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Abstract
The aim of this paper is to establish an explicit representation of the generalized Drazin
inverse (a + b)d under the condition

ab2 = 0, ba2 = 0, aπbπ(ba)2 = 0.

Furthermore, we apply our results to give some representation of generalized Drazin inverse
for a 2 × 2 block operator matrix. These extend the results on Drazin inverse of Bu, Feng
and Bai [Appl. Math. Comput. 218, 10226-10237, 2012] and Dopazo and Martinez-
Serano [Linear Algebra Appl. 432, 1896-1904, 2010].
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1. Introduction
Let A be a complex Banach algebra. An element a ∈ A has g-Drazin inverse, i.e.,

generalized Drazin inverse, if there exists b ∈ A such that

b = bab, ab = ba, a − a2b ∈ Aqnil.

Here, Aqnil = {a ∈ A | 1 + ax ∈ A is invertible for every x ∈ comm(a)}. We note
that a ∈ Aqnil ⇔ lim

n→∞
∥ an ∥

1
n = 0. Such b, if it exists, is unique, and is called the

g-Drazin inverse of a, and denote it by ad. The g-Drazin inverse in a Banach algebra
has various applications in singular differential equations, Markov chains and iterative
methods (see [3,4,11]). New additive results for the g-Drazin inverse in a Banach algebra
are presented.

In [2, Theorem 3.1], Bu, Feng and Bai gave some formulas of the Drazin inverse of
the sum of two complex matrices under the condition PQ2 = 0, QP 2 = 0. In Section 2,
we extend this result and establish an explicit representation of the generalized Drazin
inverse (a + b)d under the condition

ab2 = 0, ba2 = 0, aπbπ(ba)2 = 0,

where aπ = 1 − aad is the spectral idempotent of a ∈ A.
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In Section 3, we consider the g-Drazin inverse of a 2 × 2 operator matrix

M =
(

A B
C D

)
(1.1)

where A, B, C, D ∈ L(X). Here, M is a bounded linear operator on X ⊕ X. This problem
has been expensively studied by many authors (see [1,2,6,7,9]. We then apply our results
to establish new conditions under which M has g-Drazin inverse. This also generalize
[7, Theorem 2.2] from the Drazin inverse of complex matrix to the g-Drazin inverse in a
Banach algebra under a weaker condition.

Throughout the paper, A is a complex Banach algebra, X is a Banach space. We use
Ad to stands for the set of all g-Drazin invertible a ∈ A.

Let x ∈ A and p2 = p ∈ A. Then we have Pierce matrix decomposition x = pxp+px(1−
p)+(1−p)xp+(1−p)x(1−p). Set a = pxp, b = px(1−p), c = (1−p)xp, d = (1−p)x(1−p).
We use the following matrix version to express the Pierce matrix decomposition of x about
the idempotent p:

x =
(

a b
c d

)
p

2. Additive results
In this section we establish some additive properties of g-Drazin inverse in Banach

algebras. We begin with

Lemma 2.1. Let A be a Banach algebra, a, b ∈ Ad. Let

x =
(

a 0
c b

)
p

or
(

b c
0 a

)
p

.

Then

xd =
(

ad 0
z bd

)
p

or
(

bd z
0 ad

)
p

,

where
z = (bd)2( ∞∑

i=0
(bd)icai

)
aπ + bπ

( ∞∑
i=0

bic(ad)i
)
(ad)2 − bdcad.

Proof. See [5, Theorem 2.3]. �

Lemma 2.2. Let A be a Banach algebra, and let a, b ∈ Aqnil. If

ab2 = 0, ba2 = 0, (ba)2 = 0,

then a + b ∈ Aqnil.

Proof. Set

M =
(

a3 + a2b + aba a3b + abab
a2 + ab + ba + b2 a2b + bab + b3

)
.

Then

M =
(

a2b + aba a3b + abab
0 a2b + bab

)
+
(

a3 0
a2 + ab + ba + b2 b3

)
:= G + F.

We see that G2 = 0, GFG = 0 and GF 2 = 0. Moreover, we have

F =
(

a3 0
a2 + ba 0

)
+
(

0 0
b2 + ab b3

)
:= H + K.
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Since H, K are quasinilpotent and HK = 0, we see that F is quasinilpotent. Therefore

M is quasinilpotent. Obviously, M =
( ( a

1

)
(1, b)

)3. It is obvious that (1, b)
(

a
1

)
is

quasinilpotent. This completes the proof. �

Lemma 2.3. Let A be a Banach algebra, and let a ∈ Ad, b ∈ Aqnil. If

ab2 = 0, ba2 = 0, aπ(ba)2 = 0,

then a + b ∈ Ad and

(a + b)d = ad +
∞∑

n=0
(ad)n+2b(a + b)naπ.

