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Abstract

The aim of this paper is to establish an explicit representation of the generalized Drazin
inverse (a + b)? under the condition

ab® = 0,ba* = 0,a™b" (ba)? = 0.

Furthermore, we apply our results to give some representation of generalized Drazin inverse
for a 2 x 2 block operator matrix. These extend the results on Drazin inverse of Bu, Feng
and Bai [Appl. Math. Comput. 218, 10226-10237, 2012] and Dopazo and Martinez-
Serano [Linear Algebra Appl. 432, 1896-1904, 2010].
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1. Introduction

Let A be a complex Banach algebra. An element a € A has g-Drazin inverse, i.e.,
generalized Drazin inverse, if there exists b € A such that

b = bab, ab = ba,a — a®b € AT,

Here, A = {q € A | 1+ ax € A is invertible for every = € comm(a)}. We note
that a € A & lim | a™ H%: 0. Such b, if it exists, is unique, and is called the
n—oo

g-Drazin inverse of a, and denote it by a®. The g-Drazin inverse in a Banach algebra

has various applications in singular differential equations, Markov chains and iterative
methods (see [3,4,11]). New additive results for the g-Drazin inverse in a Banach algebra
are presented.

In [2, Theorem 3.1], Bu, Feng and Bai gave some formulas of the Drazin inverse of
the sum of two complex matrices under the condition PQ? = 0, QP? = 0. In Section 2,
we extend this result and establish an explicit representation of the generalized Drazin
inverse (a + b)? under the condition

ab® = 0,ba* = 0,a™b" (ba)? = 0,

where a™ = 1 — aa® is the spectral idempotent of a € A.
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In Section 3, we consider the g-Drazin inverse of a 2 x 2 operator matrix

M:(é g) (1.1)

where A, B,C, D € L(X). Here, M is a bounded linear operator on X & X. This problem
has been expensively studied by many authors (see [1,2,6,7,9]. We then apply our results
to establish new conditions under which M has g-Drazin inverse. This also generalize
[7, Theorem 2.2] from the Drazin inverse of complex matrix to the g-Drazin inverse in a
Banach algebra under a weaker condition.

Throughout the paper, A is a complex Banach algebra, X is a Banach space. We use
A to stands for the set of all g-Drazin invertible a € A.

Let x € A and p? = p € A. Then we have Pierce matrix decomposition 2 = prp+pz(1—
p)+(1=p)zp+(1-p)z(1-p). Set a = pzp,b = pr(1—p),c = (1-p)rp,d = (1-p)z(1-p).
We use the following matrix version to express the Pierce matrix decomposition of x about

the idempotent p:
_(a b
=\ ¢ d
p

2. Additive results

In this section we establish some additive properties of g-Drazin inverse in Banach
algebras. We begin with

Lemma 2.1. Let A be a Banach algebra, a,b € A%. Let

_(a O b ¢
r=1{ . or g 4 )"
p P

Then
40 a® 0 or btz
- bd 0 ad ’
P P
where
z= (D2 X (W) ica)a™ + b7 (Y bic(a?)) (ad)? — bleal.
i=0 i=0
Proof. See [5, Theorem 2.3]. O

Lemma 2.2. Let A be a Banach algebra, and let a,b € A, If
ab® = 0,ba* = 0, (ba)? = 0,
then a + b € AL,

Proof. Set
_ a® + a’b + aba a3b + abab
"\ a®+ab+ba+b®> a?b+ bab+ b3
Then
M- a®b+aba  a3b + abab n a? 0
- 0 a?b + bab a’+ab+ba +b* b?
= G+ F.
We see that G?> = 0, GFG = 0 and GF? = 0. Moreover, we have
a0 0 0
Fo= (a2+ba O>+<b2+ab b3>

= H+ K.
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Since H, K are quasinilpotent and HK = 0, we see that F' is quasinilpotent. Therefore
M is quasinilpotent. Obviously, M = (( (11 ) (1,b))3. It is obvious that (1,b) ( Cll > is
quasinilpotent. This completes the proof.
Lemma 2.3. Let A be a Banach algebra, and let a € A% b e A [f

ab® = 0,ba® = 0,a" (ba)* = 0,
then a +b € A¢ and

o0

(a+b)=al+ Z(ad)"+2b(a +b)"a”™
n=0

Proof. Let p = aa®. Then we have the Pierce decomposition relatively to the idempotent

p:
a < ar 0 ) b ( b1 bs )
0 a9 p’ b3 b4 p.

