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Abstract 
In this study, we characterize some matrix transformations from the generalized absolute Cesàro series spaces �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 
(𝑝𝑝 ≥ 1) to the classical sequence spaces ℓ∞, c and c0. Besides this, we obtain some identities or estimates for the norms 
of the bounded linear operators corresponding these matrix transformations. Further, by applying the Hausdorff measure 
of noncompactness, we give the necessary and sufficient conditions for such operators to be compact. 
Keywords: Sequence Spaces, Matrix Operators, BK Spaces, Compact Operators, Hausdorff Measure of 

        Noncompactness. 
 
 

Genelleştirilmiş Mutlak Cesàro Seri Uzaylarında Nonkompaktlık Ölçüsünün 
Uygulamaları 

 
Öz 
Bu çalışmada, �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝(𝑝𝑝 ≥ 1) genelleştirilmiş mutlak Cesàro seri uzaylarından ℓ∞, 𝑐𝑐 ve 𝑐𝑐0 klasik dizi uzaylarına bazı 
matris dönüşümleri karakterize edilmiştir. Bunun yanı sıra, bu matris dönüşümlerine karşılık gelen sınırlı lineer 
operatörlerin normları için bazı özdeşlikler veya tahminler verilmiştir. Ayrıca, nonkompaktlık Hausdorff  ölçüsünün 
uygulaması ile bu operatörlerin kompakt olması için gerek ve yeter şartlar elde edilmiştir. 
Anahtar Kelimeler: Dizi Uzayları, Matris Operatörleri, BK Uzayları, Kompakt Operatörler, Nonkompaktlık Hausdorff 

Ölçüsü.  
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1. Introduction 

 

One of the research areas in the theory of summability is absolute summability factors and 

comparison of the methods, which plays an important role in Fourier Analysis and approximation 

theory and has been widely studied by many authors in the literature (Borwein,  1958; Çanak, 2020; 

Das, 1970; Flett, 1957; Hazar and Sarıgöl, 2018a, b; Mazhar, 1971; Mehdi, 1960; Mohapatra and 

Sarıgöl, 2018; Nur and  Gunawan,  2019;  Sarıgöl, 2015, 2016; Sezer and Çanak, 2015). Recently, 

independently of these topics, some sequence spaces have been generated and examined by several 

authors (Altay and Başar, 2007; Altay et al., 2009; Başarır and Kara, 2011a,b, 2012a,b, 2013; Et and 

Işık, 2012; Hazar, 2020; İlkhan and Kara, 2019; İlkhan, 2020; Kara and İlkhan, 2016; Kara and Başarır, 

2011; Karakaya  et al., 2011; Sarıgöl, 2016; Zengin Alp and İlkhan, 2019). 

The Hausdorff measure of noncompactness was defined by Goldens�tein et al. (1957). Using the 

Hausdorff measure of noncompactness, several authors have characterized some classes of compact 

operators on certain sequence spaces (Başarır and Kara, 2013; Djolović, 2010; Malkowsky et al., 

2002; Malkowsky and Rakočević, 2000; Mursaleen and Noman, 2010, 2011, 2014; Rakočević, 1998). 

Moreover, Hazar and Sarıgöl (2018) have introduced the new space �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 which is reduced to 

|𝐶𝐶𝜆𝜆|𝑝𝑝 (Sarıgöl, 2016) for 𝜇𝜇 = 0, and proved some theorems related to its topological structures and 

matrix mappings, where 𝜇𝜇 and 𝜆𝜆 + 𝜇𝜇 are nonnegative integers and 1 ≤ 𝑝𝑝 < ∞. 

The aim of this paper is to characterize the classes of infinite matrices (�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,𝑋𝑋), where 𝜇𝜇 and 

𝜆𝜆 + 𝜇𝜇 are nonnegative integers and 1 ≤ 𝑝𝑝 < ∞, 𝑋𝑋 = {ℓ∞, 𝑐𝑐, 𝑐𝑐0}, and also to characterize the classes 

of compact operators from �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 to ℓ∞, 𝑐𝑐, 𝑐𝑐0 and ℓ𝑝𝑝, 1 ≤ 𝑝𝑝 < ∞ by using the Hausdorff measure of 

noncompactness. 

Let (𝑋𝑋, ‖. ‖) be a normed space. The unit sphere in 𝑋𝑋 is denoted by 𝑆𝑆𝑋𝑋 = {𝑥𝑥 ∈ 𝑋𝑋 ∶ ‖𝑥𝑥‖ = 1}. If 

𝑋𝑋 and 𝑌𝑌 are Banach spaces and 𝐿𝐿 ∶ 𝑋𝑋 → 𝑌𝑌 is a linear operator, then, we write ℬ(𝑋𝑋,𝑌𝑌) for the set of 

all bounded linear operators from 𝑋𝑋 into 𝑌𝑌, which is a Banach space with the operator norm given by 

‖𝐿𝐿‖(𝑋𝑋,𝑌𝑌) = 𝑠𝑠𝑠𝑠𝑝𝑝𝑥𝑥∈𝑆𝑆𝑋𝑋‖𝐿𝐿(𝑥𝑥)‖𝑌𝑌. 

A linear operator 𝐿𝐿 ∶ 𝑋𝑋 → 𝑌𝑌 is said to be compact if its domain is all of 𝑋𝑋 and for every bounded 

sequence 𝑥𝑥 = (𝑥𝑥𝑛𝑛) ∈ 𝑋𝑋, the sequence �𝐿𝐿(𝑥𝑥𝑛𝑛)� has a convergent subsequence in 𝑌𝑌. We denote the 

class of such operators by 𝒞𝒞(𝑋𝑋,𝑌𝑌). 

Let 𝑤𝑤 be the space of all complex sequences and ℓ∞, 𝑐𝑐, 𝑐𝑐0 and 𝜙𝜙 denote the sets of  all bounded, 

convergent, null and finite sequences, respectively. 

Further, ℓ𝑝𝑝 = {𝑥𝑥 ∈ 𝑤𝑤 ∶ ∑∞
𝑣𝑣=0 |𝑥𝑥𝑣𝑣|𝑝𝑝 < ∞} for 1 ≤ 𝑝𝑝 < ∞, (ℓ1 = ℓ). We write 𝑒𝑒(𝑛𝑛) (𝑛𝑛 =

0,1, . . . ) for the sequence with 𝑒𝑒𝑛𝑛
(𝑛𝑛) = 1, 𝑒𝑒𝑣𝑣

(𝑛𝑛) = 0(𝑣𝑣 ≠ 𝑛𝑛)  for all 𝑛𝑛 ≥ 0. 
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A 𝐵𝐵𝐵𝐵- space 𝑋𝑋 is a Banach space with continuous coordinates 𝑃𝑃𝑛𝑛 ∶ 𝑋𝑋 → ℂ, where ℂ denotes the 

complex field and 𝑃𝑃𝑛𝑛(𝑥𝑥) = 𝑥𝑥𝑛𝑛 for all 𝑥𝑥 ∈ 𝑋𝑋 and 𝑛𝑛 ≥ 0.  Also, a 𝐵𝐵𝐵𝐵- space 𝑋𝑋 containing 𝜙𝜙 is said to 

have 𝐴𝐴𝐵𝐵 if every sequence 𝑥𝑥 = (𝑥𝑥𝜈𝜈) ∈ 𝑋𝑋 has a unique representation 𝑥𝑥 = ∑∞
𝑣𝑣=0 𝑥𝑥𝑣𝑣𝑒𝑒(𝜈𝜈)(Altay et al., 

2009).  For example, the classical sequence spaces ℓ∞, 𝑐𝑐, 𝑐𝑐0 and ℓ𝑝𝑝 are 𝐵𝐵𝐵𝐵-spaces with their natural 

norms. Moreover, the spaces 𝑐𝑐0 and ℓ𝑝𝑝 (1 ≤ 𝑝𝑝 < ∞) have 𝐴𝐴𝐵𝐵 (Malkowsky and Rakočević,  2000). 

The 𝛽𝛽-dual of a subset 𝑋𝑋 of 𝑤𝑤 is the set 𝑋𝑋𝛽𝛽 = {𝑡𝑡 ∈ 𝑤𝑤 ∶ ∑∞
𝑣𝑣=0 𝑡𝑡𝑣𝑣𝑥𝑥𝑣𝑣 𝑖𝑖𝑠𝑠 convergent for all 𝑥𝑥 ∈ 𝑋𝑋}. 

If 𝑋𝑋 ⊃ 𝜙𝜙 is a BK- space and 𝑡𝑡 = (𝑡𝑡𝜈𝜈) ∈ 𝑤𝑤, then we write 

‖𝑡𝑡‖𝑋𝑋∗ = 𝑠𝑠𝑠𝑠𝑝𝑝
𝑥𝑥∈𝑆𝑆𝑋𝑋

|∑∞
𝑣𝑣=0 𝑡𝑡𝑣𝑣𝑥𝑥𝑣𝑣|                                                        (1) 

provided the expression on the right is defined and finite which is the case whenever 𝑡𝑡 ∈ 𝑋𝑋𝛽𝛽 

(Malkowsky et al., 2002). 

