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Abstract  Özet 

In this study artificial neural network (ANN) has been developed in order 

to estimate the electricity production of cogeneration power plant, which 

produces a total of 11.52 MW electric power, consisting of two V type and 
12 cylinders each of which is 5.760 kW diesel engines running with heavy 

fuel oil no 6. In the ANN which was developed for the estimation of electric 

power generation of cogeneration, power plant(W), Time period (t), 
working hours (h), fuel consumption (m) and internal power consumption 

(Wp) values were used as input variables. After evaluating the 

performance of different ANNs, an ANN, consisting of one hidden layer 
and 10 neurons, was considered to be the most ideal one. As a result of 

the comparison with experimental data, it is concluded that this model 

estimates the electricity generation values of the cogeneration power plant 
with an R-value of 0,99073 and mean square error 4.734e-8 

 Bu çalışmada iki adet V tipi 12 silindirli dizel motordan oluşan ve her biri 

5.760 kW olmak üzere toplam 11.52 MW elektrik enerjisi üreten 

kojenerasyon enerji santralinin elektrik üretiminin tahmin edilmesi için 
yapay sinir ağı (YSA) geliştirilmiştir. 6 no'lu fuel oil ile çalışan 

kojenerasyon enerji santralinin elektrik enerjisi üretiminin (W) tahmini 

için geliştirilen YSA'da, zaman (t), çalışma saatleri (h), yakıt tüketimi (m) 
ve iç tüketim (Wp) değerleri giriş değişkenleri olarak kullanılmıştır. Farklı 

YSA'ların performansı değerlendirildikten sonra, bir gizli katman ve 10 

nörondan oluşan YSA en ideal model olarak değerlendirilmiştir. Deneysel 
verilerle yapılan karşılaştırma sonucunda, bu modelin kojenerasyon 

enerji santralinin elektrik üretim değerlerini 0,99073 R değeri ve 4.734e-

8 MSE ile tahmin edebileceği sonucuna varılmıştır. 

Keywords: Cogeneration, Diesel engine, Power plant, Electricity 

consumption, Artificial Neural Network 
 Anahtar kelimeler: Kojenerasyon, Dizel motor, Enerji sanrali, Elektrik 

tüketimi, Yapay Sinir Ağı 

1 Introduction 

With the increase in population, the developing industrial 

industry has brought more energy needs. The studies of the 

International Energy Agency (IEA) show that world 

electricity demand in 2040 will increase by 80% compared 

to 2012 [1]. The types of electric power plants are vital in 

meeting the increasing demand for electricity. Consumption 

of electricity where it is produced is one of the most preferred 

and useful methods since it eliminates the factors causing the 

decrease in efficiency such as energy losses in transmission 

lines. In the industrial area, cogeneration power plants are 

frequently preferred as high-efficiency energy production 

system in case there is a need for electrical power as well as 

heat power (hot water, steam etc.). It is possible to define the 

cogeneration system as a system where electricity and heat 

energy are produced simultaneously using a single fuel 

source. The cogeneration system is used in domestic 

applications as well as in industrial systems which need 

electricity and heat energy [2]. Because of the high financial 

savings due to the high fuel efficiency obtained from the 

system, it is seen that legal subsidies are applied in many 

countries for cogeneration systems which are frequently 

preferred owing to their environmental advantages [3-5]. 

The cogeneration system, which can also be known as 

combined heat and power (CHP) plant, is not a new concept. 

At the end of the 1800s, when steam was the major energy 

source in the industry, the concept of cogeneration emerged 

as a result of replacing mechanical driven systems with 

electrically driven systems and replacing steam-driven belt-

pulley mechanisms with electricity and motors [6, 7]. 

Demand for cogeneration systems is increasing day by day 

due to the ability to produce the required electricity and 

thermal energy from a single fuel source such as oil or 

natural gas and with a high efficiency ratio. The energy 

efficiency of cogeneration systems can reach up to 80% 

compared to conventional electricity generation systems [8]. 