-1
a—< 0 0) anda-(o 1—aad ) -
P P

Since ba® = 0, we see that baa? = (ba®)a® = 0, we see that b; = b3 = 0.
We easily see that as = a —aa? € ((1— p) (1—p))amt, Since b(1 — aa?) = b € AT it
follows by [8, Theorem 2.1 ] that by = (1 — aa®)b(1 — aa?) € AT, One easily checks that

azbi = 0, b4a% = 0, (b4a2)2 =0.
In light of Lemma 2.2, az + by € ((1 — p)A(1 — p))L. Thus (az + bs)? = 0, and so

A bo
a+b_(0 a2+b4)p’

Moreover,

It follows by Lemma 2.1 that

0 ag+bs 0 O ’

p

[e.°]
where z = 3 (a®)"*2by(ag + bs)". Therefore
n=0

(CL—|— b)d — ad + Z(ad)n+2b(a+ b)naw
n=0

as asserted. O
We are now ready to prove the following.
Theorem 2.4. Let A be a Banach algebra, and let a,b € A®. If
ab® = 0,ba* = 0,a™b" (ba)* =
then a + b € A, In this case,
oo o0
(@a+b)?=a’+b7+ 3 (@))"2b(a+b)" + Y (b1 a(a +b)".
n=0 n=0

Proof. Let ¢ = bb%. Then we have

(bl 0) (a1 a2>
=0 ) 0~ ‘
2 q a3 a4 q
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—1
a_ [ b7 0O - (0 0
b—( 0 0)qandb—<0 1 e q.

Since ab®> = 0, we see that ab? = 0; hence, albl_l = 0 and agbl_1 = 0. It follows that

a] = as = 0. Thus
(b az
“+b_<0 as + by )p‘

We easily see that by = b — b%b? € ((1 — p)A(1 — p))?™. Since a(1 — bb?) = a € A%, by
using Cline’s formula, we have ay = (1 — bb%)a(1 — bb?) € A%
Since ab? = 0, we see that asb3 = (1 — bb%)a(1 — bb%)b? = 0. Also we have

boa? = (1 — bbh)ba(1 — bbh)a(1 — bb?) = (1 — bb)ba®(1 — bb?) = 0.

As a™b™ (ba)? = 0, we have

al as T 0 0 ( bl 0 ap a2 )2 =0
0 ay 0 1— 0 0 by 0 ay ’
q q q q

and so af (baas)? = 0. In light of Lemma 2.3, we get

Moreover,

(as+b2)* = af+ zo(ai)"“@(% + b2)"aj
— ad+ Z (ad)n+2b(a—|—b)n.
n=0

In view of Lemma 2.1, we have
d -1
b a b z
d _ 1 2 _ 1
((I+b) —(0 CL4+bQ> _< 0 (a4+b2)d >p7

oo

z = Z(bd)"+2a2(a4 + bg)”(a4 + bg)ﬂ- — bdag(a4 + b2)d.

n=0

where

Since b%a? = (b%)2(ba?) = 0 and b%a = 0, we have b%az(ays + bg)? = 0 and
(bd)"+2a2(a4 + bg)"(a4 + bQ)W
— (bd)n+2a(a+b)n(an _ Z (ad)n+1b(a+b)n)

_ (et
Hence,
z= i (b 2a(a + b)™.
Therefore "
(a+b)?=a’+0"+ i(ad)"“b(a +b)" + i M 2a(a + b)™.
n=0 n=0
as asserted. O

Example 2.5. Let

Then
ab® = 0,ba* = 0,a™b" (ba)? = 0.
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It is obvious by computing that
ab® = 0,ba® = 0,a™b" (ba)? =

00 00
al = 00 |, p9=]0 1
00 00

and by the formula of Theorem 2.