Let 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑣𝑣) be an infinite matrix of complex numbers, 𝑋𝑋 and 𝑌𝑌 be subsets of 𝑤𝑤. Then, we 

write 𝑇𝑇𝑛𝑛 = (𝑡𝑡𝑛𝑛𝜈𝜈)𝜈𝜈=0∞  for the sequence in the 𝑛𝑛-th row of 𝑇𝑇. Also, we say that 𝑇𝑇 defines a matrix 

mapping from 𝑋𝑋 into 𝑌𝑌, and we denote it by 𝑇𝑇 ∶ 𝑋𝑋 → 𝑌𝑌, if, for all 𝑥𝑥 = (𝑥𝑥𝑣𝑣) ∈ 𝑋𝑋, the sequence 𝑇𝑇(𝑥𝑥) =

�𝑇𝑇𝑛𝑛(𝑥𝑥)�,  the 𝑇𝑇-transform of 𝑥𝑥, exists and belongs to 𝑌𝑌 , where  

𝑇𝑇𝑛𝑛(𝑥𝑥) = �
∞

𝑣𝑣=0

𝑡𝑡𝑛𝑛𝑣𝑣𝑥𝑥𝑣𝑣 

provided the series on the right converges for 𝑛𝑛 ≥ 0. The notation (𝑋𝑋,𝑌𝑌) denotes the class of all 

matrices 𝑇𝑇 such that 𝑇𝑇 ∶ 𝑋𝑋 → 𝑌𝑌. Thus, 𝑇𝑇 ∈ (𝑋𝑋,𝑌𝑌) if and only if 𝑇𝑇𝑛𝑛 = (𝑡𝑡𝑛𝑛𝑣𝑣)𝑣𝑣=0∞ ∈ 𝑋𝑋𝛽𝛽 for each 𝑛𝑛 and 

𝑇𝑇(𝑥𝑥) ∈ 𝑌𝑌 for all 𝑥𝑥 ∈ 𝑋𝑋. 

The matrix domain of an infinite matrix 𝑇𝑇 in 𝑋𝑋 is defined by  

 𝑋𝑋𝑇𝑇 = {𝑥𝑥 ∈ 𝑤𝑤 ∶ 𝑇𝑇(𝑥𝑥) ∈ 𝑋𝑋}.                                                              (2) 

An infinite matrix 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑣𝑣) is called a triangle if 𝑡𝑡𝑛𝑛𝑛𝑛 ≠ 0, and 𝑡𝑡𝑛𝑛𝑣𝑣 = 0 for 𝑣𝑣 > 𝑛𝑛, which has a 

unique inverse (Wilansky, 1984). Throughout paper, 𝑞𝑞 denotes the conjugate of 𝑝𝑝 > 1, i.e., 1/𝑝𝑝 +

1/𝑞𝑞 = 1 and 1/𝑞𝑞 = 0 for 𝑝𝑝 = 1. 

The following result is fundamental for our work. 

Remark 1.1. 

a-) (Malkowsky and Rakočević,  2000). Let 1 < 𝑝𝑝 < ∞ and 𝑞𝑞 = 𝑝𝑝/(𝑝𝑝 − 1). Then, we have 

ℓ∞
𝛽𝛽 = 𝑐𝑐𝛽𝛽 = 𝑐𝑐0

𝛽𝛽 = ℓ1, ℓ1
𝛽𝛽 = ℓ∞ and ℓ𝑝𝑝

𝛽𝛽 = ℓ𝑞𝑞. Furthermore, let 𝑋𝑋 denote any of the spaces ℓ∞, 𝑐𝑐, 𝑐𝑐0, ℓ1 

and ℓ𝑝𝑝. Then, we have ‖𝑡𝑡‖𝑋𝑋∗ = ‖𝑡𝑡‖𝑋𝑋𝛽𝛽 for all 𝑡𝑡 ∈ 𝑋𝑋𝛽𝛽 , where ‖. ‖𝑋𝑋𝛽𝛽 is the natural norm on the dual 

space 𝑋𝑋𝛽𝛽 . 

b-) (Malkowsky and Rakočević,  2000). Let 𝑋𝑋 and 𝑌𝑌 be 𝐵𝐵𝐵𝐵 spaces. Then, we have (𝑋𝑋,𝑌𝑌) ⊂

ℬ(𝑋𝑋,𝑌𝑌), that is, every matrix 𝑇𝑇 ∈ (𝑋𝑋,𝑌𝑌) defines an operator 𝐿𝐿𝑇𝑇 ∈ ℬ(𝑋𝑋,𝑌𝑌) by 𝐿𝐿𝑇𝑇(𝑥𝑥) = 𝑇𝑇(𝑥𝑥) for all 

𝑥𝑥 ∈ 𝑋𝑋. 



Karadeniz Fen Bilimleri Dergisi 10(1), 60-73, 2020 63 

c-) (Djolović, 2010). Let 𝑋𝑋 ⊃ 𝜙𝜙 be a 𝐵𝐵𝐵𝐵 space and 𝑌𝑌 be any of the spaces ℓ∞, 𝑐𝑐, 𝑐𝑐0. If 𝑇𝑇 ∈

(𝑋𝑋,𝑌𝑌), then ‖𝐿𝐿𝑇𝑇‖ = ‖𝑇𝑇‖(𝑋𝑋,ℓ∞) = 𝑠𝑠𝑠𝑠𝑝𝑝𝑛𝑛‖𝑇𝑇𝑛𝑛‖𝑋𝑋∗ < ∞. 

Let (𝑋𝑋,𝑑𝑑) be a complete metric space, 𝜀𝜀 > 0, and also 𝑆𝑆 and 𝐻𝐻 be subsets of 𝑋𝑋. Then, 𝑆𝑆 is 

called an 𝜀𝜀-net of 𝐻𝐻 in 𝑋𝑋,  if for every 𝑥𝑥 ∈ 𝐻𝐻 there exists 𝑠𝑠 ∈ 𝑆𝑆 such that 𝑑𝑑(𝑥𝑥, 𝑠𝑠) < 𝜀𝜀. Further, if 𝑆𝑆 is 

finite, then the 𝜀𝜀-net 𝑆𝑆 of 𝐻𝐻 is called a finite  𝜀𝜀-net  of 𝐻𝐻.  

By ℳ𝑋𝑋 , we denote the collection of all bounded subsets of a metric space (𝑋𝑋,𝑑𝑑). If 𝑄𝑄 ∈ ℳ𝑋𝑋 , 

then the Hausdorff measure of noncompactness of 𝑄𝑄, denoted by 𝜒𝜒(𝑄𝑄), is defined by  

𝜒𝜒(𝑄𝑄) = 𝑖𝑖𝑛𝑛𝑖𝑖{𝜀𝜀 > 0 ∶ 𝑄𝑄 has a finite 𝜀𝜀 − net in 𝑋𝑋}. 

The function 𝜒𝜒 ∶ ℳ𝑋𝑋 → [0,∞) is called the Hausdorff measure of noncompactness (Rakočević, 

1998). 

Lemma 1.2 (Djolović, 2010). Let 𝑋𝑋 and 𝑌𝑌 be Banach spaces, 𝐿𝐿 ∈ ℬ(𝑋𝑋,𝑌𝑌). Then, the Hausdorff 

measure of noncompactness of 𝐿𝐿, denoted by ‖𝐿𝐿‖𝜒𝜒,  is defined by 

‖𝐿𝐿‖𝜒𝜒 = 𝜒𝜒�𝐿𝐿(𝑆𝑆𝑋𝑋)�, 

and 𝐿𝐿 is compact iff ‖𝐿𝐿‖𝜒𝜒 = 0. 

Lemma 1.3 (Rakočević, 1998). Let 𝑄𝑄 be a bounded subset of the normed space 𝑋𝑋, where 𝑋𝑋 =

ℓ𝑝𝑝 for 1 ≤ 𝑝𝑝 < ∞. If   𝑃𝑃𝑟𝑟 ∶ 𝑋𝑋 → 𝑋𝑋 is the operator defined by 𝑃𝑃𝑟𝑟(𝑥𝑥) = (𝑥𝑥0, 𝑥𝑥1, . . . , 𝑥𝑥𝑟𝑟 , 0, . . . ) for all 𝑥𝑥 ∈

𝑋𝑋, then  

𝜒𝜒(𝑄𝑄) = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑟𝑟→∞

𝑠𝑠𝑠𝑠𝑝𝑝
𝑥𝑥∈𝑄𝑄

‖(𝐼𝐼 − 𝑃𝑃𝑟𝑟)(𝑥𝑥)‖ℓ𝑝𝑝 , 

where 𝐼𝐼 is the identity operator on 𝑋𝑋. 

