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ABSTRACT

The overwhelming advances in molecular modelling witnessed for a couple of
decades go hand in hand with the booming computer and information technolo-
gies. Computer-aided drug design (CADD) is probably the most important field
of molecular modelling given the time scale and cost for turning a chemical entity
into an approved drug. In this review we provide a brief definition of molecu-
lar modelling and CADD with historical corner stones. In this review methods,
tools, and applications of molecular modelling in different stages of CADD were
focused on by referring to a number of success stories. Useful databases and non-
commercial software for different purposes are also introduced. The review aims
to provide a glimpse of these methods for scientists taking part in any field of drug
research and to show that everyone can and should make the best of these methods

with a vast amount of available free tools and documentation.
Keywords: molecular modelling, computer-aided drug design, virtual screening,
molecular docking, pharmacophore modelling, shape similarity, molecular dy-

namics simulations, ADMET prediction

OZET

Molekiiler modellemede son birkag on yildir taniklik ettigimiz bas dondiiriici
geligmeler ilerleyen bilgisayar ve enformasyon teknolojileri ile birlikte gergek-
lesmektedir. Bilgisayar destekli ilag tasarrmi (BDIT), bir kimyasalin ilaca déniis-
tiirlilmesi igin gerekli zaman ve masraflar goz oniine alindiginda, muhtemelen
molekiiler modellemenin en 6nemli alanidir. Mevcut derlemede BDIT nin farkli
asamalarindaki molekiiler modelleme yontemleri, araglart ve uygulamalari-
na, bazi basar1 hikayelerine de atifta bulunularak odaklanilmistir. Ayrica, farkl
amagclar i¢in kullanilan faydali veri tabanlar1 ve ticari olmayan yazilimlar tanitil-
mustir. Derleme, bu yontemlerle ilgili, ilag arastirmalarinin herhangi bir alaninda
gorev alan bilim insanlarma fikir vermeyi ve herkesin bu yontemlerden, mevcut
¢ok sayida iicretsiz yazilim ve dokiimantasyon ile en iyi sekilde faydalanabilece-
gini gostermeyi amaglamaktadir.

Anahtar Kelimeler: molekiiler modelleme; bilgisayar destekli ilag tasarimi; sanal
aktivite tarama; molekiiler kenetleme; farmakofor modelleme; sekil benzerligi,
molekiiler dinamik simiilasyonlari; ADMET tahmini
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1. Introduction

The overwhelming advances in information technol-
ogy observed in the past couple of decades, among
many other things, made it possible to understand
and predict molecules at every level of complexity
by simply using our PCs or even our mobile de-
vices. Thanks to multicore processors and high-end
graphics available to almost everyone, molecular
modelling is no longer the expertise of only those
with highly technical computing skillset. Diversity
of the methods in molecular modelling enabled this
approach to reach to various fields in life sciences.
Any researcher who crosses molecules’ path can
get to know of many things in silico before or after
an experiment (1, 2). Is my molecule water soluble
enough to run an assay or how can I make it water
soluble? Can this compound pass blood-brain bar-
rier? Does it contain any functional groups that can
react nonspecifically with the assay medium? Can
it inhibit CYP3A4? Could this peptide assume an
a-helix conformation? Which mutations could pos-
sibly affect the function of my protein? Could this
antagonist have triggered a desensitized state for my
receptor? Questions like these can find more accu-
rate answers in shorter time with the hands of the
inquirers themselves thanks to molecular modelling.

Of course, molecular modelling has a special place
in drug research. Given the time span and costs for
a chemical entity to be labelled as “drug”, the ques-
tions such as “which compound”, “which targets”,
and “which off-targets” definitely need to be ad-
dressed at the very beginning. At this point, molecu-
lar modelling is put in use to work out what we call
“computer-aided drug design” (CADD) to save time
and money, to dodge pit falls and dead ends, and to
detect blind spots (3).

In this review, molecular modelling and virtual
screening is defined and a historical background is
provided with drug discovery perspective. Steps of
CADD are presented with state-of-the-art methodol-
ogies, applications, and success stories. The review
also compiles resources for the most common tools
of CADD.

2. Molecular Modelling and Its Historical
Background

Molecular modelling is all the computational meth-
ods used to predict molecular structure and behavior.
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From material science to structural biology, molecu-
lar modelling methodologies are used in many fields
to understand systems made up of a wide range of
complexity from small molecules to biological mac-
romolecules such as proteins, receptors, and nu-
cleotide chains. These systems can be modelled by
treating atoms as particles with charges and potential
energy using forcefields (molecular mechanics) or
by applying wave function at atomic and subatomic
scales (quantum mechanics) (4). From drawn repre-
sentations of chemical structures to millisecond-long
simulations of biological systems, molecular model-
ling has undergone a massive progress through his-
tory (5). Following are some of the milestones of
molecular modelling:

e The term chemical structure was introduced
between 1858 and 1861 by identification of va-
lence rules in organic chemistry and representing
bonds as lines in molecules with carbon chains.