0
(a+b)?= ( 0
0

3. Block operator matrices

Also

0
0
0

0
0
0
4

S = O

o O O
\—/

In this section, we apply our results to establish new conditions under which a 2 x 2
operator matrix over Banach spaces has g-Drazin inverse. Let A = L(z) and M =

( g g ) € Msy(A). We now derive

Theorem 3.1. Let A and D have g-Drazin inverses. If ABD = 0,CBD = 0,BCA =
0, DCA =0,BCBC =0 and D"CBC = 0, then M € My(A)?. In this case

Ad B( Dd n+SC (Ad)n+2B
d __ n
M = < C(Ad)2 ) +nz% < Dd n+2C C(Ad)n+SB M™.

Proof. Let M = P + @, where P = (é 8) and Q = (8 IB;) Then P,Q have

g-Drazin inverses. Moreover, we have

d d\2
Pd:<céd)2 8>7Qd:<8 B >
Then )

Thus, we have

, [0 ABD
PQ_(O CBD

, [ BCA 0y .
QP_(DCA o) ="

, ( BCBC 0\
(@P) _<DCBC 0 )

S AT —A™BD?
PrQT = ( —CA¢ C’AdBDdJrD”)

It is obvious by computing that PTQ™(QP)? = 0. In light of Theorem 2.4, M has g-Drazin
inverse. Moreover, we have

Me = Pd—l-Qd—i— Z (Pd)n+2QMn+ Z (Qd)n—i-ZPMn

_ A B(Dd) 0 (A)"+2B n
- <C(Ad) Dd >+EO<0 C(Ad)n+3B>M

X ( B(DHY™3C 0 n
+n20< (Dd)n+20 0 M

This completes the proof. ]
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Corollary 3.2. Let A and D have g-Drazin inverses. If ABD = 0,CBD = 0,BCA =
0, DCA =0 and CBC =0, then M € My(A)?. In this case,

Ad B( Dd n+30 (Ad)nJrZB

d __ n

M® = < C(Ad)2 d ) + E : < Dd n+QC C(Ad)n+3B M".

Proof. This is obvious by Theorem 3.1. O

Theorem 3.3. Let A and D have g-Drazin inverses. If DCA = 0,BCA = 0,CBD =
0,ABD = 0,CBCB =0 and ATBCB = 0, then M € My(A)¢. In this case.

Md _ < CAd B(Dd)2 ) N i < B(Dd)n+30 (Ad)nJrQB )M”

(Ad)2 Da ~ (Dd)n—i-QC C’(Ad)"+3B
. . D C -
Proof. By virtue of Theorem 3.1, the matrix B A has g-Drazin inverse. Moreover,
we have
A B\* (0 IN(D Cc\/0 I
C D S\ 0 B A 1 0)°
Therefore we obtain the result. g

Corollary 3.4. Let A and D have g-Drazin inverses. If DCA = 0, BCA = 0,CBD =
0,ABD =0 and BCB = 0, then M € My(A)?. In this case.

Ad B( Dd n+SC (Ad)n+2B

d __ n

M® = < C(Ad)Z d ) + E : < Dd n+20 C(Ad)n+SB M".

Proof. This is obvious by Theorem 3.3. 0

Lemma 3.5. Let P and Q € A have g-Drazin inverses. If PQ?> = 0, PQP = 0, then
P+ @ has g-Drazin inverse and

(P + Q)d _ QTK‘ i@i(Pd)H_l + é(@d)i—‘rlpipw + Qﬂ' i@z(ljd)z—‘rQQ
I § QY3 PIHIPTQ — QiplQ — (QF)2PPIQ.
i=0
Proof. This is proved as in [10, Theorem 2.1]. O

In [7, Theorem 2.2], Dopazo and Martinez-Serrano investigated Drazin inverse of a
2 x 2 block complex matrix under the condition BC = 0, BDC = 0 and BD? = 0. We
now generalize it to the g-Drazin inverse with a weaker condition.