 

2. The Series Spaces of generalized absolute Cesàro methods  

 

Let ∑𝑥𝑥𝑛𝑛 be an infinite series with partial sums (𝑠𝑠𝑛𝑛), and �𝜎𝜎𝑛𝑛𝜆𝜆� be the nth Cesàro mean 

(𝐶𝐶, 𝜆𝜆)  of order 𝜆𝜆 > −1 of  the sequence (𝑠𝑠𝑛𝑛), i.e., 𝜎𝜎𝑛𝑛𝜆𝜆 = �𝐸𝐸𝑛𝑛𝜆𝜆�
−1 ∑𝑛𝑛

𝑘𝑘=0 𝐸𝐸𝑛𝑛−𝑘𝑘𝜆𝜆−1𝑠𝑠𝑘𝑘, where 𝐸𝐸𝑛𝑛𝜆𝜆 is the 

binomial coefficient of 𝑧𝑧𝑛𝑛 in the power series expansion of the function (1 − 𝑧𝑧)−𝜆𝜆−1 in |𝑧𝑧| < 1. Then, 

the series ∑𝑥𝑥𝑛𝑛 is said to be summable |𝐶𝐶, 𝜆𝜆|𝑝𝑝 with index 𝑝𝑝 ≥ 1, if (Flett, 1957) 

 ∑∞
𝑛𝑛=1 𝑛𝑛𝑝𝑝−1�𝜎𝜎𝑛𝑛𝜆𝜆 − 𝜎𝜎𝑛𝑛−1𝜆𝜆 �

𝑝𝑝
< ∞.                                                    (3) 

 Also, this method was extended by Das (1970) to summability |𝐶𝐶, 𝜆𝜆, 𝜇𝜇|𝑝𝑝, for 𝜆𝜆 > −1,  𝜆𝜆 + 𝜇𝜇 ≠

−1,−2, . . ., using  

�
∞

𝑛𝑛=1

𝑛𝑛𝑝𝑝−1�𝜎𝜎𝑛𝑛
𝜆𝜆,𝜇𝜇 − 𝜎𝜎𝑛𝑛−1

𝜆𝜆,𝜇𝜇 �
𝑝𝑝

< ∞,   

in place of (3),  where �𝜎𝜎𝑛𝑛
𝜆𝜆,𝜇𝜇� is the nth Cesàro mean (𝐶𝐶, 𝜆𝜆, 𝜇𝜇)  of order (𝜆𝜆, 𝜇𝜇)  of  the sequence (𝑠𝑠𝑛𝑛), 

which was defined by Borwein (1958)  as follows:  
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𝜎𝜎𝑛𝑛
𝜆𝜆,𝜇𝜇 =

1
𝐸𝐸𝑛𝑛
𝜆𝜆+𝜇𝜇�

𝑛𝑛

𝑘𝑘=0

𝐸𝐸𝑛𝑛−𝑘𝑘𝜆𝜆−1𝐸𝐸𝑘𝑘
𝜇𝜇𝑠𝑠𝑘𝑘. 

Now, we denote by 𝑠𝑠�𝑛𝑛
𝜆𝜆,𝜇𝜇 the nth Cesàro mean (𝐶𝐶, 𝜆𝜆, 𝜇𝜇)  of sequence (𝑛𝑛𝑥𝑥𝑛𝑛), i.e., 

𝑠𝑠�0
𝜆𝜆,𝜇𝜇 = 𝑥𝑥0, 𝑠𝑠�𝑛𝑛

𝜆𝜆,𝜇𝜇 =
1

𝐸𝐸𝑛𝑛
𝜆𝜆+𝜇𝜇�

𝑛𝑛

𝑘𝑘=1

𝐸𝐸𝑛𝑛−𝑘𝑘𝜆𝜆−1𝐸𝐸𝑘𝑘
𝜇𝜇𝑘𝑘𝑥𝑥𝑘𝑘 . 

By the identity 𝑠𝑠�𝑛𝑛
𝜆𝜆,𝜇𝜇 = 𝑛𝑛�𝜎𝜎𝑛𝑛

𝜆𝜆,𝜇𝜇 − 𝜎𝜎𝑛𝑛−1
𝜆𝜆,𝜇𝜇 � (Das, 1970), the series space �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 ��𝐶𝐶𝜆𝜆,𝜇𝜇�1 = �𝐶𝐶𝜆𝜆,𝜇𝜇�� is 

stated by (Hazar and Sarıgöl, 2018)  

�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 = �𝑥𝑥 = (𝑥𝑥𝑣𝑣) ∈ 𝑤𝑤 ∶ 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝)(𝑥𝑥) = �𝑈𝑈𝑛𝑛
(𝜆𝜆,𝜇𝜇,𝑝𝑝)(𝑥𝑥)� ∈ ℓ𝑝𝑝�, 

where 

𝑈𝑈0
(𝜆𝜆,𝜇𝜇,𝑝𝑝)(𝑥𝑥) = 𝑥𝑥0, 𝑈𝑈𝑛𝑛

(𝜆𝜆,𝜇𝜇,𝑝𝑝)(𝑥𝑥) =
1

𝑛𝑛1/𝑝𝑝𝐸𝐸𝑛𝑛
𝜆𝜆+𝜇𝜇�

𝑛𝑛

𝑘𝑘=1

𝐸𝐸𝑛𝑛−𝑘𝑘𝜆𝜆−1𝐸𝐸𝑘𝑘
𝜇𝜇𝑘𝑘𝑥𝑥𝑘𝑘  , 𝑛𝑛 ≥ 1. 

According to (2), 

�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 = �ℓ𝑝𝑝�𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝) , 

(Hazar and Sarıgöl, 2018), where the matrix 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝) = (𝑠𝑠𝑛𝑛𝑘𝑘
(𝜆𝜆,𝜇𝜇,𝑝𝑝)) is defined by 𝑠𝑠00

(𝜆𝜆,𝜇𝜇,𝑝𝑝) = 1 and 

𝑠𝑠𝑛𝑛𝑘𝑘
(𝜆𝜆,𝜇𝜇,𝑝𝑝) = �

𝐸𝐸𝑛𝑛−𝑘𝑘𝜆𝜆−1𝐸𝐸𝑘𝑘
𝜇𝜇𝑘𝑘

𝑛𝑛1/𝑝𝑝𝐸𝐸𝑛𝑛
𝜆𝜆+𝜇𝜇 , 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛,

0,          𝑘𝑘 > 𝑛𝑛.
 

There exists the inverse matrix 𝑈𝑈�(𝜆𝜆,𝜇𝜇,𝑝𝑝) = �𝑠𝑠�𝑛𝑛𝑘𝑘
(𝜆𝜆,𝜇𝜇,𝑝𝑝)� of the matrix 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝), which is given by 

𝑠𝑠�00
(𝜆𝜆,𝜇𝜇,𝑝𝑝) = 1 and, for 𝜇𝜇, 𝜆𝜆 + 𝜇𝜇 ≠ −1,−2, . . .,  

 𝑠𝑠�𝑛𝑛𝑘𝑘
(𝜆𝜆,𝜇𝜇,𝑝𝑝) = �

𝐸𝐸𝑛𝑛−𝑘𝑘
−𝜆𝜆−1𝑘𝑘1/𝑝𝑝𝐸𝐸𝑘𝑘

𝜆𝜆+𝜇𝜇

𝑛𝑛𝐸𝐸𝑛𝑛
𝜇𝜇 , 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛,

0,                                𝑘𝑘 > 𝑛𝑛.
                                        (4) 

  It is obvious that �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 is the 𝐵𝐵𝐵𝐵-space with the norm (Hazar and Sarıgöl, 2018), for 𝜇𝜇, 𝜆𝜆 +

𝜇𝜇 ≠ −1,−2, . . ., 

 ‖𝑥𝑥‖�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
= �𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝)(𝑥𝑥)�

ℓ𝑝𝑝
.                                                   (5) 

 Throughout, for any given sequence 𝑥𝑥 = (𝑥𝑥𝑛𝑛) ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, we define the associated sequence 

𝑦𝑦 = (𝑦𝑦𝑛𝑛) as the 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝) transform of 𝑥𝑥, that is, 𝑦𝑦 = 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝)(𝑥𝑥),  and so 

 𝑦𝑦0 = 𝑥𝑥0 and 𝑦𝑦𝑛𝑛 = 1

𝑛𝑛1/𝑝𝑝𝐸𝐸𝑛𝑛
𝜆𝜆+𝜇𝜇 ∑𝑛𝑛

𝑘𝑘=1 𝐸𝐸𝑛𝑛−𝑘𝑘𝜆𝜆−1𝐸𝐸𝑘𝑘
𝜇𝜇𝑘𝑘𝑥𝑥𝑘𝑘 , 𝑛𝑛 ≥ 1.                               (6) 

 If the sequences 𝑥𝑥 and 𝑦𝑦 are connected by the relation (6), then 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 if and only if 𝑦𝑦 ∈

ℓ𝑝𝑝, furthermore, if 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, then ‖𝑥𝑥‖�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
= ‖𝑦𝑦‖ℓ𝑝𝑝 . In fact, the linear operator 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝) ∶
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�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 → ℓ𝑝𝑝, which maps every sequence 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 to its associated sequence 𝑦𝑦 ∈ ℓ𝑝𝑝, is bijective 

and norm preserving. 

