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ABSTRACT 
 
Cardiac arrhythmia refers to abnormal activity of the heart. Correct classification of cardiac arrhythmia is, therefore, crucial 
for the appropriate treatment of heart diseases. In this paper, a novel approach is proposed for cardiac arrhythmia 
classification. Initially, the feature vectors extracted from raw electrocardiogram (ECG) signals are projected into a particular 
subspace obtained via the Common Vector Approach, which is an effective subspace method. The projected vectors are then 
fed into two distinct decision-tree-based classifiers—namely, C4.5 and random forest. The results obtained from the proposed 
approach are compared with those obtained with the original feature vectors using the same classifiers. For this purpose, the 
well-known MIT-BIH arrhythmia database was utilized. Six different sets of features based on QRS, time-domain, wavelet 

transform, and power spectral density are derived from ECG signals in this database. The feature sets are then used in the 
classification of five main beat types including non-ectopic, ventricular ectopic, supraventricular ectopic, fusion, and 
unknown. The experimental results reveal that the recognition performances achieved by most of the projected features are 
explicitly higher than those obtained with the original ones. In addition, the classification accuracy of the proposed approach 
climbs to 100% for the test set. 
 

Keywords: Cardiac arrhythmia classification; Electrocardiography; Feature selection; Subspace projection; Decision tree 

 

 

1. INTRODUCTION 
 

Arrhythmia is a common name of abnormal cardiac electrical activity observation [1]. Cardiac 
arrhythmias frequently occur in individuals with cardiovascular diseases [2]. Many types of 

arrhythmias are life-threatening abnormalities that may cause cardiac arrest or sudden death. 

Consequently, early diagnosis of arrhythmia may extend the life and enhance the quality of life of the 

patient with appropriate treatment [3]. ECG is the most effective tool to diagnose arrhythmia types [2]. 
The role of feature extraction is vital for ECG signal analysis. In the literature, numerous works utilize 

various feature extraction strategies for the classification of ECG signals to detect not only 

arrhythmias but also other heart abnormalities. In a study, extracted RR interval series and 
morphology descriptors calculated from wavelet transform (WT) are used [4]. Morphological WT and 

time interval features [5], local binary patterns (LBP) features, and several amplitude values [6], 

wavelet packet entropy (WPE) features [7], convolutional neural network (CNN) features [8-10] are 

also studied. Also, R-peaks of ECG signals are utilized as the features [11]. Multiscale wavelet 
features, along with timing information, are preferred [12]. Morphology and heartbeat interval features 

were extracted in [13]. Time-domain (TD) features (principal components of QRS morphology, RR 

interval and QRS interval) are classified into four types of ECG beats—normal, ventricular ectopic, 
supraventricular ectopic, and fusion—in [14]. Discrete wavelet transform (DWT) [15, 16], fuzzy 

wavelet packet [17], tunable Q-wavelet [18] and power spectral density (PSD) [19, 20] analysis are 
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other examples of the feature extraction approaches for ECG classification. The local fractal 
dimension of neighboring sample points of ECG signal segments is used as the feature in [21]. 

 

Dimension reduction also plays an essential role in ECG classification because it is useful for many 
different pattern recognition problems. Subspace-based feature projection methods are widely applied 

to reduce the dimension in most studies [1, 22-24]. In these approaches, the original feature space is 

projected into a new lower-dimensional subspace. An effective arrhythmia classification scheme using 

a dimension reduction method that combines principal component analysis (PCA) with linear 
discriminant analysis (LDA) is presented [23]. The experimental results show that the integration of a 

Probabilistic Neural Network (PNN) classifier with the proposed dimension reduction method attains 

satisfactory classification performance. In a previous study, three dimensionality reduction 
algorithms—PCA, LDA, and independent component analysis (ICA)—are individually applied to 

DWT sub-bands for ECG beat classification [1]. It is reported that the combination of ICA and PNN 

performs better than the combinations of the other dimension reduction methods and classifiers. In 

another study, similar methodologies are applied for the automated diagnosis of coronary artery 
disease [22]. Dimension reduction methods such as PCA, LDA, and ICA are applied to the set of 

DWT coefficients extracted from particular subbands. According to the experimental results, the 

combination of ICA and a Gaussian Mixture Model (GMM) classifier achieves respectable 
performance. In a more recent study, a new method for nonlinear feature extraction of ECG signals by 

combining PCA and kernel independent component analysis (KICA) is proposed [24]. This method 

first uses PCA to reduce the dimensions of the ECG signals and then employs KICA to calculate the 
feature space for extracting the nonlinear features. It is stated that the method yields satisfactory 

classification results with a support vector machine (SVM) classifier. 