The high fuel efficiency values in electrical and thermal 

energy production are the main advantages of the 

cogeneration system. Because waste heat from conventional 

systems is converted into useful thermal energy in 

cogeneration systems, a smaller amount of fuel is needed to 

produce the equivalent amount of energy as conventional 

systems (turbine, steam boilers, etc.) to produce electrical 

and thermal energy in the cogeneration system [9, 10]. As 

they reduce the impact of greenhouse gases by up to 50% 

with their technical and economic advantages, the 

environmental advantages of cogeneration systems reach 

considerable proportions [11, 12]. Although they have many 

different applications, the most common application in 

cogeneration power plants is the power plants established 

with internal combustion engines and open cycle gas 

turbines. Heavy fuel diesel power plants, a low-grade oil 

refinery product, operate on diesel fuel, which is relatively 

inexpensive than other types. This technology, which can 

produce hundreds of megawatts of energy, stands out with 
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the advantages of being able to be installed quickly in less 

than twelve months [13]. According to their capacity, diesel 

engine cogeneration power plants can be classified into three 

main categories as low capacity (15 - 1000 kW), medium 

capacity (1 - 6 MW) and high capacity (over 6 MW). The 

diesel cogeneration power plant has four available waste heat 

sources: exhaust gas, engine jacket cooling water, lubricating 

oil cooling water and charge air cooling water. Exhaust gases 

from diesel cogeneration power plants have a substantial 

sum of thermal energy that can be used to recover waste heat. 

The heat recovered from the exhaust gas is generally 

considered to be hot water or steam production. The resulting 

recycling energy can be used for an assortment of process 

needs, heating and cooling applications [14]. In many studies 

on energy efficiency in the literature, the advantages of 

cogeneration plants have been scientifically proven [15-18]. 

In the literature, many studies have been done on diesel 

engines and cogeneration power plants.  

While some of the studies on diesel engines have carried 

out analyzes on the second law of thermodynamics [19, 20], 

some researchers have studied the effects of diesel engine 

parameters on performance and emission values [21-23]. 

Previous studies on cogeneration power plants have mostly 

focused on the efficiency of power plant and exergy analysis. 

Ust et al. [24] in their study on a gas turbine regeneration 

system, optimizing the external performance criteria of the 

power plant, demonstrated the advantages of this method. In 

his study for cogeneration power plants, Ertesva [25] 

evaluated the external comparisons of efficiency indicators 

for cogeneration power plants and consequently stated that 

external improvements were achieved to a limited extent by 

several energy-based efficiency indicators. Khaliq and Han 

[26] analyzed the heat and power system of a gas turbine 

cogeneration plant using the first and second laws of 

thermodynamics. The case study on a diesel engine-operated 

cogeneration plant was also carried out with only the first 

laws in mind [27]. In the management of the electrical energy 

system, it is of excessive prominence to estimate the 

production capacities of the power plants operating in the 

grid. In cases where the total capacity of electrical energy 

that the power plants in the system can produce is lower than 

the amount of electrical energy required, power outages 

begin to occur. Power cuts in the system, especially 

unplanned power outages, bring technical and economic 

problems. Considering that the sudden power outages, 

stopping in industrial processes, deterioration of the 

materials in the production system, interruption of 

production and re-commissioning, serious losses are 

observed [28]. Unstable operation of power generation 

systems with interruptions can also cause malfunctions in 

mechanical systems and generator units. In view of all these 

reasons, accurate estimation of the generation capacity of an 

electric power plant is of great importance both in terms of 

providing the required energy stably and sustainably and in 

the management of the electricity grid [29]. 