 Also, we state the notations Λ𝑐𝑐, Λ∞ and Λ𝑠𝑠 as follows: 

Λ𝑐𝑐 = �𝜀𝜀 ∈ 𝑤𝑤 ∶ 𝑙𝑙𝑖𝑖𝑙𝑙
𝑚𝑚
𝐸𝐸𝑟𝑟

(𝑚𝑚)
  exists for all 𝑟𝑟 ∈ ℕ�, 

Λ∞ = �𝜀𝜀 ∈ 𝑤𝑤 ∶ 𝑠𝑠𝑠𝑠𝑝𝑝
𝑚𝑚,𝑟𝑟

�𝑟𝑟𝐸𝐸𝑟𝑟
𝜆𝜆+𝜇𝜇𝐸𝐸𝑟𝑟

(𝑚𝑚)
� < ∞�, 

Λ𝑠𝑠 = �𝜀𝜀 ∈ 𝑤𝑤 ∶ 𝑠𝑠𝑠𝑠𝑝𝑝
𝑚𝑚

�
𝑚𝑚

𝑟𝑟=1

�𝑟𝑟1/𝑝𝑝𝐸𝐸𝑟𝑟
𝜆𝜆+𝜇𝜇𝐸𝐸𝑟𝑟

(𝑚𝑚)
�
𝑞𝑞

< ∞�, 

where 

𝐸𝐸𝑟𝑟
(𝑚𝑚)

= �
𝑚𝑚

𝑘𝑘=𝑟𝑟

𝐸𝐸𝑘𝑘−𝑟𝑟−𝜆𝜆−1𝜀𝜀𝑘𝑘
𝑘𝑘𝐸𝐸𝑘𝑘

 𝜇𝜇 ;𝑙𝑙, 𝑟𝑟 ≥ 1. 

Also, we need the following known results for our investigation. 

Lemma 2.1 (Sarıgöl, 2015). Let 1 < 𝑝𝑝 < ∞.  Then, 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) ∈ �ℓ𝑝𝑝,ℓ�  if and only if 

‖𝑇𝑇‖�ℓ𝑝𝑝,ℓ�
′ = ��

∞

𝑘𝑘=0

��
∞

𝑛𝑛=0

|𝑡𝑡𝑛𝑛𝑘𝑘|�
𝑞𝑞

�

1/𝑞𝑞

< ∞, 

and there exists 1 ≤ 𝜉𝜉 ≤ 4 such that ‖𝑇𝑇‖�ℓ𝑝𝑝,ℓ�
′ = 𝜉𝜉‖𝑇𝑇‖�ℓ𝑝𝑝,ℓ�. 

Lemma 2.2 (Maddox, 1970). Let 1 ≤ 𝑝𝑝 < ∞. Then, 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) ∈ �ℓ, ℓ𝑝𝑝�  if and only if 

‖𝑇𝑇‖�ℓ,ℓ𝑝𝑝� = 𝑠𝑠𝑠𝑠𝑝𝑝
𝑘𝑘
��
∞

𝑛𝑛=0

|𝑡𝑡𝑛𝑛𝑘𝑘|𝑝𝑝�
1/𝑝𝑝

< ∞. 

Lemma 2.3 (Hazar and Sarıgöl, 2018). If 1 < 𝑝𝑝 < ∞, 𝜆𝜆 and 𝜆𝜆 + 𝜇𝜇 are nonnegative integers, 

then, �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
𝛽𝛽

= Λ𝑐𝑐 ∩ Λ𝑠𝑠  and    �𝐶𝐶𝜆𝜆,𝜇𝜇�
𝛽𝛽

= Λ𝑐𝑐 ∩ Λ∞.  

Now, we prove followings. 

First, by taking into account the inverse 𝑈𝑈�(𝜆𝜆,𝜇𝜇,𝑝𝑝) of the 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝), we state the following lemma 

by the previous result. 

Lemma 2.4. Let 𝜆𝜆 and 𝜆𝜆 + 𝜇𝜇 be nonnegative integers and 1 ≤ 𝑝𝑝 < ∞.  If 𝑡𝑡 = (𝑡𝑡𝑘𝑘) ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝�
𝛽𝛽

,  

then �̃�𝑡(𝑝𝑝) = ��̃�𝑡𝑘𝑘
(𝑝𝑝)� ∈ ℓ𝑞𝑞 for 𝑝𝑝 > 1 and �̃�𝑡(1) ∈ ℓ∞ for 𝑝𝑝 = 1 and the equality  

∑∞
𝑘𝑘=1 𝑡𝑡𝑘𝑘𝑥𝑥𝑣𝑣 = ∑∞

𝑘𝑘=1 �̃�𝑡𝑘𝑘
(𝑝𝑝)𝑦𝑦𝑘𝑘                                           (7) 

is satisfied for every 𝑥𝑥 = (𝑥𝑥𝑘𝑘) ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, where 𝑦𝑦 = 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝)(𝑥𝑥) is the associated sequence as in (6) 

and �̃�𝑡(𝑝𝑝) = ��̃�𝑡𝑘𝑘
(𝑝𝑝)� is defined by  
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�̃�𝑡𝑘𝑘
(𝑝𝑝) = 𝑘𝑘1/𝑝𝑝𝐸𝐸𝑘𝑘

𝜆𝜆+𝜇𝜇�
∞

𝑟𝑟=𝑘𝑘

𝑡𝑡𝑟𝑟
𝑟𝑟𝐸𝐸𝑟𝑟

𝜇𝜇 𝐸𝐸𝑟𝑟−𝑘𝑘−𝜆𝜆−1 = �
∞

𝑟𝑟=𝑘𝑘

𝑡𝑡𝑟𝑟𝑠𝑠�𝑟𝑟𝑘𝑘
(𝜆𝜆,𝜇𝜇,𝑝𝑝). 

Lemma 2.5. If 1 < 𝑝𝑝 < ∞, then we have ‖𝑡𝑡‖�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
∗ = ��̃�𝑡(𝑝𝑝)�

ℓ𝑞𝑞
 and if 𝑝𝑝 = 1, then we have 

‖𝑡𝑡‖�𝐶𝐶𝜆𝜆,𝜇𝜇�
∗ = ��̃�𝑡(1)�

ℓ∞
, for all 𝑡𝑡 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝�

𝛽𝛽
, where �̃�𝑡(𝑝𝑝) = ��̃�𝑡𝑘𝑘

(𝑝𝑝)� is as in Lemma 2.4, 𝜆𝜆 and 𝜆𝜆 + 𝜇𝜇 are 

nonnegative integers. 

Proof. Let 1 < 𝑝𝑝 < ∞ and 𝑡𝑡 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝�
𝛽𝛽

. Then, by using Lemma 2.4, we write �̃�𝑡(𝑝𝑝) = ��̃�𝑡𝑘𝑘
(𝑝𝑝)� ∈

ℓ𝑞𝑞 and the equality (7) holds for all sequence 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 and 𝑦𝑦 ∈ ℓ𝑝𝑝 which are connected by equation 

(6). Further, it follows from  (5) that 𝑥𝑥 ∈ 𝑆𝑆�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
 if and only if 𝑦𝑦 ∈ 𝑆𝑆ℓ𝑝𝑝 . Therefore, we deduce from 

(1) and (7) that 

‖𝑡𝑡‖�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
∗ = 𝑠𝑠𝑠𝑠𝑝𝑝

𝑥𝑥∈𝑆𝑆
�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝

��
∞

𝑘𝑘=1

𝑡𝑡𝑘𝑘𝑥𝑥𝑘𝑘� = 𝑠𝑠𝑠𝑠𝑝𝑝
𝑦𝑦∈𝑆𝑆ℓ𝑝𝑝

��
∞

𝑘𝑘=1

�̃�𝑡𝑘𝑘
(𝑝𝑝)𝑦𝑦𝑘𝑘� = ��̃�𝑡(𝑝𝑝)�

ℓ𝑝𝑝

∗
 

This completes the proof. 

The proof is elementary and left to the reader for 𝑝𝑝 = 1. 

