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Abstract

In this study, a mathematical model about tumor growth is handled and this model is modified with new
differential and integral operators. Numerical method with Newton polynomial which is introduced by
Atangana and Seda is used for numerical solution of this model. Also numerical simulations are presented to
show the accuracy and the effectiveness of the method.

Keywords: Numerical method, fractional derivative and integral, tumor growth model.

Kesirli diferansiyel operatorler iceren bir tiimoér biiyiime modelinin ¢oziimii icin Newton polinomlu
niimerik yaklasim

Oz
Bu ¢aligmada, tiimér biiytime ile ilgili bir matematiksel model ele alinir ve bu modeli yeni diferansiyel ve

integral operatdrlerle modifiye edilir. Bu modelin niimerik ¢6ziimii i¢in Atangana ve Seda tarafindan tanitilan
Newton polinomuna sahip bir niimerik metot kullanilir. Ayrica metodun etkinligini ve dogrulugunu gostermek

icin niimerik simiilasyonlar sunulur.

Anahtar Kelimeler: Niimerik metot, kesirli tiirev ve integral, tiimor biiyiime modeli.

1. Introduction

Mathematical modeling makes important
contributions in understanding and analyzing
biological phenomena. Therefore, both the
modeling and biological processes have
become the focus of many researchers (Kim
et al. 2007; Barillot et al. 2013). Such models
are often constructed with classical
derivative. Using the new mathematical
concepts called as fractional differential
operators, these mathematical models can be
modified with these new concepts. Thus, we
can predict and understand events in nature

*Corresponding Author: sedaaraz@siirt.edu.tr.

thanks to these concepts which are Caputo,
Caputo-Fabrizio and  Atangana-Baleanu
fractional derivatives (Caputo et. al., 2015;
Atangana et al., 2016).

However, we need to find exact solutions
these mathematical models to predict and
interpret these biological processes. But since
these models are mostly nonlinear, it is quite
difficult to obtain exact solutions of these
models. That’s why we need to find
numerical solutions of such models. One can
find many numerical methods that are based
on some polynomials, for instance Lagrange
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polynomial, Newton polynomial, Legendre
polynomials, Bernstein polynomial and so on
(Owolabi et al.,, 2020; Mekkaoui et al.,
2017). Subas1 vd. (2017; 2019) used Galerkin
method for solving differential equations in
their studies.

Toufik and Atangana (2017) constructed an
efficient numerical method which based on
Lagrange polynomial. Recently, Atangana
and Araz (2021) presented a numerical
method with Newton polynomial which is
quite efficient, practical and accurate. Also
they presented the error analysis for the
suggested method. Alkahtani (2020) applied
the newly introduced method with Newton
polynomial to  fractional nonlinear
differential equations.

When the literature is examined, one can find
many cancer models that are handled
different perspectives of cancer. Watanabe et
al. (2016) introduced a mathematical model
of tumor growth and its response to single
irradiation in their studies. In this study, we
modify this model with new mathematical
tools. We present new numerical method to
find numerical solution of such models. Also
we provide numerical simulation about
solution of this model.

Let us give definition of these new fractional
derivatives and integrals (Caputo et. al.,
2015; Atangana et al., 2016).

The Caputo derivative is

CDEF(t) = o) (e-7) T ar (1)

F(n a)ra

The Caputo-Fabrizio derivative is

CFD“f(t)—M(a)f f(T)exp[—a( ) dt .(2)

The Atangana-Baleanu derivative is

ABEDEf(t) =22 [ (7 ) E, [—a( ]dr (3)

The associate fractional integrals are given
as:

SEFO) = s o f(2)(e-7) 7 d (4)

CIEFO = s f O + 5= [ f(7)dT (5)
where M () is normalization function and M(0) = 1,

M) =1.
1—«a
BIEF®) = iy O

F S (T (e- ) aT (6)

where B(a) =1—a + ﬁ is normalization function

and B(0) = 1,B(1) = 1.

The organization of this paper is as follows.
In section 2, we present the new model
including fractional operators. Also for such
model with these operators, we establish
numerical scheme which contains two step
Newton polynomial. In section 3, we depict
numerical simulations for the solution of this
model. In section 4, we discuss the obtained
results about the considered model.