 

Inspired by all the approaches mentioned above, in this paper, a common vector approach (CVA)-
based framework [25] is proposed for cardiac arrhythmia classification. In this framework, CVA is 

used to reduce the feature dimension and obtain a new subspace providing better discrimination 

among classes. The projected features are then fed into two distinct decision-tree-based classifiers 
[26]—namely, C4.5 and random forest. Although CVA has been previously used in combination with 

GMM for text-independent speaker recognition [27], the combination of CVA with random forest and 

C4.5 classifiers is newly proposed. Thus, such a combination of cardiac arrhythmia classification 
would be a novel approach. Besides, the impacts of different features, which have been widely 

preferred in the abovementioned studies, on the performance of arrhythmia classification are 

comparatively examined in this study. The utilized features can be briefly grouped as those based on 

QRS-complex, TD, WT, and PSD. While evaluating the effectiveness of the features, they are 
considered not only individually but also in combination. Throughout the paper, the utilized features 

are called CVA-projected and original, depending on whether a dimension reduction technique is 

applied or not, respectively. In the experiments, the well-known MIT-BIH arrhythmia database [28] 
was used to classify five main beat types including non-ectopic, ventricular ectopic, supraventricular 

ectopic, fusion, and unknown. The classification performance obtained by most of the CVA-projected 

features is explicitly higher than those obtained by the original ones. Also, if original features are all 

used together rather than individually, better performance is attained for both classifiers. However, if 
TD-, WT- and PSD-based features are combined, the highest success ratio is attained on CVA-

projected data with the C4.5 classifier. However, when all feature sets are joined in a unique feature 

vector, the highest accuracy is achieved on CVA-projected data with a random forest classifier. 
 

In the following sections, the utilized features are presented, the proposed method is introduced, the 

experimental work is explained, a discussion is given on the validity of the proposed method, and the 
conclusions are provided. 
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2. FEATURES 

 

Detailed information about QRS-, TD-, WT- and PSD-based features [20, 29] is given in the following 

subsections. The well-known QRS detection algorithm [30] is employed to compute QRS features. 
Once an R peak is detected, a 200-sample-long windowing process is carried out, such that each 

window contains 99 samples preceding the R peak, the R peak itself, and 100 samples succeeding the 

R peak. TD, WT, and PSD features are then calculated over those windows. 

 

2.1. QRS Features 
 

An ECG signal typically includes five deflections—P, Q, R, S, and T waves. Because Q, R, and S 

waves specify a particular event, they are commonly considered together as QRS. The Q wave is the 
downward deflection immediately after the P wave, whereas the R wave is an upward deflection 

following the Q wave. Whereas the S wave is the downward deflection following the R wave, the T 

wave follows the S wave. The structure of the QRS complex for a sample ECG signal is illustrated in 
Figure 1. 

 

 
 

Figure 1. A sample ECG signal 
 

The QRS-based features used for this work are PR interval, R wave duration, P+ amplitude, QRS p-p 
amplitude, R wave amplitude, ST amplitude, T+ amplitude, QRS wave area, and ST slope. The 

efficiency of these features is proved in several studies [29, 31, 32]. The PR interval corresponds to the 

duration from the beginning of the P wave to the QRS complex. This specific duration includes the 
signals between the onset of atrial depolarization and the onset of ventricular depolarization [31]. The 

R wave duration indicates the time interval between the beginning and end of an R wave [32]. The P+ 

amplitude is the difference between the P point and the other subsequent point, where the signal rises 

again. The QRS p-p amplitude is computed by the difference between R and Q points in the QRS 
complex in terms of amplitude. The R wave amplitude specifies the height of the R wave from the 

baseline. The ST amplitude is the difference between the S and T points over the amplitude axis. The 

T+ amplitude indicates the difference between the T point and the subsequent point, where the signal 
rises again [32]. The QRS wave area is the area of the rectangular region over the QRS complex that is 

matched by using Q, R, and S points [33]. Finally, the ST slope is obtained by computing the angle of 

the line from the S point to the T point of the QRS complex. In this way, 9 distinct QRS features are 
obtained. 