* In 1865, August Wilhelm Hofmann for the first
time used physical models in his organic chemis-
try lecture, in which organic compounds such as
methane and chloroform were represented with
croquet balls joined by sticks.

* Hofmann also established today’s commonly ac-
cepted color scheme for atoms: black for carbon,
white for hydrogen, blue for nitrogen and green
for chlorine.

e  Crum-Brown in 1865 and Sir Edward Frankland
and B. F. Duppa in 1867 were the scientists to use
2D drawn structures in ball and stick models for
the first time.

* That carbon compounds have tetrahedral geom-
etry was first suggested by E. Paterno (1869),
Jacobus Henricus van’t Hoff, and Joseph Achille
LeBel (1874), which is considered as the emer-
gence of three-dimensional molecular structure
elaboration.

e In 1898, van’t Hoff suggested that each carbon-
carbon bond had a favored conformation about a
torsional angle, setting the foundations of what
we refer to as the global minimum energy confor-
mations today.

¢ Urey and Bradley introduced a formulation which
included quadratic Hooke’s Law potential equa-
tions to describe harmonic vibrations in simple
molecules and found the Morse potential to give
the best fit to empirical data for bond stretching
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in 1931. This was a breakthrough in forcefield
concept.

e The first examples of molecular mechanics
came in 1946 with Hill’s force field to treat the
repulsive and attractive nonbonding terms, and
quadratic terms for bond stretch and angle bend,
Dostrovsky, Hughes and Ingold’s study on the
repulsive and attractive nonbonding terms; and
Westheimer and Mayer’s analyses of the confor-
mations of hindered biphenyls. These methods
let molecular modelling spread out of physical
chemistry society.

e The importance of 3D aspects of molecules in
understanding structure, stability, conformation,
and reactivity was appreciated with the emer-
gence of conformation analysis led by the study
of Barton on the conformations of steroids in
1950.

* The most famous physical molecular model of
all time, the structure of DNA double strand, was
elucidated by Watson and Crick in 1953.

¢ The first molecular dynamics (MD) calculations
study was reported in the same year under the
name Equation of State Calculations by Fast
Computing Machines, which featured simulated
annealing and aided the groundwork for Monte
Carlo simulations.

e Potentials of nonbonding interactions in organic
structure modelling were first applied by Kitaig-
orodsky in 1960.

e The first use of computer for empirical force field
calculations was reported in 1961 by Hendrick-
son.

e In 1965, Wiberg developed a steepest descent
algorithm for geometry optimization to address
conformational analysis.

e Scientists from Oak Ridge National Laboratory
in the US designed a molecular drawing program
called ORTEP (Oak Ridge National Laboratory)
in 1965. The US government also funded the first
computer network in 1969, which is accepted as
the ancestor of internet.

e In 1971, Lee and Richards described the molecu-
lar surface in protein structure context and eluci-
dated an algorithm to derive it.

¢ In 1974, computer modelling of oligosaccharides
starting from crystal structure was reported for
the first time. In the same year, force field cal-
culations of synthetic macromolecules started to
appear.

e At the beginning of 1980s, with the booming per-
sonal computer (PC) industry, molecular model-
ling became accessible from PCs and the use of
the graphical user interface (GUI) started. This
marks the advent of personal molecular model-
ling for the average chemist.

e The World Wide Web kickstarted in 1993, which
probably marks the beginning of web servers for
molecular modelling.

3. Computer Aided Drug Design (CADD)

Drug design and discovery is highly complex and ex-
pensive process that requires contribution of a wide
range of disciplines. The general estimation is that it
takes more than 10 years and a billion US dollars for
a chemical entity to be used in the clinic. Although
in silico methods are usually adopted in the early-
to-mid-stage drug discovery studies, the selection of
candidates passed from these stages to preclinical
and clinical phases greatly affects the attrition rates.
Therefore, the use of in silico methods in drug dis-
covery has increased reasonably for the past couple

; Target Target Hit ) Lead
BEERE identifﬁ:ation validstion iu ificati itigiead optimization ,
« Target = Alanine « Ligand and « Scaffold * ADMET
fishing scanning structure- hopping prediction
* Machine * Binding site based virtual * QSAR * Site of
learning prediction screening * Molecular metabolism
= Molecular docking prediction
docking « MD
simulations

Figure 1. Steps of drug discovery and applications of CADD.

Volume 40 / Number 1 / January 2020 / pp. 34-47

36

Sari et al.