2. Material and method

Watanabe et al. (2016) introduced a tumor
growth model for the time evolution of the
tumor volume before and after a radio
surgical procedure.

In this study, we will deal with the model
which is taken into account the growth of
tumor after a single instantaneous irradiation
of dose D given to the tumor at time ¢.

We deal with for the tumor growth model
which is given by
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% = z(t)k(D)x(t) — L(D)x(t)

2 = 1(D)x(t) — agy(t) (7
k % = —vz(0)z(t).
where the derivative is the classical
derivative.
For equation, we have the following

functions and parameters for the considered
model.

D: Radiation dose
x(t): The volume of proliferation tumor

y(t): The volume composed of non-dividing
cells

z(t): The tumor growth rate
z(0): The initial tumor growth rate

ay: The cell clearance rate

v: The vascular growth retardation factor
k(D): The cell proliferation probability
[(D): The non-dividing state with a rate

We will modify this model using the newly
introduced fractional differential operators
which are Caputo, Caputo-Fabrizio and
Atangana-Baleanu derivative. We start with
Caputo-Fabrizio case

“ODEx(t) = z()k(D)x(t) — I(D)x(t)
gy () = L(D)x(t) — aqy(t)  (8)
CEDEz(t) = —vz(0)z(t).

For brevity, we write

DY) =Y (x,y,2,1t) (9)

{CSD{"x(t) =X(x,y,21t)
Cng‘z(t) =7Z(x,y,2zt).

Applying Caputo-Fabrizio fractional integral,
we have

x() = x(0) + %X(x, y,2,t) (10)
a ¢ 4
+WLX(x,y,z,‘r) T
1—a
y(t) = y(o) + Wy(x'yyz,t)
t
+ W | Y(x,y,z 1)dt
1—«a
z(t) = z(0) + WZ(x, v,2,t)
t
+ m ; Z(x,y,z,1)dt
At the point t = t;, 4
x(tsn) = 2(0) + 15X G YR 24 ) (1)
tk+1
+ ¢ f * X(x,y,2,1)dt
M(a) J,
1 —
Y(tir) = y(0) + W‘;‘Y(xk,yk,zk. t)
a Lkt
+ M(a)fo Y(x,y,z t)dt

1-a k .k k
Z(ty41) =Z(0)+WZ(X A AN )

a ffk+1
Z(x,y,z,1)dt
M(a) J,

and at the point t = t; , we have

+

x(t) = x(0) + X (F Ly 2K ) (12)

e [t
+M(a)f0 X(x,y,2z,1)dt

11—«
y(t) = y(0) + —= Y (x*1, y* 1, 281 6y, )

M(a)
tk
+ m | Y(x,y,z t)dt
1-a k-1 k-1 k-1
Z(tk) =Z(0)+WZ(X Yy yZ rtk—l)
tk
+m | Z(x,y,z,1)dr.
Thus we have
1—«a
x(tg1) = x(ty) + M@ [X(x*, y*, 2%, )

_ X(xk_l, yk—l‘ Zk_l, tk—l)]

+ ﬁ fttkk“ X(x,y,z,1)dr (13)
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Y(tk+1) = Y(tk) + m [Y(x 'yk'Zk' tk)
_1'Zk_1' tk—l)]

_ Y(xk 1, yk
Y(x,y,2z 1)dt

i@ ),
Z(tg41) = z(ty)

[Z(x , vk, zk tk)
21t 1)]

Z(x,y,z1)dt

1
M( )
_Z(xk l'y
tk41
+—
M(a) tk
The function X(x,y, z, t) taken place on the
right hand side of first equation can be
approximated as
X(x,y,2,7) = X(x*72,y*~
X(xk 1’yk 1 gk= 1.tk—1)
At
_ X(xk—z’yk—z’ zk=2, tk—z)
At
[ X(x",y AR 1
| 2080 |
| ZX(Xk 1 k 1Zk 1 tk 1)|
I I
|

2% t,,)  (14)

+

X (T = ty-p)