Proof. Let p = aad. Then we have the Pierce decomposition relatively to the idempotent
p:

a =
(

a1 0
0 a2

)
p

, b =
(

b1 b2
b3 b4

)
p

.

Moreover,

ad =
(

a−1
1 0
0 0

)
p

and aπ =
(

0 0
0 1 − aad

)
p

.

Since ba2 = 0, we see that baad = (ba2)ad = 0, we see that b1 = b3 = 0.
We easily see that a2 = a − a2ad ∈ ((1 − p)A(1 − p))qnil. Since b(1 − aad) = b ∈ Aqnil, it

follows by [8, Theorem 2.1 ] that b4 = (1 − aad)b(1 − aad) ∈ Aqnil. One easily checks that

a2b2
4 = 0, b4a2

2 = 0, (b4a2)2 = 0.

In light of Lemma 2.2, a2 + b4 ∈ ((1 − p)A(1 − p))qnil. Thus (a2 + b4)d = 0, and so

a + b =
(

a1 b2
0 a2 + b4

)
p

,

It follows by Lemma 2.1 that

(a + b)d =
(

a1 b2
0 a2 + b4

)d

=
(

ad z
0 0

)
p

,

where z =
∞∑

n=0
(ad)n+2b2(a2 + b4)n. Therefore

(a + b)d = ad +
∞∑

n=0
(ad)n+2b(a + b)naπ,

as asserted. �

We are now ready to prove the following.

Theorem 2.4. Let A be a Banach algebra, and let a, b ∈ Ad. If

ab2 = 0, ba2 = 0, aπbπ(ba)2 = 0,

then a + b ∈ Ad. In this case,

(a + b)d = ad + bd +
∞∑

n=0
(ad)n+2b(a + b)n +

∞∑
n=0

(bd)n+2a(a + b)n.

Proof. Let q = bbd. Then we have

b =
(

b1 0
0 b2

)
q

, a =
(

a1 a2
a3 a4

)
q

.
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Moreover,

bd =
(

b−1
1 0
0 0

)
q

and bπ =
(

0 0
0 1 − bbd

)
q

.

Since ab2 = 0, we see that abd = 0; hence, a1b−1
1 = 0 and a3b−1

1 = 0. It follows that
a1 = a3 = 0. Thus

a + b =
(

b1 a2
0 a4 + b2

)
p

.

We easily see that b2 = b − b2bd ∈ ((1 − p)A(1 − p))qnil. Since a(1 − bbd) = a ∈ Ad, by
using Cline’s formula, we have a4 = (1 − bbd)a(1 − bbd) ∈ Ad.

Since ab2 = 0, we see that a4b2
2 = (1 − bbd)a(1 − bbd)b2 = 0. Also we have

b2a2
4 = (1 − bbd)ba(1 − bbd)a(1 − bbd) = (1 − bbd)ba2(1 − bbd) = 0.

As aπbπ(ba)2 = 0, we have(
a1 a2
0 a4

)π

q

(
0 0
0 1 − bbd

)
q

( ( b1 0
0 b2

)
q

(
a1 a2
0 a4

)
q

)2 = 0,

and so aπ
4 (b2a4)2 = 0. In light of Lemma 2.3, we get

(a4 + b2)d = ad
4 +

∞∑
n=0

(ad
4)n+2b2(a4 + b2)naπ

4

= ad +
∞∑

n=0
(ad)n+2b(a + b)n.

In view of Lemma 2.1, we have

(a + b)d =
(

b1 a2
0 a4 + b2

)d

=
(

b−1
1 z
0 (a4 + b2)d

)
p

,

where

z =
∞∑

n=0
(bd)n+2a2(a4 + b2)n(a4 + b2)π − bda2(a4 + b2)d.

Since bda2 = (bd)2(ba2) = 0 and bda = 0, we have bda2(a4 + b2)d = 0 and
(bd)n+2a2(a4 + b2)n(a4 + b2)π

= (bd)n+2a(a + b)n
(
aπ −

∞∑
n=0

(ad)n+1b(a + b)n
)

= (bd)n+2a(a + b)n.

Hence,

z =
∞∑

n=0
(bd)n+2a(a + b)n.

Therefore

(a + b)d = ad + bd +
∞∑

n=0
(ad)n+2b(a + b)n +

∞∑
n=0

(bd)n+2a(a + b)n.

as asserted. �
Example 2.5. Let

a =

 0 0 0
0 0 1
0 0 0

 , b =

 0 0 0
0 1 0
1 0 0

 ∈ M2(C).

Then
ab2 = 0, ba2 = 0, aπbπ(ba)2 = 0.
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It is obvious by computing that
ab2 = 0, ba2 = 0, aπbπ(ba)2 = 0.

Also

ad =

 0 0 0
0 0 0
0 0 0

 , bd =

 0 0 0
0 1 0
0 0 0


and by the formula of Theorem 2.4 we have,

(a + b)d =

 0 0 0
0 1 0
0 0 0

 .