Hacettepe University Journal of the Faculty of Pharmacy

of decades (Figure 1). CADD applications mainly
assist experimental studies in decision making by
following the major drug discovery stages, such as
target validation, hit identification, lead generation,
and optimization (3, 6).

3.1. Target Identification and Validation

Drug development process usually starts with identi-
fication of a druggable target relevant to the disease of
interest. Introduction of such targets prompts efforts
to find potential compounds to modulate the target
pathway and finally to elicit a phenotypic response
(7). In silico approaches are usually helpful to un-
derstand the structure, topology, and ligand binding
sites of the target, as well as their key residues and
ligand binding interactions. /n silico methods such
as homology modelling, molecular docking, and MD
simulations have become paramount to assist in vitro
studies for target validation such as protein structure
elucidation (e.g. X ray diffraction), alanine scanning,
site-directed mutagenesis, and radioligand binding
(8-10).

Chemical and biological databases play crucial role
in bringing the wet lab and computers together. Cur-
rently, there is a vast number of databases which ar-
chive and process countless sorts of data belonging
to millions of molecules ranging from small mole-
cules to proteins, genes, and nucleotide chains (Table

1) (11).
3.2. Hit Identification

Once a target is validated for a certain disorder, cam-
paigns are run for identification of hit matter, i.e.
chemical entities that display an intended activity
against the target, by both pharma companies and
academia. Just as the robotics technology made it
possible to randomly screen biological activity of
thousands of compounds in vitro at the same time
(high-throughput screening), the computer technolo-
gy did the same for screening millions of compounds
in silico. With the so-called high-throughput virtual
screening (or briefly virtual screening), biological
screening of small compound sets rationally selected
from huge libraries became more common. Virtual
screening features a number of filters to narrow
down the libraries step by step and to eventually sug-
gest potential hits for in vitro tests (12). As the filters
go from rough to exhaustive, the computational bur-
den and time required increases dramatically, which,
however is balanced with shrinking library through-
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out the steps. Evaluation of druglike chemical space
and PAINS (Pan-assay Interference Compounds) is
an example for rough filters, which is commonly
applied at the beginning of virtual screening cam-
paigns (13, 14). This step is crucial for eliminat-
ing entities with potentially poor pharmacokinetics
and those with non-specific reactive functionalities,
since such compounds account for a good amount
of failed clinical candidates (15). This step is usually
followed by a ligand- and/or structure-based virtual
screening (16).

3.3. Lead Generation and Optimization

Finding hit compounds with ability to modulate an
isolated target is the tip of the iceberg in drug dis-
covery issues. When evaluated thoroughly (plotting
dose-response curves, profiling for related targets,
testing against cell cultures, in vivo and toxicity
profiling, cytochrome P450 and efflux pump inter-
actions, pharmacokinetics etc.) these hits will most
likely fail at a certain point. This is where medici-
nal chemists take the stage to tailor these hits to fit
specific requirements (17). In silico drug discovery
methods enable medicinal chemists to create librar-
ies of countless virtual compounds envisaged accord-
ingly. The so-called scaffold-hopping methodology
utilizes both ligand- and structure-based approaches
to model structurally relevant molecules as synthetic
candidates (18). Establishing structure-activity rela-
tionships (SARs) at this stage is crucial for creating
virtual libraries. Quantitative SARs (QSAR) is an
inevitable computation tool for decision making re-
garding SARs (19). The synthesized compounds are
then subjected to a set of in vitro and in vivo tests to
obtain leads.

Lead optimization stage mainly focuses on pharma-
cokinetic and toxicity issues, i.e. ADME+T (Absorp-
tion, Distribution, Metabolism, Excretion + Toxic-
ity), therefore in silico methods are less likely to be
included at this level. However molecular modelling
offers a wide range of tools to assist decision making
for various scenarios. There are many web servers
and free tools to evaluate ADME+T profile of com-
pounds through fast in silico predictions, as well as
more sophisticated, specific, and exhaustive models.
Site of metabolism, hERG channel affinity, blood-
brain barrier permeability, human serum albumin
binding, CYP and P-glycoprotein affinity are among
the properties that scientists can predict without a
high level of expertise in computational chemistry
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Table 1. Examples of useful chemical and biological databases

Database ' Source Description

ZINC https://zinc.docking.org Indexes more than 230M commercial compounds in ready-to-dock
format with diverse data including
predicted and biological properties and vendor information.

ChEMBL https://www.ebi.ac.uk/chembl/ Archives 2M compounds with detailed experimental data, target,
assay, and literature information.

DrugBank www.drugbank.ca Includes 13,551 drug entries (approved and experimental) with
detailed information including drug targets.

PubChem https://pubchem.ncbi.nlm.nih.gov Archives 103M compounds with relevant chemical, bioactivity, and
literature information.

ChemSpider www.chemspider.com Provides 8 1M compounds with 278 data sources including supplier
information.