Theorem 3.6. Let A and D have g-Drazin inverses. If BCA=0,CBCB =0,A"BCB =
0, BDC =0 and BD? =0, then M € My(A)?. In this case,

I S (AY"2BD,D

0 . —
i £ () pep )Y
=\ 0 DD 0 I+ C(AY"™3BD,D
n=0
i I A
A=)
where - -
Ad + Z (Ad)nJrQBCn Z (Ad)nJrQBDn
Pe = n=0 n=0

C(AY)? 4+ 3 C(AY)™3BC, S C(AY™BD,
n=0 n=0

A1 :A,Bl :B,Cl :C,Dl :O;CQ =0 andDo: 1
An+1 - AAn + BCn, Bn+1 - ABn + BDn, Cn+1 - CAn,Dn+1 - CBn,
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and
I = A% — 3 (A4"H1BC,,
n=0

A= — %(Ad)n+1BD
n=0

A= § [(Dd)i'HCZ- (A Z (Ad)n—HBC
=0 n=0

+(Dd)i+1Di( _ CAd _ Z C(Ad)nJrZBCn)]
n=0

+DDT[— CAL — 3 C(AY™2BC,),
n=0

= — § [(Dd)z—l-lc ( Z (Ad)n+lBDn
=0 n=| 0
+(Dd)i+1D<(I _ Z C(Ad)"+2BDn)]
+ § [(Dd)z—i-SO +1( Z (Ad)n—HBDn
i= n=0

H(DYHBCi 4 (1 - z C(AN™2BD,) D] + (DH2C
[— z (AY"H1BD,, — DI — z C(AYH"2BD,| D
n=0 —
+DD™ (I — z C(Ad)"+2BDn] (%)
n=0

Proof. Obviously, we have M = P + @, where

A B 0 0
r=(c)e=(op)
Clearly, we see that @ has g-Drazin inverse. Since BCA =0,CBCB = 0and ATBCB = 0,
it follows by Theorem 3.3 that P has g-Drazin inverse and

Ad Adn+2B .
Pd:(C(Ad2 >+Z<O CAt)in—i-?)B)P

We directly compute that

BDC 0
PQP( 0 0)0,
0 BD?
2 _ _
per= (8 B0 )=
. A, B,
Write P = C. D . Then Ay =A,B1=B,C;y =C,D; =0 and

An+1 = AA, + BCnv Bn+1 = AB, + BDy, Cn—l—l = CAran—l—l = CB,.

Then
0 00
Ad + Z (Ad)n—i-QBCn Z (Ad)n+2BDn
Pd _ n=0 n=0

| can+ 3 c@hBBe, s oA BD,
n=0 n=0
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and so P™ = (P;;), where

o0

Pll — AT _ Z (Ad)nJrlBCn
n=0
Py = — > (AHY"*FIBD,,
n=0
Py = —CAY— % C(Ad)”+QBC’n,
n=0

Pw = I—3 C(AY™2BD,.
n=0

According to Lemma 3.5, we have

M = (P+Q)"
= Q7Y QUPHT + X (Q)HPPT+QT 3 QUPY)TQ
i=0 1=0 1=0

+ 3 QY BPHIPTQ - QUPIQ — (Q1)PPPUQ.
=0

o0

- I S (AYH"*2BD, D
— ( 0 79 ; ) (Pd)i+1 n:og
=\ 0 DD 0 I+ Y C(A)"*3BD,D
n=0
4 Z (Qd)i+1PiP7r 4 Z (Qd)i+3pi+1p7rQ _ QdeQ
i=0 i=0
—(Qd)2PPdQ 4 Qde
/0 0 (1 T (ad2BD,D
- X ( 0 D7D )(Pd)ZH "
=0 0 I+ C(AHY"3BD,D
n=0
n I A
A=)
where I', A, A and E are given as in () by direct computation. O
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