 

2.2. TD Features  

 
TD features are obtained using TD values over windowed ECG signals. Specifically, eight different 

statistical attributes listed as energy, mean, standard deviation, maximum, minimum, kurtosis, 

skewness, and the difference between the maximum and minimum values of ECG signals over time 
frames are computed. Consequently, an 8-dimensional TD feature vector is extracted from each frame 

of ECG signals [20, 29]. 
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2.3. WT Features  

 

The features based on frequency information are quite successful in representing ECG signals 

appropriately [20, 29]. WT is an effective tool for extracting with its powerful time-frequency 
localization property. WT employs wavelets (scaled and shifted versions of a mother wavelet) to 

decompose signals into more straightforward elements. 

 

At the start of a WT, the signal is decomposed into low- and high-frequency (approximation and 
detail, respectively) components. Further levels of decomposition are accomplished over the last 

approximation component [34]. If wavelet packet analysis is used as an alternative to WT, both 

approximations and details are decomposed at all levels to achieve full sub-band decomposition [35]. 
Because an ECG signal may carry relevant information within both its low- and high-frequency 

components, wavelet packet analysis rather than WT is employed to extract WT features for this work. 

In particular, 32 sub-bands are obtained by decomposing a 5-level wavelet packet in each frame. The 

energy values of each sub-band are then calculated to obtain the 32-dimensional WT feature vector per 
frame. 

 

2.4. PSD Features  

 

Welch’s method, as mentioned in [36], is used for estimation of the PSD of an ECG signal. Following 

the estimation of PSD, other features can be derived easily using PSD knowledge. In this work, 11 
different PSD-based features are computed. The first seven features are acquired by computing the 

energy, standard deviation, mean, minimum, maximum, kurtosis, and skewness values of PSD data 

[20, 29]. The other four features are defined as the local fractal dimension (FD) values of PSD data. 

The fractal, introduced by Mandelbrot [37], is a mathematical method to study self-similar structures 
for a long period of time. The PSD-based fractal estimator is one of the popular approaches for 

estimating the FD of physiological signals [21, 38]. At this step, four different FD values are 

computed from the equally divided parts of the PSD of the signal. It is empirically verified that 
dividing the PSD into more than four parts does not significantly increase the classification 

performance, but the processing time increases. 

 

2.5. ALL Features  

 

9 QRS, 8 TD, 32 WT, and 11 PSD features are combined to obtain 60-dimensional ALL features. 

 
 

3.  PROPOSED FRAMEWORK BASED ON SUBSPACE PROJECTION AND DECISION 

TREE CLASSIFICATION 

 

In this work, a hybrid algorithm is proposed for the classification of ECG signals. The algorithm 

consists of a projection to a particular subspace and classification at the projected subspace. 

Specifically, the original feature space is first projected to a particular subspace via the CVA, which is 
a successful subspace method that has been previously proposed [25, 39]. The features at the projected 

lower-dimensional subspace are then classified using decision-tree-based classifiers—namely, C4.5 

and random forest.  
 

As the first step of CVA, eigenvalue-eigenvector pairs ( ,  | i =1,2,…,n) belonging to the within-

class covariance matrix ( ) of the training data are obtained, where j and n represent the class index 

and the dimension of the feature vector, respectively [40]. The eigenvalues are then sorted in 
descending order. In the next step, an n-dimensional entire feature space spanned by all eigenvectors is 

divided into a z-dimensional difference subspace ( ) and (n-z)-dimensional orthogonal indifference 

subspace ( ). Consequently, the difference subspace is spanned by the eigenvectors corresponding to 
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the largest eigenvalues, whereas the indifference subspace is spanned by the eigenvectors 
corresponding to the smallest eigenvalues. The direct sum of the difference and indifference subspaces 

would cover the entire feature space. The motivation behind the decomposition of the entire feature 

space into two subspaces is to eliminate the part that has large variations from the mean [41]. In other 
words, the “common” information specific to the regarding class can be preserved while the variations 

are eliminated. Hence, class-specific information is acquired when the original space is projected onto 

the indifference subspace. For this computation, one may choose z such that the sum of the smallest 

eigenvalues is less than a particular percentage (L) of the sum of the entire set [42] such that 

1

1

n
ii z

L
n

ii





  


 

 (1) 

 

If L is 0.04, good performance is usually obtained while retaining a small proportion of the variance 

present in the original space [43]. The value of z can also be determined using the point where the 
eigenvalues of the training data start varying slowly upon the plot of the eigenvalues in descending 

order. CVA has been previously used for both pattern classification [40, 44, 45] and feature selection 

[46, 47] purposes. 