DUD-E http://dude.docking.org Provides 22K active compounds with target information and 50
decoys for each active compound for virtual screening enrichment
studies.

BindingDB www.bindingdb.org/bind Stores measured affinities of 820K small molecules to 7K protein

Protein data
banks

www.wwpdb.org
www.pdbe.org
www.rcsb.org
www.bmrb.wisc.edu
www.pdbj.org

UniProt WWWw.uniprot.org

NCBI www.ncbi.nlm.nih.gov

SCOP http://scop.mrc-lmb.cam.ac.uk
BioGRID https://thebiogrid.org
PROSITE https://prosite.expasy.org

targets.

Store three-dimensional structural data of biological macromolecules.
Currently, more than 160K structurers are available.

Provides sequence and functional information for some 177M
proteins.

Along with literature (PubMed) and many other databases, NCBI is
one of the largest protein, DNA, RNA, genome, and gene databases.

Provides a detailed and comprehensive description of structural
and evolutionary relationships between 532K proteins with known
structure.

Biological database of protein-protein interactions, genetic
interactions, chemical interactions, and post-translational
modifications.

Consists of documentation entries describing protein domains,
families and functional sites as well as associated patterns and
profiles to identify them.

lin alphabetical order

and bioinformatics (20-23).

4. Approaches in CADD

sively from ligand data, while structure-based or re-
ceptor-based approaches benefit from structural data
of target macromolecules. Virtual screening methods,
in most cases, incorporate both approaches, which
are referred to as hybrid methods. This, of course,

Rapid development in information technologies
brought about a vast amount of data, which in-
creased our ability to create highly predictive models.
In CADD, data is related to either small molecules
or their potential targets, i.e. biological macromol-
ecules. Virtual screening approaches in CADD can
be classified as ligand-based and structure/receptor-
based methods according to the type of employed
data. Ligand-based methods use models built exclu-
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has much to do with the extend of the data available

(16).
4.1. Ligand-Based Methods

The general consideration in CADD is that similar li-
gands are supposed to exert similar biological effects,
which lies beneath the rationale of ligand-based

Sari et al.
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CADD (24). Similarity can be measured in diverse
ways, i.e. molecular descriptors, which incorporate
molecular properties. According to the complexity
and organization of the data, ligand-based methods
are classified as 1D-, 2D- or 3D-methods (25). De-
scriptors for 1D-methods include physicochemical
properties of molecules without structural data, such
as molecular weight, H bond acceptor count, and po-
lar surface area. The idea of 1D-methods suggests
that compounds belong to a specific group, such
as orally available small-molecule drugs, possess
similar set of physicochemical properties. This kind
of methods are helpful to filter libraries in terms of
drug-likeness or lead-likeness or to predict certain
pharmacokinetic properties to help decision making
(26). 2D-methods employ physicochemical proper-
ties assigned to 2D-structure of compounds. Molecu-
lar fingerprints are widely used to determine simi-
larity between compounds regarding fragment con-
nectivity independent from their spatial orientations,
which is handled by 3D-methods, such as pharma-
cophore modelling (Figure 2) and shape similarity
(27-29). The increase in the order of dimensions
causes computational burden. For example, in 3D-
methods, similarity between two compounds is cal-
culated by finding the best molecular volume align-
ment, which is selected from possible conformations
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N
¢
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SHO F
|
N F
N
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of the compounds. This requires coordination data
for each atom, which is re-calculated for each ge-
ometry. However, increasing computational burden
is usually the result of demands for higher precision
in molecular modelling. In addition, 3D-geometry
and spatial volume are valuable data in CADD con-
sidering drug-target affinity. In an effort to reduce
computation burden by maintaining precision, new
methods were introduced in which 3D-molecular
fields are reduced into 1D-descriptors or molecular
volume information is compressed and described as
vectors (30, 31).

4.2. Structure-Based Methods

Two things gave rise to the emergence of structure-
based methods as powerful tools for CADD: advanc-
es in biomolecular spectroscopic methods, such as
X ray diffraction and NMR, and rapid development
of computer technologies, especially processors and
graphics. X ray diffractometers have become widely
accessible, which triggered an avalanche of struc-
tural data of biological macromolecules deposited
in the web sites called protein data bank. Handling
macromolecule data requires high-performing pro-
cessors and graphics, which is available to individu-
als, except clusters of parallel processors required in
the case complex dynamics simulations. The impor-