Throughout, we denote the associated matrix 𝑇𝑇� (𝑝𝑝) = ��̃�𝑡𝑛𝑛𝑘𝑘
(𝑝𝑝)� of an infinite matrix 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) by  

 �̃�𝑡𝑛𝑛𝑘𝑘
(𝑝𝑝) = 𝑘𝑘1/𝑝𝑝𝐸𝐸𝑘𝑘

𝜆𝜆+𝜇𝜇 ∑∞
𝑟𝑟=𝑘𝑘

𝑡𝑡𝑛𝑛𝑛𝑛
𝑟𝑟𝐸𝐸𝑛𝑛

𝜇𝜇 𝐸𝐸𝑟𝑟−𝑘𝑘−𝜆𝜆−1 = ∑∞
𝑟𝑟=𝑘𝑘 𝑡𝑡𝑛𝑛𝑟𝑟𝑠𝑠�𝑟𝑟𝑘𝑘

(𝜆𝜆,𝜇𝜇,𝑝𝑝)           (8) 

provided the series on the right converges for all 𝑛𝑛, 𝑘𝑘 ≥ 1. 

Lemma 2.6. Let 𝑍𝑍 be a sequence space, 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) be an infinite matrix and 1 ≤ 𝑝𝑝 < ∞. If 𝑇𝑇 ∈

��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,𝑍𝑍�, then 𝑇𝑇� (𝑝𝑝) ∈ �ℓ𝑝𝑝,𝑍𝑍� such that 𝑇𝑇(𝑥𝑥) = 𝑇𝑇� (𝑝𝑝)(𝑦𝑦) for all 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 and 𝑦𝑦 ∈ ℓ𝑝𝑝 which are 

connected by the equation (6), where 𝑇𝑇� (𝑝𝑝) associated matrix is defined by (8),  𝜆𝜆, 𝜇𝜇  and 𝜆𝜆 + 𝜇𝜇 are 

nonnegative integers. 

Proof. This can be proved easily by using Lemma 2.4. 

Finally, we end this section with the following Lemmas on operator norms. 

Lemma 2.7. Let 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) be an infinite matrix and 𝑇𝑇� (𝑝𝑝) associated matrix given by (8). If 𝑇𝑇 

is in any of the classes ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, 𝑐𝑐0� , ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, 𝑐𝑐� and ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, ℓ∞�, then, we have, for 1 < 𝑝𝑝 < ∞, 

𝜆𝜆, 𝜇𝜇 and 𝜆𝜆 + 𝜇𝜇 nonnegative integers, 

‖𝐿𝐿𝑇𝑇‖ = ‖𝑇𝑇‖��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,ℓ∞�
= 𝑠𝑠𝑠𝑠𝑝𝑝

𝑛𝑛
�𝑇𝑇�𝑛𝑛

(𝑝𝑝)�
ℓ𝑞𝑞

 

and for 𝑝𝑝 = 1 and 𝜆𝜆, 𝜇𝜇, 𝜆𝜆 + 𝜇𝜇 nonnegative integers, 

‖𝐿𝐿𝑇𝑇‖ = ‖𝑇𝑇‖��𝐶𝐶𝜆𝜆,𝜇𝜇�,ℓ∞� = 𝑠𝑠𝑠𝑠𝑝𝑝
𝑛𝑛
�𝑇𝑇�𝑛𝑛

(1)�
ℓ∞

. 

Proof. This can be obtained by combining Remark 1.1 and Lemma 2.5. 
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Lemma 2.8. Let 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) be an infinite matrix and 𝑇𝑇� (𝑝𝑝) = ��̃�𝑡𝑛𝑛𝑘𝑘
(𝑝𝑝)� be associated matrix given 

by (8). Then, we have: 

a-) If 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�,ℓ𝑝𝑝�, then, for 𝑝𝑝 ≥ 1, 

‖𝐿𝐿𝑇𝑇‖ = ‖𝑇𝑇‖��𝐶𝐶𝜆𝜆,𝜇𝜇�,ℓ𝑝𝑝� = �𝑇𝑇� (1)��ℓ,ℓ𝑝𝑝�
. 

b-) If 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,ℓ�, then, for 1 < 𝑝𝑝 < ∞, there exists 1 ≤ 𝜉𝜉 ≤ 4 such that 

‖𝐿𝐿𝑇𝑇‖ = ‖𝑇𝑇‖��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,ℓ� = �𝑇𝑇� (𝑝𝑝)��ℓ𝑝𝑝,ℓ�
=

1
𝜉𝜉
�𝑇𝑇� (𝑝𝑝)��ℓ𝑝𝑝,ℓ�

 ′
. 

Proof. Part of a-) and b-) can be obtained by combining Remark 1.1 with Lemma 2.2 and 

Lemma 2.1, respectively. 

 

3. Compact matrix operators on �𝑪𝑪𝝀𝝀,𝝁𝝁�𝒑𝒑 

 

In this section, we characterize the classes of infinite matrices (�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,𝑋𝑋), where 𝑝𝑝 ≥ 1, 𝑋𝑋 =

{𝑐𝑐0, 𝑐𝑐, ℓ∞}. Also, we establish the Hausdorff measures of noncompactness of certain matrix operators 

on the generalized absolute Cesàro series spaces and using the Hausdorff measure of 

noncompactness, we give the necessary and sufficient conditions for such operators to be compact. 

Now, we are ready to give following results. 

Lemma 3.1 (Stieglitz and Tietz, 1977). 

a-) 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑟𝑟) ∈ (ℓ, 𝑐𝑐) ⇔ (i)  𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝑡𝑡𝑛𝑛𝑟𝑟  exists, 𝑟𝑟 ≥ 0,  (ii)    𝑠𝑠𝑠𝑠𝑝𝑝𝑛𝑛,𝑟𝑟|𝑡𝑡𝑛𝑛𝑟𝑟| < ∞. 

b-) 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑟𝑟) ∈ (ℓ, ℓ∞) ⇔ (ii)  holds. 

c-) Let 1 < 𝑝𝑝 < ∞.  𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑟𝑟) ∈ �ℓ𝑝𝑝, 𝑐𝑐� ⇔ (i) holds, (iii) 𝑠𝑠𝑠𝑠𝑝𝑝𝑛𝑛 ∑∞
𝑟𝑟=0 |𝑡𝑡𝑛𝑛𝑟𝑟|𝑞𝑞 < ∞.  

d-) Let 1 < 𝑝𝑝 < ∞.  𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑟𝑟) ∈ �ℓ𝑝𝑝, ℓ∞� ⇔ (iii) holds. 

e-) Let 1 < 𝑝𝑝 < ∞.  𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑟𝑟) ∈ �ℓ𝑝𝑝, 𝑐𝑐0� ⇔ (iii) holds, (iv) 𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝑡𝑡𝑛𝑛𝑟𝑟 = 0, 𝑟𝑟 ≥ 0. 

f-) 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑟𝑟) ∈ (ℓ, 𝑐𝑐0) ⇔ (ii) and (iv) holds.  

Now, we prove our first main result. 

Theorem 3.2. Suppose that 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) is an infinite matrix of complex numbers for all 𝑛𝑛,𝑘𝑘 ≥

1, the associated matrix 𝑇𝑇� (1) = ��̃�𝑡𝑛𝑛𝑘𝑘
(1)� is defined by  

 �̃�𝑡𝑛𝑛𝑘𝑘
(1) = 𝑘𝑘𝐸𝐸𝑘𝑘

𝜆𝜆+𝜇𝜇 ∑∞
𝑟𝑟=𝑘𝑘

𝑡𝑡𝑛𝑛𝑛𝑛
𝑟𝑟𝐸𝐸𝑛𝑛

𝜇𝜇 𝐸𝐸𝑟𝑟−𝑘𝑘−𝜆𝜆−1,                                                (9) 

𝜇𝜇 and 𝜆𝜆 + 𝜇𝜇 are nonnegative integers. Then  

a-) 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�,ℓ∞� if and only if 

 𝑙𝑙𝑖𝑖𝑙𝑙
𝑚𝑚

∑𝑚𝑚
𝑘𝑘=𝑟𝑟

𝐸𝐸𝑘𝑘−𝑛𝑛
−𝜆𝜆−1𝑡𝑡𝑛𝑛𝑘𝑘
𝑘𝑘𝐸𝐸𝑘𝑘

 𝜇𝜇  exists for  𝑛𝑛, 𝑟𝑟 ≥ 1,                                 (10) 
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 𝑠𝑠𝑠𝑠𝑝𝑝
𝑚𝑚,𝑖𝑖

�𝑖𝑖𝐸𝐸𝑖𝑖
𝜆𝜆+𝜇𝜇 ∑𝑚𝑚

𝑟𝑟=𝑖𝑖
𝐸𝐸𝑛𝑛−𝑖𝑖
−𝜆𝜆−1𝑡𝑡𝑛𝑛𝑛𝑛
𝑟𝑟𝐸𝐸𝑛𝑛

 𝜇𝜇 � < ∞, for  𝑛𝑛 ≥ 1,                          (11) 

 𝑠𝑠𝑠𝑠𝑝𝑝
𝑛𝑛,𝑘𝑘

��̃�𝑡𝑛𝑛𝑘𝑘
(1)� < ∞.                                                           (12) 

 b-) 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�, 𝑐𝑐� if and only if (10), (11), (12) hold and 

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛
�̃�𝑡𝑛𝑛𝑘𝑘

(1)exists for each 𝑘𝑘. 

 c-) 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�, 𝑐𝑐0� if and only if (10), (11), (12) hold and 

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛
�̃�𝑡𝑛𝑛𝑘𝑘

(1) = 0, for each 𝑘𝑘. 