 
Decision trees can be described as multistage decision systems in which classes are consecutively 

rejected until an accepted class is found [26, 48]. In these systems, the feature space is split into 

unique sections corresponding to the classes. One of the well-known decision trees is the binary 
classification tree, which splits the feature space sequentially into two sections by comparing feature 

values with a particular threshold. In this way, an unknown feature vector is assigned to a specific 

class through a sequence of yes/no decisions through a path of the nodes of the tree. When designing a 
classification tree, the splitting criterion, stop-splitting rule, and class assignment rule should be 

carefully considered. The main purpose of splitting the feature space is to obtain subsets, which are 

more class homogeneous than the former subsets. Hence, the splitting criterion at any node is to find 

the split that provides the highest possible reduction in node impurity. If the highest reduction in node 
impurity is smaller than a particular threshold or a single class is acquired following a split, then the 

splitting process is ended. If a node is appointed to be a leaf or terminal, then a class assignment is 

made. A common assignment method is to use majority rule that assigns a leaf to the class to which 
the majority of the feature vectors in the corresponding subset belong. C4.5 [49] is one of the widely 

used decision-tree-based classification algorithms. Similarly, the random forest classifier is another 

popular approach that operates by constructing an ensemble of multiple decision trees [50]. 
 

The motivation behind the proposed method can be briefly described as follows: As previously 

mentioned, the original space is projected onto the indifference subspace via CVA. Because the 

indifference subspace is attained by the eigenvectors corresponding to the smallest eigenvalues, the 
variations among class samples are minimized at this subspace. As a consequence, class homogeneity 

increases substantially with respect to the original space. Because the decision-tree-based methods 

classify the homogenously distributed data much better, the classification with either C4.5 or random 
forest classifier at the indifference subspace would provide higher performance than that of the 

classification in the original space. 

 

4. EXPERIMENTS 

 

In this work, six sets of features were classified with two distinct decision-tree-based classifiers—

namely, C4.5 and random forest. The feature sets mentioned previously were employed both 
individually and in combination within the classification framework. In particular, QRS features; TD 

features; WT features; PSD features; the combination of TD, WT, and PSD features (TD+WT+PSD); 

and finally, the combination of all four feature sets (ALL features) are evaluated. This evaluation was 
realized on these six types of features and their projected versions obtained using CVA. The success 
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measures of the classification performance were chosen as accuracy (Acc), positive predictivity (P+), 
and sensitivity (Sen) values. Throughout the experiments, the 10-fold cross-validation was used for a 

fair assessment. Details of the database and the results of the experimental analysis are presented in 

the following subsections. 
 

4.1. ECG Database  

 

As mentioned previously, the entire MIT-BIH arrhythmia database [28] was used to conduct the 
experiments. The database includes ECG recordings obtained from 47 subjects studied by Boston's 

Beth Israel Hospital Arrhythmia Laboratory. The categorization of ECG signals within the database 

was carried out considering the ANSI/AAMI EC57:1998 standard [51, 52]. According to this standard, 
there are 15 distinct beat types grouped under five main classes: non-ectopic (N), ventricular ectopic 

(V), supraventricular ectopic (S), fusion (F), and unknown (Q). The distributions of those classes and 

the numbers of beats in each class are given in Table 1. Sample ECG signals from each of these five 

classes are also provided in Figure 2. In the literature, numerous works follow the AAMI 
recommendation on the categorization of the beats described above; [1, 53-55] are just some recent 

examples of those works. 
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Figure 2. Sample ECG signals from the MIT-BIH arrhythmia database 
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Table 1. Contents of the ECG database 

 

Symbol   Beat Class Subcategory  # of beats 

N 

 