Figure 2. Last-generation azole antifungals (A) and a pharmacophore model of the last-generation azole antifungals aligned
with voriconazole (B). The model consists of three rings, two hydrophobic groups, and one H bond donor represented as brown
rings, green spheres and a blue sphere with an arrow, respectively. The cut-off space for each pharmacophore is highlighted
with a transparent sphere. Voriconazole is represented as gray sticks and balls.
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tance of target macromolecule structure data became
apparent with the ever expanding the knowledge of
ligand-receptor affinity and interactions at molecu-
lar level. CADD benefits from these developments
in several situations some of which are listed below
(32):

e Creating a structural model for a protein when
there is no spectroscopic or experimental struc-
tural data

¢ Identification of possible druggable sites for a re-
ceptor

e Ligand-receptor interactions and how these inter-
actions manipulate signal transduction

e Possible effects of certain residues, co-factors,
ions, and solvents on conformational changes in
macromolecule structure and its gating

* The effects of charge polarization in ligand-re-
ceptor binding

For these issues and more, there are powerful and
popular tools, such as homology modelling, molecu-
lar docking, and MD simulations, which are availa-
ble either free of charge or through paid licenses (32).

4.2.1. Homology Modelling

Proteins with similar amino acid sequences tend to
have similar tertiary structures. Homology modelling
is a method to predict three-dimensional structure of
a protein when there is no experimental structural
data available. This is performed by the help of ho-
mologous proteins with experimental structural data.
The process starts with sequence alignment of the
query structure with one or more template protein(s).
This alignment and the atomic coordinates of the

template protein(s) are then used to thread the struc-
tural model of the query protein. The model is further
optimized by loop refinement and side chain mini-
mization, and subjected to various structural assess-
ment methods for validation (33, 34).

Apart from creating a whole structure model, homol-
ogy modelling can be used to fill in loops and miss-
ing side chains, something usually encountered with
the structures obtained from protein data bank. Also,
in silico modifications in protein structure such as
alanine scanning is possible via homology model-
ling. Thus, homology modelling is a powerful tool
for structure-based modelling employed in target
validation, hit generation, and optimization studies
(35-37).

4.2.2. Molecular Docking

Molecular docking is an in silico technique to predict
the preferred binding orientation and affinity of two
molecules, a ligand and a receptor, to form a stable
complex. Receptor in molecular docking is usually a
macromolecule such as protein, DNA, RNA, or pep-
tide, which is kept rigid; while ligand is a flexible
small molecule. However, techniques for docking
two macromolecules to each other or making both
ligand and receptor flexible are available. Molecu-
lar docking predicts countless ligand-receptor com-
plexes (search space) and ranks them according to a
score (docking score) which is calculated by a scor-
ing function (Figure 3). Docking score is a metric
used to predict how much affinity a ligand is bound
to a receptor with, which is usually governed by non-
bonded interactions, although it is possible to model
possible covalent bonds between ligand and receptor
by covalent docking method (38).

Receptor
Figure 3. Molecular docking.
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Biological systems work by means of signal trans-
duction, which is pretty much affected by the at-
tributes of ligand-receptor complexes. By predicting
ligand-receptor complexes it is possible to predict
the outcomes of signal transduction, which makes
molecular docking a precious tool for drug design.
In recent years, molecular docking has become an
indispensable component of virtual screening. On
the other hand, it is routinely applied to study ligand-
receptor interactions at atomic level to understand
the importance of certain amino acids, cofactors,
chelating with metals, hydrogen and halogen bonds,
solvation effects, and more (Figure 4) (39).

4.2.3. MD Simulations

While molecular docking provides a picture of a
biological process, it is the dynamics of this process
that actually matters for its biological consequences.
MD of a system is the physical movements of all its
atoms, which is simulated by adding Newtonian me-
chanics to the initial conditions of each atom, i.e. en-
ergies and coordinates. Then, forces between atoms
or particles and potential energies are calculated at
each given time period to determine trajectories for
atoms or molecules, which reflect the dynamic evo-
lution of the system (42).

Depending on the number of the atoms of the sys-
tem and the presumed time scale, MD simulations

require a great amount of data usage and time, espe-
cially compared to molecular docking or other target
and ligand-based methods. To overcome this com-
putational burden in a reasonable amount of time,
parallel processors were introduced, some of which
are available to researchers via remote access. Lately,
an evolutionary method called Graphics Processing
Unit (GPU) acceleration has made use of high-end
graphics processors to greatly reduce computation
time, making researchers less dependent to costly
CPU clusters (43).

In addition to target validation, MD simulations are
gradually becoming a part of virtual screening cam-
paigns thanks to the advances mentioned above. MD
simulations are usually considered in connection
with molecular docking in virtual screening, for ex-
ample to determine the stability of a ligand-receptor
complex, however its connected use with ligand-
based methods is becoming increasingly popular (44,
45).