3. Block operator matrices
In this section, we apply our results to establish new conditions under which a 2 × 2

operator matrix over Banach spaces has g-Drazin inverse. Let A = L(x) and M =(
A B
C D

)
∈ M2(A). We now derive

Theorem 3.1. Let A and D have g-Drazin inverses. If ABD = 0, CBD = 0, BCA =
0, DCA = 0, BCBC = 0 and DπCBC = 0, then M ∈ M2(A)d. In this case

Md =
(

Ad B(Dd)2

C(Ad)2 Dd

)
+

∞∑
n=0

(
B(Dd)n+3C (Ad)n+2B
(Dd)n+2C C(Ad)n+3B

)
Mn.

Proof. Let M = P + Q, where P =
(

A 0
C 0

)
, and Q =

(
0 B
0 D

)
. Then P, Q have

g-Drazin inverses. Moreover, we have

P d =
(

Ad 0
C(Ad)2 0

)
, Qd =

(
0 B(Dd)2

0 Dd

)
.

Then
P π =

(
Aπ 0

−CAd I

)
, Qπ =

(
I −BDd

0 Dπ

)
.

Thus, we have

PQ2 =
(

0 ABD
0 CBD

)
= 0;

QP 2 =
(

BCA 0
DCA 0

)
= 0;

(QP )2 =
(

BCBC 0
DCBC 0

)
;

P πQπ =
(

Aπ −AπBDd

−CAd CAdBDd + Dπ

)
.

It is obvious by computing that P πQπ(QP )2 = 0. In light of Theorem 2.4, M has g-Drazin
inverse. Moreover, we have

Md = P d + Qd +
∞∑

n=0
(P d)n+2QMn +

∞∑
n=0

(Qd)n+2PMn

=
(

Ad B(Dd)2

C(Ad)2 Dd

)
+

∞∑
n=0

(
0 (Ad)n+2B
0 C(Ad)n+3B

)
Mn

+
∞∑

n=0

(
B(Dd)n+3C 0
(Dd)n+2C 0

)
Mn

This completes the proof. �
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Corollary 3.2. Let A and D have g-Drazin inverses. If ABD = 0, CBD = 0, BCA =
0, DCA = 0 and CBC = 0, then M ∈ M2(A)d. In this case,

Md =
(

Ad B(Dd)2

C(Ad)2 Dd

)
+

∞∑
n=0

(
B(Dd)n+3C (Ad)n+2B
(Dd)n+2C C(Ad)n+3B

)
Mn.

Proof. This is obvious by Theorem 3.1. �
Theorem 3.3. Let A and D have g-Drazin inverses. If DCA = 0, BCA = 0, CBD =
0, ABD = 0, CBCB = 0 and AπBCB = 0, then M ∈ M2(A)d. In this case.

Md =
(

Ad B(Dd)2

C(Ad)2 Dd

)
+

∞∑
n=0

(
B(Dd)n+3C (Ad)n+2B
(Dd)n+2C C(Ad)n+3B

)
Mn.

Proof. By virtue of Theorem 3.1, the matrix
(

D C
B A

)
has g-Drazin inverse. Moreover,

we have (
A B
C D

)d

=
(

0 I
I 0

)(
D C
B A

)d ( 0 I
I 0

)
.

Therefore we obtain the result. �
Corollary 3.4. Let A and D have g-Drazin inverses. If DCA = 0, BCA = 0, CBD =
0, ABD = 0 and BCB = 0, then M ∈ M2(A)d. In this case.

Md =
(

Ad B(Dd)2

C(Ad)2 Dd

)
+

∞∑
n=0

(
B(Dd)n+3C (Ad)n+2B
(Dd)n+2C C(Ad)n+3B

)
Mn.

Proof. This is obvious by Theorem 3.3. �
Lemma 3.5. Let P and Q ∈ A have g-Drazin inverses. If PQ2 = 0, PQP = 0, then
P + Q has g-Drazin inverse and

(P + Q)d = Qπ
∞∑

i=0
Qi(P d)i+1 +

∞∑
i=0

(Qd)i+1P iP π + Qπ
∞∑

i=0
Qi(P d)i+2Q

+
∞∑

i=0
(Qd)i+3P i+1P πQ − QdP dQ − (Qd)2PP dQ.

Proof. This is proved as in [10, Theorem 2.1]. �
In [7, Theorem 2.2], Dopazo and Martinez-Serrano investigated Drazin inverse of a

2 × 2 block complex matrix under the condition BC = 0, BDC = 0 and BD2 = 0. We
now generalize it to the g-Drazin inverse with a weaker condition.