+

2(At)2
X(xkz kszztkz)
| * 2(A0)2
X (T = tp_p) (T = tr—1)
and we can do same routine for the functions
Y(x,y,z,t) and Z(x,y,z,t). Then we can
revise the above equation as follows
[ X(xk, vk, z%, 1)

x(tgs1) = x(0) +=

M(a) X(xk—l k—l k—l tk—l)
_a rles k=2 yk=2 k-2
M(a)ffk X(x*2,y Jte)dr  (15)
a tk+1 X(xk_lyyk_lyzk_ll tk—l)
+
M(a) Je, At
_X( ly k z tk 2)
At
X (T — ty_p)dt
X(xklyktzkltk)
2(At)?
+ e tk+1 ZX(xk_llyk_lle_ll tk—l)
M@, | 2(At)?
X(xk—Z’yk—Z’Zk—Z’ tk—Z)
2(At)? i
X (T —tg-2)(t — tg_)dt
Y(tr+1)
_ 1-a Y (xk, yk, 2%, ;)
=y(0) + M(a) [ Y (xk1,yk=1 zk=1 ¢ )
a Ue+1

+ Y(xk=2,y%=2 zk=2 ¢ _,)dr
M(a) tr ?

a th+1 Y(xk‘l,y"‘l,zk‘l,tk_l)
M@, [ At
Y(xk_z,yk_z, Zk—z' tk—z)
B At
X (T — ty_p)dr
Y (xk, yk, 2%, t},)
2(At)?
N a tkt+1 _ZY(Xk_l,yk_l,Zk_l,tk_l)
M(a) )y, 2(At)?
Y(xk‘z,yk_z, Zk_z, tk—z)
2(At)?
X (T = tg—2) (T — tg_1)dr
Z(tys1)
M(a) [=Z (7t yk ot 270 )
tk+1
@), R ) D
a th+1 Z(xk_l,yk‘l,zk‘l, tk—l)
+M(a) t [ At
_Z( 2 y*2, 22 2)]
At

X (T — ty_p)dt

Z(x*, y*, z¥, t,)
2(At)?
a tht1 ZZ(xk'l, yk—l’ Zk_l, tk—l)
M@, | 2807
Z(xk_z,yk_z, Zk_z, tk—z)
2(At)?

X (T = tg_2)(t — ty_y)dr

For the integrals on the right hand side of the
above equations, we have the following

U+
J, @
t

k
[o (= p) (0 = teo)dr = 2 (An)*

5
— ty_p)dt = 2 (at)?

(16)

Replacing these results into the above

system,

K(trs) = x(0) + 3 XG5 5,25 1)

M)
— X Gy 26 g )]
(17)

X( k— Z’yk 2 k 2 tk Z)At

M (a)

[X(xk 1,}’ 1 k 1rtk—1)

M()

5
_ X(xk—Z’yk—Z’ Zk—Z’ tk—Z)] EAt

252



Numerical approximation with Newton polynomial for the solution of a tumor growth model including fractional
differential operators

m[X(x ,yk,Zk,tk)
z57h b 1)

- ZX(xk 1;31
+ X(x"‘z.y"‘z.zk‘z. tre-2)] EM

1- k Lk
J’(O)+m[y(x Y625, )
- Y(xk 1! yk_l; Zk_lf tk—l)]

+—M( )Y(xk 2 yk=2, zk=2 ¢ At

—— [y (x* 7,y

Y(tks) =

1 k 1' tk—l)

M( )
5
— Y (72, y*72, 2872 1, )] S0t
+m[y(x Ky, zk )
_ ZY(Xk 1’yk—1, Zk_l, tk—l)

23
+ Y (k2 yk2, Zk=2 )] 2t

1-
200) + 3103 126,55 25,10

- Z(xk 11 yk_l; Zk_lt tk—l)]

+m (xk ziyk_zizk_zitk—Z)At

e k-1
+M( )[Z(x

Z(tgs1) =

k—1 k-1
'z 'tk—l)

5
BRACHEA A A )

+W[Z(X v 25, t)

_ ZZ(xk_l,yk_l, Zk_l, tk—l)