5. CADD: Success Stories

In contrast with what one would expect, most of
the chemical entities labelled as “drug” today come
from serendipitous studies such as combinatorial
chemistry (46). This is partly due to a sharp decrease
in the speed of new entities hitting the market ob-
served past couple of decades, when CADD is most

Figure 4. Superposition of the co-crystallized ligand (oteseconazole) and its docking pose obtained by Glide (2019-4,
Schrodinger, LLC, NY, USA) (40) in Candida albicans lanosterol 14a demethylase (CACYP51) active site (A) and binding
interactions of oteseconazole with CACYP51 according to the crystallographic study (B) (41). The images were rendered using

Maestro (2019-4, Schrodinger, LLC, NY, USA).
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expected to bear fruit. Still, examples of drugs dis-
covered through CADD inspire researchers from dif-
ferent backgrounds, three of which are provided as
example in this review.

Dorzolamide (Merck): Marketed as an eye-drop
for glaucoma, dorzolamide was developed through
structure-based drug design (47). This compound
was developed as a human carbonic anhydrase II
(hCAII) inhibitor and tailored to fit in the specific
active site of hCAII starting from a parent racemate
compound (MK-927), whose enantiomers show 100-
fold difference in affinity to hCAII (48, 49). X ray
crystallography studies and ab initio calculations
identified the conformational variations that caused
the observed potency difference between the enan-
tiomers. Therefore, further modifications were taken
on for the S enantiomer of MK-927 using structure-
based modelling and introduction of a methyl group
to the 6™ position yielded a more potent derivative.
The 4-isobuthylamino group was replaced with eth-
ylamino group to counter the reduced water solubil-
ity. The resulting four enantiomers were evaluated
through in vitro and crystallographic studies and the
trans S,S configuration (dorzolamide) was found to
have the greatest potency (50).

Zanamivir (GSK) and Oseltamivir (Gilead Sci-
ences): The antiviral drug zanamivir acts through
viral neuraminidase inhibition and is used against
influenza infections (51). Following the structural
elucidation of neuraminidase via X ray crystallog-
raphy, structure-based virtual screening campaigns
were conducted to find potential anti-viral inhibitors
and zanamivir is the result of one of these campaigns
using the software GRID (52). Zanamivir was de-
signed from 2-deoxy-2,3-dehydro-N-acetylneu-
raminic acid by substitution of the 4-hydroxy group
with 4-guanidino. Further structure-based design to
utilize an extra binding gorge on neuraminidase led
to the discovery of more potent and orally available
oseltamivir (47).

Aliskiren (Novartis): Aliskiren was designed as a
renin inhibitor for the treatment of hypertension. It is
also the first member of the class called direct renin
inhibitors. Aliskiren’s design starts with the efforts
to find renin inhibitors by mimicking the natural
peptide substrate of the renin system (53). The first
non-peptide derivative was developed by Goschke
et al. (1997), which was a success compared to the
previous peptide derivatives in terms of pharmacoki-
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netic profile (54). With a structure-based modelling
using a crystal structure of renin, the lead designed
by Goschke et al. was further optimized to improve
potency. Identification of an additional pocket in
the renin catalytic site through the following X ray
crystallography studies led to rational design of new
derivatives with better affinity and selectivity to re-
nin over other aspartic peptidases and further SAR
studies to optimize in silico interactions with renin
resulted in a derivative, which was aliskiren, with
potency at sub-nanomolar concentration (55).

6. Resources for Molecular Modelling
Tools

Thanks to the age of information and the growing
“open source, open data” trend, it has never been
easier to understand and utilize molecular modelling
tools of different sorts. The internet is full of free-
to-use applications or web servers as well as tutorial
materials (Table 2).

Increasing popularity of molecular modelling cre-
ated demands for hands-on training and workshops,
which are now a common part of scientific meetings
of related fields. These workshops, some of which
are supported by the leading molecular modelling
software companies, offer important opportunities,
especially for postgraduates and postdoctoral fel-
lows. In this respect, we organized the 1% Molecular
Modelling Workshop in Hacettepe University Fac-
ulty of Pharmacy with Hacettepe University Me-
dicinal Chemistry Research, Development, and Ap-
plication Center (MAGUM) on December 5-6, 2019.
The workshop focused on state-of-the-art techniques
in molecular modelling for CADD (56). The par-
ticipants had the opportunity to know academic free
modelling tools and experience hands-on training.
The workshop also provided a general idea, opportu-
nities, catches, and pitfalls of virtual screening.

7. Conclusions

The overwhelming developments in computer and
information technologies for the past couple of dec-
ades have boosted molecular modelling and its key
application, CADD. As computers became an indis-
pensable material of research, so did molecular mod-
elling techniques in CADD at all levels, from sketch-
ing a molecule to running millisecond MD simula-

Sari et al.



