

V  Volume (m3) 

Z Compressibility factor 

Greek symbols 

β Thermal expansion coefficient (1/k) 

βT Isothermal compressibility  

 η Viscosity (Pa s)
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ω  Pitzer’s acentric factor  

Δη  Viscosity increase (Pa s) 

Δk  Thermal conductivity increase (W/m K) 

ρ Density (kg/m3)  

ρ *  314.3 (kg/m3) 

𝜐𝑠  Speed of sound (m/s) 

υ Molar volume (m3/kmol) 

Subscripts 

crit critical value 

r  reduced value 
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