 Proof. a-) 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�,ℓ∞� iff (𝑡𝑡𝑛𝑛𝑣𝑣)𝑣𝑣=1∞ ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�
𝛽𝛽(𝑛𝑛 𝜖𝜖 ℕ) and 𝑇𝑇(𝑥𝑥) ∈ ℓ∞ for every 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�, 

and also, by Lemma 2.3, (𝑡𝑡𝑛𝑛𝑣𝑣)𝑣𝑣=1∞ ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�
𝛽𝛽

  iff (10) and (11) hold. Moreover, the series ∑ 𝑡𝑡𝑛𝑛𝑣𝑣𝑥𝑥𝑣𝑣𝑣𝑣  

converges uniformly in 𝑛𝑛 and so 

 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛
𝑇𝑇𝑛𝑛(𝑥𝑥) = ∑∞

𝑣𝑣=0 𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛 𝑡𝑡𝑛𝑛𝑣𝑣𝑥𝑥𝑣𝑣.                                                     (13) 

To prove necessity and sufficiency of condition (12), for every given 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇� define the operator 

𝑈𝑈(𝜆𝜆,𝜇𝜇,1)  ∶ �𝐶𝐶𝜆𝜆,𝜇𝜇� → ℓ by 𝑈𝑈(𝜆𝜆,𝜇𝜇,1)(𝑥𝑥) = 𝑦𝑦. It is clear that this operator is bijection and the matrix 

corresponding to this operator is triangle. Further, 𝑈𝑈(𝜆𝜆,𝜇𝜇,1)(𝑥𝑥) = 𝑦𝑦 ∈ ℓ iff 𝑥𝑥 = 𝑈𝑈�(𝜆𝜆,𝜇𝜇,1)(𝑦𝑦), where 

𝑈𝑈�(𝜆𝜆,𝜇𝜇,1) = �𝑠𝑠�𝑛𝑛𝑣𝑣
(𝜆𝜆,𝜇𝜇,1)� is the inverse of 𝑈𝑈(𝜆𝜆,𝜇𝜇,1) and it is defined by (4) with 𝑝𝑝 = 1. Then it follows that 

�
𝑚𝑚

𝑘𝑘=1

𝑡𝑡𝑛𝑛𝑘𝑘𝑥𝑥𝑘𝑘 = �
𝑚𝑚

𝑗𝑗=1

��
𝑚𝑚

𝑘𝑘=𝑗𝑗

𝑡𝑡𝑛𝑛𝑘𝑘𝑠𝑠�𝑘𝑘𝑗𝑗
(𝜆𝜆,𝜇𝜇,1)�𝑦𝑦𝑗𝑗 = �

𝑚𝑚

𝑗𝑗=1

𝜑𝜑𝑚𝑚𝑗𝑗
(𝑛𝑛)𝑦𝑦𝑗𝑗 

where the matrix 𝜑𝜑(𝑛𝑛) = �𝜑𝜑𝑚𝑚𝑗𝑗
(𝑛𝑛)�, for 𝑗𝑗,𝑙𝑙 = 1,2, , . . ., is defined by 

𝜑𝜑𝑚𝑚𝑗𝑗
(𝑛𝑛) = �

�
𝑚𝑚

𝑘𝑘=𝑗𝑗

𝑡𝑡𝑛𝑛𝑘𝑘𝑠𝑠�𝑘𝑘𝑗𝑗
(𝜆𝜆,𝜇𝜇,1), 1 ≤ 𝑗𝑗 ≤ 𝑙𝑙

0,                      𝑗𝑗 > 𝑙𝑙.

 

Thus, from (10) and (11), by applying the matrix 𝜑𝜑(𝑛𝑛) = �𝜑𝜑𝑚𝑚𝑗𝑗
(𝑛𝑛)� to (13), we get that 

 𝑇𝑇𝑛𝑛(𝑥𝑥) = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑚𝑚

∑𝑚𝑚
𝑗𝑗=1 𝜑𝜑𝑚𝑚𝑗𝑗

(𝑛𝑛)𝑦𝑦𝑗𝑗 = ∑∞
𝑗𝑗=1 �∑∞

𝑘𝑘=𝑗𝑗 𝑡𝑡𝑛𝑛𝑘𝑘𝑠𝑠�𝑘𝑘𝑗𝑗
(𝜆𝜆,𝜇𝜇,1)� 𝑦𝑦𝑗𝑗 = ∑∞

𝑗𝑗=1 �̃�𝑡𝑛𝑛𝑗𝑗
(1)𝑦𝑦𝑗𝑗 = 𝑇𝑇�𝑛𝑛

(1)(𝑦𝑦) 

converges for all 𝑛𝑛 ≥ 1, where 𝑇𝑇� (1) = ��̃�𝑡𝑛𝑛𝑗𝑗
(1)�   is defined by �̃�𝑡𝑛𝑛𝑗𝑗

(1) = 𝑙𝑙𝑖𝑖𝑙𝑙𝑚𝑚𝜑𝜑𝑚𝑚𝑗𝑗
(𝑛𝑛)  for 𝑗𝑗,𝑙𝑙 = 1,2, . . ., 

which is same as in (9). 

This shows that the sequence 𝑇𝑇(𝑥𝑥) = (𝑇𝑇𝑛𝑛(𝑥𝑥)) exists. So, we obtain that 𝑇𝑇 ∶  �𝐶𝐶𝜆𝜆,𝜇𝜇� → ℓ∞ iff  

𝑇𝑇� (1) ∶  ℓ → ℓ∞, and also a few calculations reveal that 𝑇𝑇� (1) = 𝑇𝑇𝑇𝑇𝑈𝑈�(𝜆𝜆,𝜇𝜇,1). Thus, it follows by applying 

Lemma 3.1 with the matrix 𝑇𝑇� (1) that 𝑇𝑇� (1) ∶  ℓ → ℓ∞ iff (12) holds, and this concludes the proof of 

the part a-). 

Part b-) and c-) can be proved similarly by using Lemma 3.1. 
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Theorem 3.3. Suppose that 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) is an infinite matrix of complex numbers for all 𝑛𝑛,𝑘𝑘 ≥ 1 

and the associated matrix 𝑇𝑇� (𝑝𝑝) = ��̃�𝑡𝑛𝑛𝑘𝑘
(𝑝𝑝)� is defined by (8), 𝜇𝜇 and 𝜆𝜆 + 𝜇𝜇 are nonnegative integers and 

1 < 𝑝𝑝 < ∞. Then,  

 a-) 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,ℓ∞� if and only if (10) holds, and  

 𝑠𝑠𝑠𝑠𝑝𝑝
𝑚𝑚

∑𝑚𝑚
𝑖𝑖=1 �𝑖𝑖1/𝑝𝑝𝐸𝐸𝑖𝑖

𝜆𝜆+𝜇𝜇 ∑𝑚𝑚
𝑟𝑟=𝑖𝑖

𝐸𝐸𝑛𝑛−𝑖𝑖
−𝜆𝜆−1𝑡𝑡𝑣𝑣𝑛𝑛
𝑟𝑟𝐸𝐸𝑛𝑛

 𝜇𝜇 �
𝑞𝑞

< ∞, 𝑣𝑣 ≥ 1,                (14) 

 𝑠𝑠𝑠𝑠𝑝𝑝
𝑛𝑛
∑∞
𝑟𝑟=1 ��̃�𝑡𝑛𝑛𝑟𝑟

(𝑝𝑝)�
𝑞𝑞

< ∞.                                                 (15) 

 b-) 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, 𝑐𝑐� if and only if (10), (14), (15) hold and  

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛
�̃�𝑡𝑛𝑛𝑗𝑗

(𝑝𝑝)exists for each 𝑗𝑗. 

 c-) 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, 𝑐𝑐0� if and only if (10), (14), (15) hold and  

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛
�̃�𝑡𝑛𝑛𝑗𝑗

(𝑝𝑝) = 0, for each 𝑗𝑗. 

Proof. a-) 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, ℓ∞� iff (𝑡𝑡𝑛𝑛𝑣𝑣)𝑣𝑣=1∞ ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
𝛽𝛽

 (𝑛𝑛 𝜖𝜖 ℕ) and 𝑇𝑇(𝑥𝑥) ∈ ℓ∞ for every 𝑥𝑥 ∈

�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝. Also, using Lemma 2.3, it follows that (𝑡𝑡𝑛𝑛𝑣𝑣)𝑣𝑣=1∞ ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
𝛽𝛽

  iff (10) and (14) hold. Moreover, 

the series ∑ 𝑡𝑡𝑛𝑛𝑣𝑣𝑥𝑥𝑣𝑣𝑣𝑣   converges uniformly in 𝑛𝑛 and so (13) holds. 