Non-Ectopic 

Normal 

Left Bundle Branch Block 

Right Bundle Branch Block 

Atrial Escape 

Nodal Escape 

 

71.349 

S 

 

Supraventricular Ectopic 

Atrial Premature 

Aberrated Atrial Premature 
Nodal Premature 

Supraventricular Premature 

 

 1.862 

V 
 

Ventricular Ectopic  
Premature Ventricular Contraction 

Ventricular Escape 

 
3.008 

F  Fusion  Fusion of Ventricular and Normal  559 

Q 

 

Unknown 

Paced 

Fusion of Paced and Normal 

Unclassifiable 

 

7.132 

 

4.2. Dimension Reduction Analysis 

 

In this study, CVA is used to reduce the dimension and increase the performance of classification. The 

dimension reduction rate is shown in Figure 3. In this figure, the blue bars represent the differences in 
dimensions between the original and CVA-projected feature sets. The dimensions of the original 

feature set were 60, 51, 32, 11, 9, and 8 for ALL, TD+WT+PSD, WT, PSD, QRS, and TD, 

respectively. According to Figure 3, the dimension reduction ratio varies from 0.22 to 0.44 for 

different feature sets. 
 

 
 

Figure 3. Comparison of original and CVA-projected feature dimensions 

 

4.3. Remarks on Recognition Results  

 

The performance of arrhythmia classification schemes utilizing the feature sets is summarized in 

Figure 4. According to this figure, the classification performance of CVA-projected data is higher than 

the performance of the original feature sets in all cases except for WT, QRS, and TD features. Also, 
the random forest classifier is more successful than the C4.5 classifier for both original and CVA-

projected feature sets. One can note from this figure that the highest accuracy score was found to be 

nearly 100% when ALL or (TD+WT+PSD) feature sets projected by CVA are used with either the 
C4.5 or random forest classifier. Conversely, the worst results are achieved mostly with WT features. 

This situation can also be visually observed in Figure 5. 
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Considering those outcomes, because the best results are achieved without QRS based features, one 
may also state that the detection of QRS, which is a complicated and time-consuming process, is not 

mandatory at all to be able to achieve the best results. 

 
 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

 

 

Figure 4. Classification results in terms of Acc, P+, Sen, (a-c) C4.5, (d-f) Random forest 
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Figure 5. Plots of 3-D feature vectors for the original and projected feature sets (each class is plotted using a different color) 
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4. DISCUSSIONS 
 

In this paper, a novel classification scheme is proposed, and its success on a famous MIT-BIH 

arrhythmia database is elaborately investigated. The proposed scheme obviously increases the 

recognition performance for different sets of features. A thorough explanation of this performance 
improvement was attempted using two different approaches. 

 

The first approach is based on the values that indicate the separability of the classes. These values are 
obtained from the following inequality: 

   max max
j j ji i i

m m x m x m
k k

      (2) 

In this inequality,  and  are the average feature vectors of the ith and jth classes, respectively, 

whereas  and  stand for the kth feature vectors of the ith and jth classes, respectively. The 

distance between the means of two classes is compared with the summation of the maximum distance 

between the farthest feature vector in the ith class and the average of the ith class and the maximum 

distance between the farthest feature vector in the jth class and the average of the jth class. Two 

different distance values are computed using this equation, and they are listed in Table 2 for all feature 

types. In this table, the first row of each feature set indicates the distances between the corresponding 

class averages, whereas the second row shows the summation values of the maximum distances. The 

values in the first rows are computed using 

ji
m m  (3) 

 
whereas the values in the second rows are calculated by 

   max max for 1, 2, ...,
j ji i

x m x m k N
k k
     (4) 

where N indicates the total number of feature vectors in each class. For better classification, the 

distance value computed by Eq. (3) should be as large as possible with respect to the one computed by 

Eq. (4). As shown in Table 2, this condition is true (indicated in bold) for the feature sets (ALL) and 
(TD+WT+PSD). This outcome implies that the CVA-based projection not only reduces the dimension 

of the feature vectors but also provides better class discrimination for appropriate feature sets. 

