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Ozet
Bu makalede Modifiye Edilmis Basit Denklem Metodu (MSEM) uygulamali bilimlerde énemli olan lineer

olmayan bazi evolisyon denklemlerine uygulandi. MSEM metodu iki 6énemli evoliisyon denklemine yani
konveksiyon terimli Fisher ve konveksiyon terimli Fitzhugh-Nagumo denklemlerine uygulanmistir.

Anahtar Kelimeler: Modifiye edilmis basit denklem metodu, Tam ¢6ztimler.

Abstract

In this paper we applied modified simple equation method (MSEM) for solving some nonlinear evolution
equations which are very important in applied sciences. The MSEM is implemented on two very important
evolution equations namely the Fisher equation with convection term and the Fitzhugh-Nagumo equation

with convection term.
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1.Introduction

The Modified Simple Equation Method have been introduced by Ja’afar Mohamad Jawad, Marko
D. Petkovic and Anjan Biswas in 2010 [1, 2].

This paper outlines the application of modified simple equation method (MSEM) for solving
the Fisher equation with convection term and the Fitzhugh—-Nagumo equation with convection
term.

2.Description of the method

We consider a nonlinear evolution equation:
F(’LL, U, Uy, uxy} ) =0 (1)

where F is a polynomial in « and its partial derivatives.

Step 1. Using the wave transformation
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u=u(z), z=x-t, )
we have from (1) and (2) the following ODE:

P(u,u',u",um,...) =0, (€)]

where P is a polynomial in u and its total derivatives and = =
4

Step 2. We suppose that Eq. (3) has the formal solution:
k

u(2)=gf4k <ﬂ> , @)

7

where A, are arbitrary constants to be determined such that 4, # 0 while y (z) is an unknown
function to be determined later.

Step 3. We determine the positive integer N in (4) by balancing the highest order derivatives and the
nonlinear terms in Eq. (3).
Step 4. We substitute (4) into (3), we calculate all the necessary derivatives u, u/,... and then we

account the function t//(z). As a result of this substitution, we get a polynomial of Y and its

derivatives. In this polynomial, we equate with zero all the coefficients of it. This operation yields a
system of equations which can be solved to find 4, and y (z) Consequently, we can get the exact

solution of Eq. (1).

3. Numerical applications

In this section, we apply MSEM for solving the Fisher equation with convection term
and the Fitzhugh-Nagumo equation with convection term.

3.1. The Fisher equation with convection

Consider the Fisher equation with convection term

u, +kuu, —u, —u(l-u)=0 (5)

which describes the propagation of nerve pulses [3, 4]. Using the traveling wave u = u (z) ,Z=Xx—1
to reduce Eq. (5) to the following ODE:

—u +huw = —u(1-u)=0. (6)

Balancing uu’ with u” yields N =1. Consequently, we look for solutions of Eq. (6) in the form
u(z):A0+Al<l//;>, (7)

where 4, and 4, are constants to be determined such that 4, = 0, while y (z) 1s an unknown

function to be determined. Since
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m r B
W =4, {”’—-(Kj } ®)
v \y

m L r ' 3
= 4 .Vf__szga+z[£] , ©)
y v v

then the following expression holds

A e T (2))
(s o-oF)

Equating expressions at y°, ™, and w to zero we have the following equations:

—d4y+ 4 =0, (1)
(1—kdy )y"—w" +(24,-1)y' =0, (12)
(kd, +3)y"+(—kdy+ 4, +1)y' =0, (13)
-2
A =7. (14)
Eq. (11) directly implies
A4,=0,4,=1.
Case 1: 4, =0.

Egs.(12) and (13) becomes

l;/m"l'wu'i‘wr:o, (IS)
kA +3)y"+(A +1)y'=0. (16)
| v | 4

By substituting Eq. (16) into (15) we get

(kA +3)y" +((k—=1)4,+2)y' =0. (17)
Solution of Eq. (17) is given by

y(z)=cy+ce” +ce”, (18)

where ¢,, ¢, and c, are free arbitrary parameters and

(1-k)4,—2
a=% [~——. (19)
k4, +3
Substituting Eq.(18) for y (z) into Eq. (7) for u(x,r) we have exact solution in the form:
alx=t) —afx=t)
ce +c,e
u (x’!) = Aia I alx=t) i —afx-t) * (20)

cytee™ ‘tee
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Casell: 4,=1.
Egs.(12) and (13) becomes