To get the condition (15), as in the proof of Theorem 3.2, for every given 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 define the 

operator 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝) ∶  �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 → ℓ𝑝𝑝 by 𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝)(𝑥𝑥) = 𝑦𝑦. Also, the inverse matrix 𝑈𝑈�(𝜆𝜆,𝜇𝜇,𝑝𝑝) = �𝑠𝑠�𝑛𝑛𝑣𝑣
(𝜆𝜆,𝜇𝜇,𝑝𝑝)� of 

𝑈𝑈(𝜆𝜆,𝜇𝜇,𝑝𝑝) is defined by (4).  So we obtain that 

�
𝑚𝑚

𝑣𝑣=1

𝑡𝑡𝑛𝑛𝑣𝑣𝑥𝑥𝑣𝑣 = �
𝑚𝑚

𝑗𝑗=1

��
𝑚𝑚

𝑣𝑣=𝑗𝑗

𝑡𝑡𝑛𝑛𝑣𝑣𝑠𝑠�𝑣𝑣𝑗𝑗
(𝜆𝜆,𝜇𝜇,𝑝𝑝)�𝑦𝑦𝑗𝑗 = �

𝑚𝑚

𝑗𝑗=1

𝑏𝑏𝑚𝑚𝑗𝑗
(𝑛𝑛)𝑦𝑦𝑗𝑗 

where for 𝑗𝑗,𝑙𝑙 = 1,2, . . ., the matrix 𝐵𝐵(𝑛𝑛) = �𝑏𝑏𝑚𝑚𝑗𝑗
(𝑛𝑛)� is defined by 

𝑏𝑏𝑚𝑚𝑗𝑗
(𝑛𝑛) = �

�
𝑚𝑚

𝑣𝑣=𝑗𝑗

𝑡𝑡𝑛𝑛𝑣𝑣𝑠𝑠�𝑣𝑣𝑗𝑗
(𝜆𝜆,𝜇𝜇,𝑝𝑝), 1 ≤ 𝑗𝑗 ≤ 𝑙𝑙

0,                      𝑗𝑗 > 𝑙𝑙.

 

Thus, from (10) and (14), by applying the matrix 𝐵𝐵(𝑛𝑛) = �𝑏𝑏𝑚𝑚𝑗𝑗
(𝑛𝑛)� to (13), it can be written that 

 𝑇𝑇𝑛𝑛(𝑥𝑥) = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑚𝑚

∑𝑚𝑚
𝑗𝑗=1 𝑏𝑏𝑚𝑚𝑗𝑗

(𝑛𝑛)𝑦𝑦𝑗𝑗 = ∑∞
𝑗𝑗=1 �∑∞

𝑣𝑣=𝑗𝑗 𝑡𝑡𝑛𝑛𝑣𝑣𝑠𝑠�𝑣𝑣𝑗𝑗
(𝜆𝜆,𝜇𝜇,𝑝𝑝)� 𝑦𝑦𝑗𝑗 = ∑∞

𝑗𝑗=1 �̃�𝑡𝑛𝑛𝑗𝑗
(𝑝𝑝)𝑦𝑦𝑗𝑗 = 𝑇𝑇�𝑛𝑛

(𝑝𝑝)(𝑦𝑦) 

converges for all 𝑛𝑛 ≥ 1, where 𝑇𝑇� (𝑝𝑝) = ��̃�𝑡𝑛𝑛𝑗𝑗
(𝑝𝑝)� is defined by �̃�𝑡𝑛𝑛𝑗𝑗

(𝑝𝑝) = 𝑙𝑙𝑖𝑖𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚𝑗𝑗
(𝑛𝑛)  for 𝑗𝑗,𝑙𝑙 = 1,2, . . ., as in 

(8). This leads us that 𝑇𝑇 ∶  �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 → ℓ∞ if and only if 𝑇𝑇� (𝑝𝑝)  ∶ ℓ𝑝𝑝 → ℓ∞. Further, it can be easily 
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calculated that 𝑇𝑇� (𝑝𝑝) = 𝑇𝑇𝑇𝑇𝑈𝑈�(𝜆𝜆,𝜇𝜇,𝑝𝑝). Hence, by Lemma 3.1, 𝑇𝑇� (𝑝𝑝) ∶  ℓ𝑝𝑝 → ℓ∞ iff (15) holds, and this 

proves the part of a-). 

Part b-) and c-) can be proved similarly by using Lemma 3.1. 

We may state the following lemma on the Hausdorff measures of noncompactness. 

Lemma 3.4. (Mursaleen and Noman, 2010; Theorem 3.7) Let 𝑋𝑋 ⊃ 𝜙𝜙 be a 𝐵𝐵𝐵𝐵 space. Then, we 

have: 

 a-) If 𝑇𝑇 ∈ (𝑋𝑋, ℓ∞), then 

0 ≤ ‖𝐿𝐿𝑇𝑇‖𝜒𝜒 ≤ 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑝𝑝‖𝑇𝑇𝑛𝑛‖𝑋𝑋∗ . 

b-) If 𝑇𝑇 ∈ (𝑋𝑋, 𝑐𝑐0), then 

‖𝐿𝐿𝑇𝑇‖𝜒𝜒 = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑝𝑝‖𝑇𝑇𝑛𝑛‖𝑋𝑋∗ . 

c-) If 𝑋𝑋 has 𝐴𝐴𝐵𝐵 or 𝑋𝑋 = ℓ∞ and 𝑇𝑇 ∈ (𝑋𝑋, 𝑐𝑐), then 

1
2
𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑝𝑝‖𝑇𝑇𝑛𝑛 − 𝛾𝛾‖𝑋𝑋∗ ≤ ‖𝐿𝐿𝑇𝑇‖𝜒𝜒 ≤ 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑝𝑝‖𝑇𝑇𝑛𝑛 − 𝛾𝛾‖𝑋𝑋∗ , 

where 𝛾𝛾 = (𝛾𝛾𝑣𝑣) with 𝛾𝛾𝑣𝑣 = 𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛→∞𝑡𝑡𝑛𝑛𝜈𝜈 for all 𝜈𝜈 ∈ ℕ. 

Now, let 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) be an infinite matrix and 𝑇𝑇� (𝑝𝑝) = ��̃�𝑡𝑛𝑛𝑘𝑘
(𝑝𝑝)� the associated matrix defined by 

(8).  Then connected with Lemma 3.4, we can prove next result using Lemma 2.5 and Lemma 2.6.  

Theorem 3.5. Let 𝜇𝜇 and 𝜆𝜆 + 𝜇𝜇 be nonnegative integers and 𝑝𝑝 ≥ 1. Then, we have: 

 a-) If 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, ℓ∞�, then 

 0 ≤ ‖𝐿𝐿𝑇𝑇‖𝜒𝜒 ≤ 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑝𝑝 �𝑇𝑇�𝑛𝑛
(𝑝𝑝)�

ℓ𝑝𝑝

∗
                                              (16) 

 and 

 𝐿𝐿𝑇𝑇 is compact if 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

�𝑇𝑇�𝑛𝑛
(𝑝𝑝)�

ℓ𝑝𝑝

∗
= 0.                                      (17) 

 b-) If 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, 𝑐𝑐0�, then 

 ‖𝐿𝐿𝑇𝑇‖𝜒𝜒 = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑝𝑝 �𝑇𝑇�𝑛𝑛
(𝑝𝑝)�

ℓ𝑝𝑝

∗
                                                 (18) 

and 

 𝐿𝐿𝑇𝑇 is compact if and only if 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

�𝑇𝑇�𝑛𝑛
(𝑝𝑝)�

ℓ𝑝𝑝

∗
= 0.                           (19) 

 c-) If 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, 𝑐𝑐�, then 

 1
2
𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑝𝑝�𝑇𝑇�𝑛𝑛
(𝑝𝑝) − 𝛾𝛾��

ℓ𝑝𝑝

∗
≤ ‖𝐿𝐿𝑇𝑇‖𝜒𝜒 ≤ 𝑙𝑙𝑖𝑖𝑙𝑙

𝑛𝑛→∞
𝑠𝑠𝑠𝑠𝑝𝑝 �𝑇𝑇�𝑛𝑛

(𝑝𝑝) − 𝛾𝛾��
ℓ𝑝𝑝

∗
,          (20) 

and 

 𝐿𝐿𝑇𝑇 is compact if and only if 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

�𝑇𝑇�𝑛𝑛
(𝑝𝑝) − 𝛾𝛾��

ℓ𝑝𝑝

∗
= 0,                         (21) 
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where 𝛾𝛾� = (𝛾𝛾�𝑣𝑣) with 𝛾𝛾�𝑣𝑣 = 𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛→∞�̃�𝑡𝑛𝑛𝑣𝑣
(𝑝𝑝) for all 𝜈𝜈 ∈ ℕ. 