23

+ Z(x*72, yk 2, 262 1 )] = At
12

Thus we can have the following numerical

scheme the considered model with Caputo-

Fabrizio

X(trsr) = x(ty) + W[X(x yE 25 ) —

Xy 2 )] (18)
gX(xk,yk,Zk, t)At
+M‘ga) —%X(xk Lyk=1 zk=1 b DAt
+§X(xk‘2,yk'2,zk'2,tk_z)At
(Besr) = ¥ + 305 VG ¥ 24,80
=Yy 2 )]

23
EY(xk,yk,zk, t)At
14 4
X k=1 ok
+ M(a) 3 Y(x Y
5
+_Y(Xk_2,yk_2,

“L ozt DAt
Zk_z; tk—Z)At

1-—
Z(tgsr) = 2(t) + < [Z(x yk z*, ;)

M(a)
—Z(xR YR 2 )]
23
Ez(xk!yklzk!tk)At
a 4
M(a) —§Z(xk_1,yk_1,zk_1,tk_l)At
5
+5Z(x"‘2,yk‘2,z"‘2,tk_z)At

Now, we handle the following model having
Atangana-Baleanu derivative

ABCDEx(t) = X(x,,2,t)
ABCDEz(t) = Z(x,y, z, ©).

(19)

Integrating each equation, we obtain the
following

1-
x(t) =x(0) + —— B @)

Jy X(x,y,2,7)(t — ©)* 'dr (20)

X(x Y,2,t)

B (a)F(a)

1-
=y(0) +

Ba )Y(x Y, Z,t)

y(®)

P ¢
+—B(a)l"(a)_l; Y(x,y,z,17)(t

—-1)%dr

1-
z(t) = z(0) +

Ba )Z(x ¥, Z,t)

P t
+WJ; Z(x,y,2,7)(t

—-1)%ldr

At the point t = t;,, , we have

x(tk+1)—x(0)+?)X(x v, 25 )

a ts+1
+B(a)r(a)zs:2fts Xy 21)

X (tger — T)* Mt

(21)

Y (tr+1)

= (0)+1—Y( k ZK )
_y B() X,y, 'Lk

a ts+1 )
- — a—
+ B@)T (@) J;S Y(x,y,2,7)(te, — 1) 1dT
5=2
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Z(tys1) Z(tr41)

1- 1-
= z(0) +mz(x %25 t) =z(0) + mZ(x koyk, 28, )

a tst1 1 a ts+1 5 5 5
— Z ,Z,T)(tgpr — T)4 M d —— Z(xS574,y57%, 257 ts_
+B(a)l-|(a) f;s (x;y z T)( k+1 T) T +B(a)F(a) J;S (x y z S 2)

$=2 s=2

X (tge1 — 7)) M7
After putting Newton polynomial into the - ter [Z(x51y5 L 75 e )
- + f + ’ ’ » bs—
above equations, we rearrange the above 73(@“@2 . At
system as follows
x(tks1) = x(0) +—X(x AR AN )

B Z(XS_Z, ys—Z’ Zs—2’ ts—z)

B(a) At
+ a z fts+1 X(xs—z’ys—z' ZS_Z, tS—Z) (22) X (T - ts—Z)(tk+1 - T)a_ldT
B(@)'(a) Lug_, Z(x%,y%, 2% t)
X (tepy — )4 Hde 20002
Z ts+1 X(xs Lys=1 251 ¢ ) tSH _ 2Z(x* y 25 b y)
B(a)F(a) 2(At)?
B a)l'(a f
( ) (a) ts +Z(xs_2,ys_2.zs_2.ts—2)
~ xS—2 Ly~ 2 g2 te_s) | 2(At)?
At X (T = ts_2) (T = to_y)(tey — ) Hdr
X (T = ts_p)(tgsr — D) Hdr
X(x%,y%, 25, t5) 1 We have the following calculations for the
t 1Z(Atz2 ) above integrals
sl 2X (x5, yS71 72571 ¢
n _ (X y i s 1) ftts+1(tk+1 _ ‘[)a_ld‘[ — ﬂ [(k s+ 1)11 -
B(a)T'(a) te 2(At) : « 23
X(xk=2,yk2, 2572 ty_p) . -7 (23)
2(At)? f (= ty2)(tss — D Ndlr
X (T - ts—z)(‘f - ts—l)(tk+1 - T)a_ldT fs (At)a ( )a( )
k—s+1)%k—-s+34+2a
t =
Y (tr+1) ala+1) | —(k—5)*tk—s+3+3a) ]
— y(o) + —Y(x k’ t ) tst1
B(a ) k f (T = ts2) (T = ts_1)(tgsr — 1) Hdt
ts
a Ts+1 — an«
* @ J 5y, 257 ) T T
L ts (- s+ 1) (z(k —s)2+ (Ba+10)(k — s))
X (toss — r)“‘ldr y +2a? + 9a + 12