(1=K )"~y +y' =0, @
(k+3)y"+(—k+4 +1)y'=0. (22)

By substituting Eq. (22) into (21) we get

(k+3)y"+(k* —k+(1-k) 4, +4)y" =0. (23)
Solution of Eq. (23) is given by

y(z)=cy+ce” +c,e™”, (24)

where ¢, ¢, and c, are free arbitrary parameters and

2
bzi\/k —k+(l—k)A]+4' -
k+3

Substituting Eq.(24) for w (2) into Eq. (7) for u (x,!) we have exact solution in the form:

e + cze‘m_"}
u(x,t)=1+4b e e T (26)
3.2. The Fitzhugh-Nagumo equation with convection
Consider the Fitzhugh-Nagumo equation with convection term
u, + kuu —un_—u(l—u)(a—u)zo, 27

where & and a are constants. The FHN equation, which shows up in the study of electrical pulses in
nerve membranes, is a well-studied mathematical model in neurobiology [3, 4].

Using the traveling wave u =u Ez) , Z Xx—1 toreduce Eq. (27) to the following ODE:
—u'+kuu'—u"—u(1—u)(a—u)=O. (28)

Substituting Eqs.(7)-(9) into Eq. (28) and equating coefficients of w",yr ",y and v~ to zero,
we respectively obtain

—ad,+(a+1)4; - 4; =0, (29)

"+ (kA ~1)y" +(2(a+1) 4, —a=34; Jy' =0, (30)

(kA +3)y"+(1—kdy =3 4,4, +(a+1) 4, )y' =0, (31)
and

4 _—kFVK -8 “2!‘_8 (32)

Eq. (29) directly implies 4, =0, 4, land 4, &=
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Case 1: 4, =0.
Egs.(30) and (31) becomes

v"+y"+y' =0, (33)
(kd,+3)y"+((a+1) 4 +1)y" =0. (34)

By substituting Eq. (34) into (33) we get

(kd4, +3)y" +(kad, +3a—ad — 4 )y'= 0. 35)
Solution of Eq. (35) is given by

l;/(z)=00+cle“" +c,e™, (36)

where ¢,,c, and c, are free arbitrary parameters and

\jAl(1+a—ak)—3a+1
a=t ; (37)
kA, +3

Substituting Eq.(36) for v (z) into Eq. (7) for u(x,!) we have exact solution in the form:

u(x,t)=4a a jj:;;i;?ij_:i_,} 3 (38)
Case2: 4, =1.
Egs.(30) and (31) becomes

" +(k-1)y"+(a-1)y' =0, (39)

(k+3)y"+(1-k+4 (a-2))y'=0. (40)
By substituting Eq. (40) into (39) we get

(k+3)y"+(-k +3k —ak -3a+2+ 4, (2—a)(1-k))y' =0. (1)
Solution of Eq. (41) is given by

y(2)=c +ce” +c,e”, (42)
where ¢, ¢, and c, are free arbitrary parameters and

ﬁ:i\jkz—3k+ak+3a;+2;-(1—k)(2—a),4l' 5

Substituting Eq.(42) for v (z) into Eq. (7) for u(x,t) we have exact solution in the form:
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Blx—1) —Blx-t)
sl +
u(x,0)=1+ 4 Ge ﬁ(H]cze arm (44)
c, +c,e’" " 4¢P
Case 3: 4, =a.
Eqgs.(30) and (31) becomes
l;/'"+(1—ak)l;/"—(a—a2)w'=0, (45)
(kA +3)y" +(4,(1-2a)+1-ak)y' =0. (46)
By substituting Eq. (46) into (45) we get
(kdy +3)y" + (4, (2a - ak® ~1)+2ak +3a’ —a’k* ~3a~1)y' = 0. @7)
Solution of Eq. (47) is given by
W (z) =cy+ce’” +c,e”, (48)
where ¢,,¢, and ¢, are free arbitrary parameters and
A4, (1+a—-ak)-3a+1
y==% : (49)
k4, +3
Substituting Eq.(48) for y (z) into Eq. (7) for u(x,!) we have exact solution in the form:
p g o t0)
u(x,t)=a+Ay— - (50)

SRR { Coy) BTN
c, +¢e +c,e

4. Conclusions

In this paper we use a direct approach for finding the exact solutions of equation (5) and (27).
MSEM has been successfully used to obtain exact solitary wave solutions for the Fisher
equation with convection term and the Fitzhugh—Nagumo equation with convection term.
Calculations in the MSEM are simple and straightforward.
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