Proof. Considering Lemma 1.2, we derive the conditions (17),(19) and (21) from the 

conditions (16), (18) and (20), respectively. So, we may prove (16), (18) and (20). 

Since �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,𝑝𝑝 ≥ 1 is a BK-space, by combining parts a-) and b-) of Lemma 3.4 with Lemma 

2.5, we get the conditions (16) and (18), respectively. 

Now, we show that the condition (20) holds. Let 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, 𝑐𝑐� be given, then it follows from 

Lemma 2.6 that 𝑇𝑇� (𝑝𝑝) ∈ �ℓ𝑝𝑝, 𝑐𝑐�, where 𝑇𝑇� (𝑝𝑝) is defined by (8).  Also, if we take 𝑋𝑋 = ℓ𝑝𝑝, which has 𝐴𝐴𝐵𝐵, 

in part c-) of Lemma 3.4, then 𝑇𝑇� (𝑝𝑝) ∈ �ℓ𝑝𝑝, 𝑐𝑐� implies that  

 1
2
𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑝𝑝�𝑇𝑇�𝑛𝑛
(𝑝𝑝) − 𝛾𝛾��

ℓ𝑝𝑝

∗
≤ �𝐿𝐿𝑇𝑇� (𝑝𝑝)�𝜒𝜒 ≤ 𝑙𝑙𝑖𝑖𝑙𝑙

𝑛𝑛→∞
𝑠𝑠𝑠𝑠𝑝𝑝 �𝑇𝑇�𝑛𝑛

(𝑝𝑝) − 𝛾𝛾��
ℓ𝑝𝑝

∗
,            (22) 

where 𝛾𝛾� = (𝛾𝛾�𝑣𝑣) with 𝛾𝛾�𝑣𝑣 = 𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛→∞�̃�𝑡𝑛𝑛𝑣𝑣
(𝑝𝑝) for all 𝜈𝜈 ∈ ℕ. 

On the other hand, let 𝑆𝑆�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
 be the unit sphere in �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝. Then, we can write that 𝑥𝑥 ∈ 𝑆𝑆�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝

 

if and only if 𝑦𝑦 ∈ 𝑆𝑆ℓ𝑝𝑝 , where 𝑆𝑆ℓ𝑝𝑝 denotes the unit sphere in ℓ𝑝𝑝, 𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝 and 𝑦𝑦 ∈ ℓ𝑝𝑝, since 𝑇𝑇(𝑥𝑥) =

𝑇𝑇� (𝑝𝑝)(𝑦𝑦) by Lemma 2.6. For brevity, we use the notation 𝑆𝑆�𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝
= 𝑆𝑆 and 𝑆𝑆ℓ𝑝𝑝 = 𝑆𝑆̅.  So, this leads us 

by Remark 1.1, Lemma 1.2,  and Lemma 2.6  to the consequence that 

 ‖𝐿𝐿𝑇𝑇‖𝜒𝜒 = 𝜒𝜒(𝑇𝑇𝑆𝑆) = 𝜒𝜒�𝑇𝑇� (𝑝𝑝)𝑆𝑆̅� = �𝐿𝐿𝑇𝑇� (𝑝𝑝)�𝜒𝜒.                                 (23) 

This completes the proof by (22) and (23) . 

Concerning the compactness characterizations of ��𝐶𝐶𝜆𝜆,𝜇𝜇�,ℓ𝑝𝑝� for 1 ≤ 𝑝𝑝 < ∞ and ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝, ℓ� 

for 𝑝𝑝 > 1, we have next result. 

Theorem 3.6 Let 𝜇𝜇 and 𝜆𝜆 + 𝜇𝜇 be nonnegative integers, 𝑇𝑇 = (𝑡𝑡𝑛𝑛𝑘𝑘) be an infinite matrix and 

𝑇𝑇� (𝑝𝑝) = ��̃�𝑡𝑛𝑛𝑘𝑘
(𝑝𝑝)� the associated matrix defined by (8). 

a-) If 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�,ℓ𝑝𝑝�, then, for 1 ≤ 𝑝𝑝 < ∞, 

 ‖𝐿𝐿𝑇𝑇‖𝜒𝜒 = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑟𝑟→∞

𝑠𝑠𝑠𝑠𝑝𝑝
𝑣𝑣
�∑∞

𝑛𝑛=𝑟𝑟+1 ��̃�𝑡𝑛𝑛𝑣𝑣
(1)�

𝑝𝑝
�
1/𝑝𝑝

                                   (24) 

and 

 𝐿𝐿𝑇𝑇 is compact iff 𝑙𝑙𝑖𝑖𝑙𝑙
𝑟𝑟→∞

𝑠𝑠𝑠𝑠𝑝𝑝
𝑣𝑣
∑∞
𝑛𝑛=𝑟𝑟+1 ��̃�𝑡𝑛𝑛𝑣𝑣

(1)�
𝑝𝑝

= 0.                         (25) 

 b-) If 𝑇𝑇 ∈ ��𝐶𝐶𝜆𝜆,𝜇𝜇�𝑝𝑝,ℓ�, then, for 𝑝𝑝 > 1, there exists 1 ≤ 𝜉𝜉 ≤ 4 such that 

‖𝐿𝐿𝑇𝑇‖𝜒𝜒 =
1
𝜉𝜉
𝑙𝑙𝑖𝑖𝑙𝑙
𝑟𝑟→∞

��
∞

𝑣𝑣=1

� �
∞

𝑛𝑛=𝑟𝑟+1

��̃�𝑡𝑛𝑛𝑣𝑣
(𝑝𝑝)��

𝑞𝑞

�

1/𝑞𝑞

 

and 
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𝐿𝐿𝑇𝑇  is compact iff  𝑙𝑙𝑖𝑖𝑙𝑙
𝑟𝑟→∞

�
∞

𝑣𝑣=1

� �
∞

𝑛𝑛=𝑟𝑟+1

��̃�𝑡𝑛𝑛𝑣𝑣
(𝑝𝑝)��

𝑞𝑞

= 0. 

Proof. a-) Let 𝑆𝑆�𝐶𝐶𝜆𝜆,𝜇𝜇� be the unit sphere in �𝐶𝐶𝜆𝜆,𝜇𝜇�, that is, 𝑆𝑆�𝐶𝐶𝜆𝜆,𝜇𝜇� = �𝑥𝑥 ∈ �𝐶𝐶𝜆𝜆,𝜇𝜇� ∶ ‖𝑥𝑥‖ = 1�. Then, 

from (5), we know that 𝑥𝑥 ∈ 𝑆𝑆�𝐶𝐶𝜆𝜆,𝜇𝜇� if and only if 𝑦𝑦 ∈ 𝑆𝑆ℓ, where 𝑆𝑆ℓ denotes the unit sphere in ℓ, 𝑥𝑥 ∈

�𝐶𝐶𝜆𝜆,𝜇𝜇� and 𝑦𝑦 ∈ ℓ are connected by the equation (6). For brevity, we write 𝑆𝑆�𝐶𝐶𝜆𝜆,𝜇𝜇� = 𝑆𝑆 and 𝑆𝑆ℓ = 𝑆𝑆̅.  So, 

using Remark 1.1, Lemma 1.2 and Lemma 1.3, we obtain 

‖𝐿𝐿𝑇𝑇‖𝜒𝜒 = 𝜒𝜒(𝑇𝑇𝑆𝑆) = 𝜒𝜒�𝑇𝑇� (1)𝑆𝑆̅� 

                                                          = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑟𝑟→∞

𝑠𝑠𝑠𝑠𝑝𝑝
𝑦𝑦∈�̅�𝑆

�(𝐼𝐼 − 𝑃𝑃𝑟𝑟)𝑇𝑇� (1)(𝑦𝑦)�
ℓ𝑝𝑝

 

                             = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑟𝑟→∞

𝑠𝑠𝑠𝑠𝑝𝑝
𝑣𝑣
� �

∞

𝑛𝑛=𝑟𝑟+1

��̃�𝑡𝑛𝑛𝑣𝑣
(1)�

𝑝𝑝
�
1/𝑝𝑝

, 

where 𝑃𝑃𝑟𝑟  ∶ ℓ𝑝𝑝 → ℓ𝑝𝑝 is defined by 𝑃𝑃𝑟𝑟(𝑦𝑦) = (𝑦𝑦0,𝑦𝑦1, . . . ,𝑦𝑦𝑟𝑟 , 0, . . . ), which completes the asserted by 

Lemma 2.2. 

Also, we get the condition (25)  from the condition (24) using Lemma 1.2. 

Since one can easily prove part b-) as in part a-) using Lemma 2.1 instead of Lemma 2.2, so we 

omit the detail. 
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