In the literature, many studies have been conducted on 

the estimation of the electricity generation capacity of power 

plants. Since data mining techniques are used in the methods 

used in such studies, it is possible to estimate the electricity 

generation capacities only for local cases in the database. In 

the data mining technique, the structure of the database can 

be examined, and estimated values can be obtained [30]. In 

the absence of the data required to create a model in the 

database, errors can also occur in the estimation results. For 

example, since the decrease in the performance of an 

electrical power plant will increase as the working hours 

increase, long-term data of the power plant are needed to 

estimate the performance decline using long-term data for 

performance estimation by data mining technique. In the 

absence of sufficient data, the estimation results will not be 

accurate. It is seen that this method is frequently used in the 

literature due to the advantage that the characteristics and 

performance factors of the power plant can be evaluated 

simultaneously [31-33]. One of the methods for estimating 

the desired values is the artificial intelligence (AI) thanks to 

the algorithms developed using the obtained data. In the 

literature, artificial intelligence applications for estimating 

the performance and production values of power plants are 

frequently encountered. Smrekar et al. [34] and Tunckaya et 

al. [35] used statistical data and artificial neural network 

(ANN) model in their study on estimating the performance 

of coal-fired power plants. Boksteen et al. [36] used the 

Bayesian calibration model to estimate the power plant 

performance, while Tüfekci [37] preferred the machine 

learning model developed with long-term data to estimate 

the performance of combined cycle power plants. Many 

different studies have been made on the estimation of 

performance and production values of cogeneration power 

plants by ANN. Optimization of power plant parameters and 

development of ANN to achieve efficiency increase [38-41], 

modeling of the manners of power plant components such as 

steam boiler and turbine with ANNs [42-46], development 

of ANN for estimation of thermal efficiency and air pollution 

[47-51], optimization of power plant load distribution [52, 

53], power plant production according to demands [54] are 

some examples of ANN studies on cogeneration power 

plants by researchers. 

In this study, an ANN model has been developed in order 

to predict electrical energy production values of a diesel 

engine cogeneration power plant. However, many 

applications of ANNs in different areas are also included in 

the literature [55]. Although there are various studies in the 

literature on cogeneration power plants, there is no study on 

estimating the electrical energy production values of diesel 

engine cogeneration power plants using ANNs. This study is 

important in that it aims to fill this gap in the literature.  

2 Description of cogeneration power plant  

The cogeneration power plant investigated in this study 

was established to meet the electricity, hot water and steam 

needs of five different textile factories. The cogeneration 

power plant has two MAN brand diesel engines of type 

12V32/40, each of which can produce 5760 kW of power. 

12V32/40 refers to the 12 is the number of cylinders, V 

engine type (Vee engine), 32 cylinders bore (cm) and 40 is 

the piston stroke (cm). In Figure 1, cross-sectional view of 

the V32/40 diesel engine, in Figure 2 and Table 1, main 

dimensions of MAN 12V32/40 diesel engine are given [56]. 
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Figure 1. MAN 12V32/40 diesel engine cross section 

view on coupling side 

 

In the calculations carried out for the cogeneration power 

plant, which has a total capacity of 11.52 MW, the data of 

one unit was used because the values of both diesel engines 

were the same. Heavy fuel oil No:6 is used as fuel in the 

cogeneration power plant. Although the purpose of using this 

type of fuel, which is also considered as heavy fuel, is its 

economic advantage compared to other types of fuel, 

operational difficulties due to the components contained in 

the fuel content (necessity of using fuel separator, 

maintenance requirements due to mechanical equipment 

contamination, yield reduction, etc.) can also be evaluated as 

disadvantages. The technical characteristics of the fuel used 

are given in Table 2. 

 

Table 1. Main dimensions of MAN 12V32/40 diesel engine 

A           
(mm) 

B           
(mm) 

C           
(mm) 

H           
(mm) 

W           
(mm) 

Weight           
(tons) 

6.475 4.215 10.690 4.795 3.370 98 

 

In the cogeneration power plant, hot water and steam 

production are integrated with electricity generation, and all 

three energy types are transmitted to the enterprises to meet 

the electricity and process needs of five different power 

plants. Exhaust excavation at a temperature of approximately 

520 °C enters the boiler and helps to produce a total of 4.5 

t/h of steam at a pressure of 6 bar and a temperature of 165 

°C. The process of removing the corrosive gases contained 

in the feed water fed to the steam serpentines in the boilers 

and reaching them to a temperature of 102 °C before the 

boiler is carried out by means of degasser. The schematic 

diagram of the cogeneration power plant is given in Figure 3 

[57]. 

In the cogeneration power plant, hot water and steam 

production are integrated with electricity generation, and all 

three energy types are transmitted to the enterprises to meet 

the electricity and process needs of five different power 

plants. Exhaust excavation at a temperature of approximately 

520 °C enters the boiler and helps to produce a total of 4.5 

t/h of steam at a pressure of 6 bar and a temperature of 165 

°C. The process of removing the corrosive gases contained 

in the feed water fed to the steam serpentines in the boilers 

and reaching them to a temperature of 102 °C before the 

boiler is carried out by means of degasser. 