Theorem 3.6. Let A and D have g-Drazin inverses. If BCA = 0, CBCB = 0, AπBCB =
0, BDC = 0 and BD2 = 0, then M ∈ M2(A)d. In this case,

Md =
∞∑

i=0

(
0 0
0 DπDi

)
(P d)i+1

 I
∞∑

n=0
(Ad)n+2BDnD

0 I +
∞∑

n=0
C(Ad)n+3BDnD


+
(

Γ ∆
Λ Ξ

)
,

where

P d =

 Ad +
∞∑

n=0
(Ad)n+2BCn

∞∑
n=0

(Ad)n+2BDn

C(Ad)2 +
∞∑

n=0
C(Ad)n+3BCn

∞∑
n=0

C(Ad)n+3BDn

 ,

A1 = A, B1 = B, C1 = C, D1 = 0; C0 = 0 and D0 = 1
An+1 = AAn + BCn, Bn+1 = ABn + BDn, Cn+1 = CAn, Dn+1 = CBn,
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and

Γ = Aπ −
∞∑

n=0
(Ad)n+1BCn,

∆ = −
∞∑

n=0
(Ad)n+1BDn,

Λ =
∞∑

i=0

[
(Dd)i+1Ci

(
Aπ −

∞∑
n=0

(Ad)n+1BCn

+(Dd)i+1Di
(

− CAd −
∞∑

n=0
C(Ad)n+2BCn

)]
+DDπ

[
− CAd −

∞∑
n=0

C(Ad)n+2BCn
]
,

Ξ =
∞∑

i=0

[
(Dd)i+1Ci

(
−

∞∑
n=0

(Ad)n+1BDn

+(Dd)i+1Di
(
In −

∞∑
n=0

C(Ad)n+2BDn
)]

+
∞∑

i=0

[
(Dd)i+3Ci+1

(
−

∞∑
n=0

(Ad)n+1BDn

+(Dd)i+3Ci+1
(
I −

∞∑
n=0

C(Ad)n+2BDn
)
D
]

+ (Dd)2C[
−

∞∑
n=0

(Ad)n+1BDn − Dd
[
I −

∞∑
n=0

C(Ad)n+2BDn
]
D

+DDπ
[
I −

∞∑
n=0

C(Ad)n+2BDn
]

(∗)

.

Proof. Obviously, we have M = P + Q, where

P =
(

A B
C 0

)
, Q =

(
0 0
0 D

)
.

Clearly, we see that Q has g-Drazin inverse. Since BCA = 0, CBCB = 0 and AπBCB = 0,
it follows by Theorem 3.3 that P has g-Drazin inverse and

P d =
(

Ad 0
C(Ad)2 0

)
+

∞∑
n=0

(
0 (Ad)n+2B
0 C(Ad)n+3B

)
P n.

We directly compute that

PQP =
(

BDC 0
0 0

)
= 0;

PQ2 =
(

0 BD2

0 0

)
= 0.

Write P n =
(

An Bn

Cn Dn

)
. Then A1 = A, B1 = B, C1 = C, D1 = 0 and

An+1 = AAn + BCn, Bn+1 = ABn + BDn, Cn+1 = CAn, Dn+1 = CBn.

Then

P d =

 Ad +
∞∑

n=0
(Ad)n+2BCn

∞∑
n=0

(Ad)n+2BDn

C(Ad)2 +
∞∑

n=0
C(Ad)n+3BCn

∞∑
n=0

C(Ad)n+3BDn

 ,
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and so P π = (Pij), where

P11 = Aπ −
∞∑

n=0
(Ad)n+1BCn

P12 = −
∞∑

n=0
(Ad)n+1BDn,

P21 = −CAd −
∞∑

n=0
C(Ad)n+2BCn,

P22 = I −
∞∑

n=0
C(Ad)n+2BDn.

According to Lemma 3.5, we have
M = (P + Q)d

= Qπ
∞∑

i=0
Qi(P d)i+1 +

∞∑
i=0

(Qd)i+1P iP π + Qπ
∞∑

i=0
Qi(P d)i+2Q

+
∞∑

i=0
(Qd)i+3P i+1P πQ − QdP dQ − (Qd)2PP dQ.

=
∞∑

i=1

(
0 0
0 DπDi

)
(P d)i+1

 I
∞∑

n=0
(Ad)n+2BDnD

0 I +
∞∑

n=0
C(Ad)n+3BDnD


+

∞∑
i=0

(Qd)i+1P iP π +
∞∑

i=0
(Qd)i+3P i+1P πQ − QdP dQ

−(Qd)2PP dQ + QπP d

=
∞∑

i=0

(
0 0
0 DπDi

)
(P d)i+1

 I
∞∑

n=0
(Ad)n+2BDnD

0 I +
∞∑

n=0
C(Ad)n+3BDnD


+
(

Γ ∆
Λ Ξ

)
,

where Γ, ∆, Λ and Ξ are given as in (∗) by direct computation. �
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