a2k —5)2+ (BGa+10)(k—s)
(k=) ( +6a? + 18a + 12 )

ts41 Y(xs 1 s—1 75~ 1 ts 1)
B(a)F(a) f

2y Putting these calculations into above system,
,y S tS 2 ]

the following numerical scheme is written

At
X (T = ts2)(teyr —T)*7HdrT
Y(xslys! ZS; ts) ) x(tk+1) - x(O) + mx(x ,y Z tk) +
2(At)? _a@® ik $-2 . 5-2 _s-2 _
+— el 2y (st ys T 257 b ) B(a)l(a+1) 2o X2y TR 2 b (k= s +
B(a)T'(a) e 2(At)? 1% = (k —5)%] (24)
Y(xs—z’ys—z'zs—z't _ ) a(AD)®
> s72 +L [X(x _1,}1 1,25_1,t5_1)
2(At) | B(a)'(a +2) &4
s=

X (T - ts—Z)(T - tS—l)(tk+1 - T)a_ldT _ X(XS_Z,yS_Z,ZS_Z, ts_z)]

X[(k—s+1)“(k—s+3+2a)]
—(k—5)*(k—s+3+3a)
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N a(At)*
2B(a)l'(a + 3) 4
Ss=
_ ZX(XS_l, ys—1, Zs—l, ts—l)
+ X(xs—z' yS—Z' ZS—Z’ ts—z)]
(k—s+1) (2(k —5)2+ Ba+10)(k — s))
% +2a? + 9a + 12
2(k —5)>+ (5a+10)(k —s)
o |
+6a? + 18a + 12

[X(x*, y*, 25, t5)

y(trs1)
=y(0) +my(x v 25, 6)
a(At)”

k
+ mz Y(XS_Z,yS_Z,ZS_Z, ts_z)[(k —S
s=2

+1)% = (k = 5)°]

a(At)* S ot et
e r LY@
Y (x5 y52, 7572t )]
(k—s+1)%(k —s +3 + 2a)
—(k —s)* (k—S+3+3a)
a(At)®
* 2B(a)T'(a + 3)Z[Y(" Y525, t5)

—ZY(JCS 1’ s—1’ s— 1,t5_1)
+ Y(xs—z,ys—z’zs—z’ ts—z)]
—-5)2+ Ba+10)(k - s))
+2a? +9a + 12
—5)?2+ (5a + 10)(k — s))
+6a%+ 18a + 12

(k= s+ (2

| -9 (**

Z(ty41)

1-
= z(0) +mZ(x RIAR LN )
a(At)” .
T B@rat 1)2 ZGeEy
+ 1% = (k- S)“]
(X(At)a . 7 s-1 ,,5-1 _s-1
+W;[ (hy™hz5 7t )
_ Z(xs‘z,ys‘z, ZS_Z, ts—z)]
y (k—s+ 1%k —-s+3+2a)
—(k—s) (k—s+3+3a)
a(At)”
+23(a)r(a+3)z[z(x Y57 )
—ZZ(JCS 1:y 4 z5 1'ts—l)
+ Z(xs—z’ys—z’zs—z’ ts—z)]

z%” 2' tS—Z)[(k - S

2(k —5)?> + (Ba + 10)(k — s))
+2a? +9a + 12
—5)2+ (5a+10)(k — s))
+6a% + 18a + 12

(k—s+1)"‘<

sy (**

Now we consider our model with Caputo
derivative
oDEx(t) = X(x,y,2,t)
oDEy(t) =Y (x,y,2,t)
ED&z(t) = Z(x,y,z,t).