Hacettepe University Journal of the Faculty of Pharmacy

samjonns
AyIs1oATUN) QI1BMIJOS
. : : 9921 npa-aynp wayoo1q Aqoidjouwr//:dy 10] Surjfopowr K)1qOIJ[0
N(J ‘QUIdIPIIA JO [00YIS d PoTANPTUAYOIG AqoIdIOW//-EnY cmmmu < %cam._m_wﬁmﬁm ouofe-puel§ 1q0HdION
SONBRWLIOJUTWAY ) Q01,1 wod uonendsurjourmmm uone[no[es 103dLosaq IOAIDS QM uonendsurjoy
uonendsurjoy
0JsIouRI] UBS . . Surjopow QIBMIJOS
BIWIOJI[BD) JO AJSIOATUN) ootd Ia[[opou/310°qeyifes//:sdny urojo1d aaneredwo)) suoje-puels IPPON
Kyis1oamun) pioyxQ ‘dnoiny o . . Surjjopow
SOLEILIOJUY UISI01g PIOFX0) 221, nowowysddeqamsn-oe-xo-sye)s-3ido//:dpy ure0ad SrRIqUISY IOAIDS QM IIOWON
UOX YW 901 J1wIOpPED urAzew,/s}onpoid/wos uoxewayo,/:sd: UonIpa pue OIBMYOS 0} SUIAIR
yuweyd Ij SIWOPBIY ! /S1onpo.Id,/ K Yo//-sdny [OIONS O[N93]OW (e ouo[e-puelg YR SUIAIRIN
10ZUIpQIyd 991J OTWIOPED 0J)SBWIAALJ,/ WO TIFUIPOIYOS MMM //:Sd: UOREZI[ENSIA N onsoe
IPeIS Y OHeproy ! v/ oty /1560 QINJONINS DATIORIIU] Juofe-pue)s 1SS
. . Surgjepouwt Yy SO QTeMIJOS
OV NINA 1 toorouy ‘uorye[nores 103droso(q ouofe-puelg HNINA
UESIYOIN 291 -]/npa-yorun paur quiod qe[3ueyz//:sd: sutjopowt IOAIDS Q9 -
0 Asionun) ‘qe] Sueyy d AASSVL-T/mparydrun-paurq qe[sueyz//-sdny wojoid aanereduwior M HISSVL1
H01BOSIY IB[NOdotole 901 J1wdpEd : SQOIAIRS/[U NN oUIdS nojrw//:d: Sunyoop urjoid-urdol OIeMYOs
107 101U9)) 190AfIg A1) Ij SI9pedy TTAD0AAVH/s01AILs/ . [ruy//-dny [o0p utoy 191014 Suofe-puelg 2D0dAvH
Kys10ATUN QIBMIJOS
w[oY001§ ‘A10jeIOqe ] Q21 S10°soewro1S mmm//:dny suone[nuIs (A 4 SOVINOYD

9JIT 10} 9OUAIOS

Quore-puels

dyd-peojumop-uorjezijensia/opns

UONBZI[ENSIA

IEM)JOS

VIAOId 934 ortiopeoy -KI9A0ISIP-BIAOIQ/20UIIOS-IAT)BIOQR][09/510NPOId/W0I BIAOIGSPE Mmm //:sdny 2IMONNS AATORINU] Juole-puelg RzEnsiA 8d
00SIOURI] UBS e . UOTJRZI[BNSTA AIBMJOS
-BILIONI[R) JO AIISIOATUN) ootd BIOWIYO/MPIJson'[So-mmam/:sdny 2INIONIS ANORIAIU] suofe-puels BIOUID
OOSIOUBIA UBS ) 1 Srwapeo npayson-orqdwos-yoop,/:d: Sun[oop 1e[nod[o OIeMYOs
—BIWIO)I[R)) JO ANSIOATU() j dlWapedy Pod 19 >[o0p//-dny B[O0p TB[NO3[ON Suo[e-puLlg 2AD0d
SUOT)E[NO[BD SOTUBTOIW
. . : : QI1EM)JOS
y3angspid Jo ANSIdAIUN d01g 99°o1pedoae//:sdny Ie[nogJow pue SuOe-pue) 01pe3oAy
uonIPo ILNI[OW (€ [E-puis
musuy . . . QI1BM]JOS
yoreasey sdduog sy, 221, npasdduos-eura//:dpy Sunyoop IB[NOJ[OIA Stio[e-puEls BUIA Yooomy
mnsuy . . . QI1EM)JOS
yorsosoy sdduog sy 014 npo'sddrosyoopoine//:dny Funjoop IB[NI[OIN suopE-puEIg yoogomy
s)1adofasaq ENIER g | 92anog uonednddy adA, IEM)JOS
d dd dA .