 

The second approach provides visual proof of the effectiveness of the proposed method. The three-
dimensional feature vectors calculated by the projection of feature vectors onto the eigenvectors 

corresponding to the top three eigenvalues are plotted for each of twelve feature vector conditions. All 

of these cases are illustrated in Figure 5. The usage of the eigenvectors corresponding to the top three 
eigenvalues for the projection offers the most difficult circumstances to visually separate the classes 

because the eigenvectors corresponding to the highest eigenvalues determine the directions where data 

distributions have the largest possible variances—that is, as much variability in the data as possible. 
Although this hardest situation is experienced, the classes can be visually distinguished except for WT 

features. Therefore, one can easily infer from those figures that the CVA-based dimension reduction 

process selects the features reserving the most discriminative information. This situation is consistent 

with the values given in Figure 4 such that the projected versions of ALL, TD+WT+PSD, and PSD 
feature sets increase the classification performance. 

 

In addition to these two different approaches, the results attained in this work are compared with those 
given in various published works in the literature. The comparison is carried out in terms of database 

size, the number of classes, types of features, utilized classifiers, and the three different success 

metrics of Acc, P+, and Sen. The outcome of the comparison is provided in Table 3. In this table, the 
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best results of the proposed work are separately listed for C4.5 and random forest classifiers. One can 
easily see that the proposed work surpasses the other references in terms of Acc, P+, and Sen values. 
 

Table 2. Distance values for the original and projected feature sets 
 

Feature Set Equation [C1,C2] [C1,C3] [C1,C4] [C1,C5] [C2,C3] [C2,C4] [C2,C5] [C3,C4] [C3,C5] [C4,C5] 

ALL 
Eq.(3) 0.05 0.38 0.38 1.58 0.38 0.38 1.60 0.02 1.29 1.28 

Eq.(4) 22.32 22.90 22.57 35.25 31.04 30.71 43.39 31.29 43.97 43.64 

Projected 

ALL 

Eq.(3) 2.44 1.86 1.83 2.58 1.53 2.34 1.20 2.59 1.83 2.23 

Eq.(4) 1.52 2.39 1.41 1.51 1.20 0.22 0.32 1.10 1.19 0.21 

TD+WT+PSD 
Eq.(3) 1.82 2.49 1.15 3.54 4.01 2.81 4.07 1.54 4.85 4.16 

Eq.(4) 16.41 14.61 15.23 18.20 11.24 11.86 14.83 10.06 13.03 13.65 

Projected 
TD+WT+PSD  

Eq.(3) 1.53 1.73 1.81 1.11 1.29 1.16 0.69 0.98 1.60 1.41 

Eq.(4) 1.52 1.91 1.35 1.73 0.78 0.22 0.60 0.62 0.99 0.43 

WT 
Eq.(3) 1.75 2.65 1.11 2.44 4.11 2.76 3.73 1.60 3.70 2.59 

Eq.(4) 7.05 7.87 8.07 13.71 3.26 3.46 9.10 4.29 9.93 10.13 

Projected WT 
Eq.(3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Eq.(4) 0.04 0.04 0.03 0.08 0.01 0.01 0.05 0.01 0.05 0.05 

PSD 
Eq.(3) 0.90 0.56 0.57 2.92 1.13 1.37 2.11 0.38 3.06 3.37 

Eq.(4) 7.42 8.33 4.71 3.81 1.31 9.50 8.60 10.41 9.51 5.88 

Projected 

PSD 

Eq.(3) 4.98 7.09 6.12 5.28 6.92 4.72 4.26 4.38 4.62 1.02 

Eq.(4) 6.38 11.31 7.09 10.14 7.62 3.40 6.45 8.33 11.38 7.16 

QRS 
Eq.(3) 3.59 1.38 3.23 1.11 4.88 0.37 2.70 4.53 2.26 2.37 

Eq.(4) 18.32 24.15 18.99 34.12 28.55 23.38 38.51 29.21 44.35 39.18 

Projected 
QRS 

Eq.(3) 0.25 0.30 0.17 0.15 0.24 0.25 0.29 0.31 0.21 0.18 

Eq.(4) 1.68 1.84 2.11 2.00 0.75 1.03 0.91 1.18 1.07 1.34 

TD 
Eq.(3) 1.90 2.22 0.44 2.22 3.82 2.16 3.41 1.82 3.57 2.50 

Eq.(4) 13.86 16.31 14.20 17.02 12.12 10.01 12.82 12.46 15.27 13.16 

Projected TD 
Eq.(3) 0.04 0.10 0.04 0.10 0.10 0.04 0.10 0.11 0.06 0.13 

Eq.(4) 0.42 0.35 0.42 0.52 0.34 0.41 0.51 0.34 0.44 0.51 

 
Table 3. Comparison of the proposed work to the literature. 