(25)

We convert each equation as

x(t) = x(0) + %ftX(x,y, z,17)(t — )% tdt

y(®) =y(0) + = fY(x y,z,7)(t —1)**dr (26)

I'(a)

z(t) = z(0) + —— Z(x, y,z,7)(t —1)* dt

1
[(a) Jy
At the point t = t;,, , we have

*(tsr) = %(0)
N A (R T L,

(27)
Y(tesn) = y(0) +mz f Y0y, 2,0) e
—17)%" 1d‘[
2(tier) = 20) + s Z f " 200y, 2,0 (ten
—17)%" 1d‘[

Substituting Newton polynomial into the
above equations, we reorder the above
system as follows
x(try1) = x(0) +
1 ; ts+1 s=2 ,,5-2 52
@ZSZZLS X(x572,y572,2572,t._,) X

(tker — )7 Ndr (28)

ts41 X(xs—l’ys—l’zs—l’ts_l)
F(a) ft At

X( 5—2’ ys_zy ZS—Z’ tS—Z)
At

ts—2)(tksr — T)a_l dt

X (t—

255



Numerical approximation with Newton polynomial for the solution of a tumor growth model including fractional
differential operators

X(x%,y°, 2%, ts)
2(At)?
CS“ 2X(x* 7yl 2 b )
F(a) 2(At)?
m— N X(xs—z’ys—z' ZS_Z, ts—Z)
| 2(At)?
X (T = t-2) (T — ts_1) (trs1
—1)% 4z
V(trs1)
=y(0)
Cs+1
F(a) f S 2 S_Z'ZS_Z'tS—Z)(tk+1
—1)%" 1d'[

ts+1 Y(xs 1 s—1’ s—1‘ts_1)
@)

Y(xs 2,}75 2‘ s— Z'ts—z)
At
X (T = ts_)(tgsr — ) Ndr
Y(x5,y%, 25 t5)

2(At)?
ts41 2Y(x5‘1, ys—l’ Zs—l‘ ts—l)
F(a) J; 2(At)?
N Y(XS_Z,yS_Z, ZS—Z, ts—Z)

2(At)?
X (T = t-2) (T — ts_1) (trs1
—1)% Yt
Z(tgs1)
= z(0)
F(a)z_[ x° 2:)’5 2,z°7? s ts—2) (L1
—1)%” 1d‘r

tsy1 Z(xs 1 s— 75~ 1 ts 1)
F@Zf

Z(xs 2,}’5 2’ s— Z’ts_z)
At
X (T = ts_p)(tgsr — D) Hdr
Z(x%,y5,z5%, t5)
2(At)?
ZZ(xS—l’ yS—l’ ZS—l’ ts—l)

2(At)?
Z(x572,y57%, 2572 t,_,)
2(At)?
X (T = t5-p) (T — ts_1) (trs1
—1)%ldr

We have the following

o[

ts+1
f (T = to_p)(teas — D Ndr
t

_5 (a)« (k—s+1)“(k—s+3+2a)]
Tale+ 1) —(k—s5)*(k—s5s+3+3a)

tsy1
f (T = o) (T = o) (tgs — D)% Ndr
t

s _ (ap)*
Tala+D(@+2)
_ o (2(k —35)? + Ba+ 10)(k — s)
x (k=s+D) ( +2a? + 9a + 12 )
—(k —5)“ (Z(k —s)2+ (5a+10)(k — s))
+6a? + 18a + 12

Replacing these calculations into above
system, we obtain the following numerical
scheme

X (t+1)
= x(0)

(At)a s—2 s 2 75~ 2 _
T D +1)ZX(x y o)k —s

+ 1% — (k- s) ]
(At)a Z[X(xs 1,}/5 1 75~ 1 ts 1)

I'(a+2)
CX(x52,y52, 7572 )]
< s e 0
(At)*
2(a+3) 2L
—2X(x571, yss_'l, 257t 1)
+ X(x572%,y57%, 2572t _,)]