Joplo [eanaqeydie ur @V pue SuI[[opow Je[noajoul 10 S[00) [BIoIdWod-uou djdwexa Jo 117 *g dqe],

ISSN: 2458 - 8806

43



Hacettepe University Journal of the Faculty of Pharmacy

SOTjRULIOJUTOTE

SuruoaIos

10 SIIISU] SSIMS Qa1 O A)ITB[TUIISSSIMS MMM [e0MIA poSEq-puBSi] IOAIOS QA ALIe[IuISSSImMg
sonewIojuIoNg . . . Surropout )
1O SHNSU] SSUAS Qa1 S10°'Asedxo opowssims//:sdiny weroud sarereduogy IOAIDS QM TAAOW-SSIMS
SonuLojuotd Qa1 O YOOPSSIMS MMM Suryoo( IB[NOAOIA IOAIOS QM YOO SSIMS
JO 9MSu[ SSIMS ! ! I
soneuLojuIonyg . . uondrpaxd [HNAV
1O SHINET] SSUAS Qa1 (O QWPESSIMS MMM “aonemopes Joduosaq IOAIDS QA AINAVSSIMG
. . . . SuruooIos oIeMyos
J1-S0D1[1IS Qa1 WO SMBUOZEBUIE" [-)SIM-NI-9)ISqIM-£S'dq'J1-S0[1S//:dNY [enLIA poSEq-puEi] QuoTE-puB)S 1-SOOTIS
: : JO uond[0D
Surpepow QIEM)JOS
SUOWIWIOBNASOY 991} OIUIPEOY 21BM)J0S/310"SUOWIWIOIENISOI MMM //:sdpy ua301d 0AOU oq P BISOY
BLIQNSU] JO
Ayns1oa1un) ‘3010910009 areayos
pue Ansiwoy) 001 waesbmmay/:dny Surfjepout Yy SO SuOe-puE) wayD-SNIMVSO
[eIUSWUOIIAUF UT JIUN) 1E-pueis
21235y VSO YL
Kyis10ATUN)
AoIBIR[Z 'SV I JOId . . QI1BM]JOS
T —— 21 S10°x0q[o0}Iesb//:sdny Surpopow YvSO SUOTe-pUEIS X0q[ooL YVSO
Jo K1oje1oqeT oy,
09SIoURI] UeS S . uonepIeA
~BIWIOJI[E)) JO ANISIOATUN 3l SIOAHDOU/NPo B[ON"IqUIUSIOIAIdS//:sdNy QIMONYS UISN01] 19AISS I ADIHOOUd
ueSIYOIA JO — . . . ) uornejuaLIo urdjord
Aypszaapap) ‘dnoany szrmo] Q01 10A10s” wdd/mpa-yorwn-reyd-wdo//:sdny QUBIQUIOW JO UONIIPAI] IOAIIS QM I9AIOS INdd
A3o[ouyoq], 29 99UIS St
. . l[[opowt
Jo Kyis1oAtun) euIy) RRIN Joddewuureyd/uo-isnod-qei mmm s10udoseue IOAIDS QM Joddejyuireyq
ised “‘qer] 8,17 urjsuoy g id
ySmqsnidg jo o . . Surjjopowt IBM]JOS
AISIOATU() ‘QeT oyorwIR)) 1 Tourrpyd/mpapid qqoojooptooLs;/diy aroydooruureyq suo[e-puel§ ouurid
fsionun oS- . Bur[apow
AIAY [9], “99UI0S Qa1 ISIDRULIBY /[0 NB)'SI"pEojulolq//:dny ssoqdoowureny IOAIAS QA JsIDeULIRYJ
10indwo) jo jooyos
. . uopreld gy pue QI1EM)JOS
oynuag 2Aquadp wod uddosoko mmm SUNIEPO MO suopE-puEg Akquadp
dnoip Q1BMIJOS
soisAydorg euoneindwo) 901 OIUAPLIY juowdojaAd/npa-onin sy mmm//:sdiy suone[nwIs (A ANA Pue QNVN

pue [BO10109Y |,

suoe-pue)§

panunuod g dlqel,

Sari et al.

44

Volume 40 / Number 1 / January 2020 / pp. 34-47



Hacettepe University Journal of the Faculty of Pharmacy

tions, for scientists of drug research. There are many
examples, in which the cost and time needed for drug
discovery is reduced, complex decision-making pro-
cesses are eased, disease pathways and interplay of
diverse molecules are understood. In addition to
availability of fast-processing computers, exponen-
tially increasing amount of open data in this field is
encouraging to learn and utilize molecular modelling
in CADD. Actually, today there are more molecular
modelling tools that are free or academic free than
commercial software with paid license. The ocean
called “internet” is full of documentations, tutori-
als, and forums to help through getting familiar with
these tools and troubleshooting. Also, molecular
modelling workshops, separate or as part of scientif-
ic meetings, became very common and wide-spread.
Thus, every scientist in drug research can and should
make the best of molecular modelling.
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