 

Reference Classes Features Classifier Acc  P+ Sen 

[1] 5 WT SVM, NN and PNN 99.28 99.21 97.97 

[5] 5 TD, WT ANN 95.58 61.48 62.74 

[6] 4 TD, WT, LBP  SVM 94.50 66.40 70.30 

[7] 5 TD, WPE KNN, DT, PNN, SVM, RF 94.61 - - 

[8] 5 CNN CNN 89.07 63.14 95.90 

[9] 5 CNN CNN 96.60 71.67 67.37 

[13] 5 QRS LDC 99.20 98.40 94.40 

[15] 5 TD, WT SVM-RBF, NN 98.91 - 98.91 

[53] 5 TD Decision tree 96.18 96.15 96.16 

[54] 5 TD BBNN-PSO 97.00 - - 
[56] 3 TD, WT, QRS LDC, QDC 93.00 74.67 84.33 

[57] 5 QRS Dynamic clustering 98.84 91.67 95.00  

[58] 5 Raw wave Reservoir Computing 98.43 88.75 84.83 

[59] 5 PCANet SVM, KNN, BPNN, RF 97.77 95.32 86.35 

Proposed work 5 TD, WT, PSD C4.5 99.98 100.00 100.00 

Proposed work 5 TD, WT, PSD Random forest  99.99 100.00 100.00 
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5. CONCLUSIONS 

 

In this paper, the well-known MIT-BIH arrhythmia database was used to classify five main beat types: 

non-ectopic beats, supraventricular ectopic beats, ventricular ectopic beats, fusion beats, and unknown 
beats. For this purpose, six different sets of features (QRS, TD, WT, PSD, TD+WT+PSD, and ALL) 

were derived from ECG signals in this database. In the proposed approach, these original features are 

first projected onto the indifference subspace formed by CVA so that a dimension reduction process is 

applied to the original features. Second, the projected feature sets are treated with two distinct 
decision-tree-based classifiers—namely, C4.5 and random forest. This combination of CVA with the 

random forest and C4.5 classifiers is newly applied to arrhythmia beat classification. The experimental 

results clearly show that the performance attained with most of the CVA-projected features is higher 
than the performance of the original features. Because the indifference subspace is attained by the 

eigenvectors corresponding to the smallest eigenvalues, the variations among class samples are 

minimized in this subspace. As a consequence, class homogeneity increases substantially with respect 

to the original space. This situation can be observed in Figure 5 and Table 2, as well. Because the 
decision-tree-based methods classify the homogenously distributed data much better, the classification 

with either the C4.5 or random forest classifier in the indifference subspace provides higher 

performance than that of the classification in the original space. The results of the experimental work 
summarized in Figure 4 also verify this statement. 

 

Comparatively considering the two classifiers, the random forest classifier is more successful than the 
C4.5 classifier for both original and CVA-projected feature sets. It has been experimentally verified 

that better performance is achieved for both classifiers if all original features are used not individually 

but together instead. However, the original feature sets TD+WT+PSD and ALL have similar 

performance; that is, QRS features do not affect the success of the classification noticeably if the 
remaining features are used. 

 

CVA-projected feature sets offer classification accuracies higher than 85–90% in general. These 
values may increase to 100% in some cases. One can note in Figure 4d that the highest classification 

accuracy was found to be nearly 100% when the projected ALL or TD+WT+PSD features are used 

with either the C4.5 or random forest classifier.  
 

Finally, the proposed approach considerably increases the performance obtained from the original 

feature sets because the dimension reduction provided by CVA projection exposes the most 

discriminative features. 
 

As future work, subspace projection methods other than CVA (e.g., PCA and Fisher’s LDA) can be 

also employed to investigate the efficiency of new features. The contribution of feature selection 
methods can be analyzed rather than projecting features into particular subspaces. Additional 

classification algorithms can be tested. The proposed approach can be applied to other ECG-related 

studies such as automatic screening of obstructive sleep apnea cases as well. 
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