(k—s+ 1) <2(k —5)?*+ QBa+ 10)(k — s))
+2a% +9a + 12

[X(xs' ySJ ZSJ ts)
2

X
a2k =)+ (5a+10)(k —5)
(k=) ( +6a%+ 18a + 12 )
y(tes1)
=y(0)
(At)a S— 2 s 2 s 2 _
* T'(a+ 1)2 Y(x it o)k —s

+ D% = (k- S)“]

L S ey

S 1
, e
F(a+2) s-1)

_ Y(xS 2’ S—Z’ZS—Z’ ts—z)]

><[(k—s+1)"‘(k—s+3+20:)]
—(k—5)*(k —s+3+3a)
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ﬂ [Y(x%,y5, 25 t,)
20(a+3) 4y V2 ts
s=
_ ZY(XS_l,ys_l,Zs_l, ts—l)
+ Y(xs—z’ys—z’zs—z’ ts—z)]
(k—s+1) (2(k —5)2+ Ba+10)(k — s))
+2a? +9a + 12
(k- 5)® (Z(k —5)2+ (5a+10)(k — s))
+6a? + 18a + 12

X

Z(tr+1)
= z(0)

(At)a S— S S
+F(a+1)22( %y %2 b )k = s

+ 1) = (k- S)“]

At)%
( t) Z[Z(xs l’ys 1 75~ 1 ts 1)

+—
I'(a+2)
_Z(xs 2, s— 2’ S— Z:ts—z)]

(k=—s+ 1Dk —-s+3+2a)
—(k—s) (k—s+3+3a)

(A)*
T T +3)Z[Z(x Y525 L)
S_l,ZS_l,tS_l)

ZS_Z: ts—z)]

—2Z(x571,
+ Z(xs—z’ys—z’

(k—s+1)° <Z(k —-5)%+ Ba+10)(k - S))
+2a? +9a + 12

2(k —5)? + (5a + 10)(k — s))

+6a? + 18a + 12

X

DU
3. Numerical simulation

In this section, we consider the following
model with Atangana-Baleanu derivative

A8DEx(t) = z()k(D)x(t) — L(D)x(t)
ABDEY () = LDYx (L) — agy(t) (31)
ABDZz(t) = —vz(0)z(t).

Numerical simulations are performed for
different alphas in Figure 1, 2, 3 and 4 with
the parameters k(D) = 1,I1(D) = 0.7,a4 =
0.6, v = 0.8. Also initial conditions are

x(0) = 10,2(0) = 10,2(0) = 2.

With irradiation

() Proliferation tumor
= y(t) Non-dividing cells
2{t) Tumor growth rate

30 40 50 60 70 80 90 100
Time (day)

Figure 1. Numerical simulation for tumor
growth model for a = 1.

With irradiation

x(t) Praliferation tumor
e y(t) Non-dividing cells
2(t) Tumor growth rate

40 50 60 70 80 90 100
Time (day)

Flgure 2. Numerlcal simulation for tumor

- ~ ~

With irradiation

x(t) Proliferation tumor
= y{t) Non-dividing cells
=== 2z{t) Tumor growth rate

0 0 20 30 40 50 60 70 8O 90 100
Time (day)

Figure 3. Numerical simulation for tumor
growth model for « = 0.72.
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With irradiation

I [ I s (1) Proliferation tumor
12 s (1) Non-dividing cells
2(t) Tumor growth rate

0 10 20 30 40 50 60 70 80 80 100

Time (day)

Figure 4. Numerical simulation for
tumor growth model for « = 0.54.

4. Conclusion

In this study, we deal with a tumor growth
model to discuss the effect of irradiation to
tumor growth rate. We reconsider such
model with the fractional differential
operators and we offer the numerical scheme
for the new model having Caputo, Caputo-
Fabrizio and Atangana-Baleanu derivative.
We present the numerical simulations for the
solution of the system and we can say that
the considered method is efficient and the
results are accurate. Also one can see that
tumor growth decreases under irradiation
when these simulations examined. All
calculations are performed using MATLAB.
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