  

 

Figure 2. Main dimensions of MAN 12V32/40 diesel engine 
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The schematic diagram of the cogeneration power plant 

is given in Figure 3 [57]. The system in cogeneration power 

plant; diesel engine, exhaust gas turbine, compressor, heat 

recovery heat exchangers, charge air cooler, oil cooler, 

cooling tower, cooling tower heat exchanger and five 

circulation pumps. As a result of the combustion in the four-

stroke diesel engine, the rotational movement of the 

crankshaft is converted to electrical energy by means of the 

generator (alternator). The first movement to diesel engines 

is given by 30 bar compressed air produced by the piston 

start air compressor. 

 

Table 2. HFO technical characteristics 

Heavy Fuel No:6 Typcial Specifications 

Ca (weight%) 86.5 - 90.2 

H (weight%) 9.5 - 12.0 

S (weight%) 8.51 - 7.68 

Viscosity (CSt @38°C) 260 – 750 

BS&W (%) 0.05 - 2.0 

HHV (BTU/LB) 17410 - 18990 

 

When the diesel engine starts, the exhaust gas flow 

resulting from combustion gives a rotational motion to the 

exhaust gas turbine. With the rotational movement of the air 

compressor connected to the same shaft, the compressed air 

required for the combustion reaction is sent to the cylinder. 

The entire exhaust gas turbine and air compressor unit, 

which is connected to the same charge and is integrated into 

a single case, is called a turbocharger. The charge air, which 

reaches high temperatures after the compressor, is gradually 

cooled in the charge air cooler using HT then LT water and 

then sent to the cylinder. The exhaust gas exiting the diesel 

engine first enters the turbocharger unit and gives the turbine 

movement.  

After leaving the turbocharger, it enters the waste heat 

boilers and turns the hot water fed into the serpentines into 

steam. The steam produced is transferred from the waste heat 

boilers to the steam tank and then to the enterprises. LT 

provides water, oil cooling and charge air cooling. HT water, 

which has a higher thermal capacity, cools the engine, and at 

the same time, warm water from the engine is obtained by 

means of heat recovery heat exchanger with a capacity of 140 

t/h and 85 °C. Information about the cogeneration power 

plant system is given in Table 3 [57]. 

3 Cogeneration power plant data analysis 

In this study, which has been carried out in order to 

estimate the electrical energy production of the cogeneration 

power plant with ANN, the production values of the power 

plant for five-years (60-months) have been used. Time, 

working hours, internal power consumption and fuel 

consumption values were used as input variables. Monthly 

working hours of 5.760 kW diesel engine were recorded 

during the 60-month period on which the study was based. 

Working hours of the cogeneration power plant may vary 

according to months. The reason is that the downtime of the 

power plant due to breakdowns, maintenance and the 

downtime of the plants where energy is supplied. The 

cogeneration power plant worked for a total of 32.106 hours, 

with an average of 535,1 hours per month, ranging from 334 

to 657 hours per month during the 60-month period of the 

study. The graph of the operating hours of the cogeneration 

power plant in the 60-month period is given in Figure 4. 

  

 

Figure 3. Schematic diagram of the cogeneration power plant 
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Table 3. Values about cogeneration power plant 

No Flow identification 
m T P 

(kg/h) (°C) (kPa) 

1 Inlet fuel 0.318 125 640 

2 Air inlet (before compressor) 11 27 2 

3 Air (after compressor) 11 225 300 

4 Air ( for charge) 11 55 300 

5 Exhaust gas (before turbine) 11.31 520 - 

6 Exhaust gas (after turbine) 11.31 330 2.5 

7 Shaft  - - - 

8 Exhaust gas 11.31 210 2.5 

9 Steam for factory 12.50 165 600 

10 Make up water  12.50 102 700 

11 LT water (inlet) 31.67 35 260 

12 LT water (outlet) 31.67 40 260 

13 Lube oil (inlet) cooler 38.88 75 420 

14 Lube oil (outlet) cooler 38.88 65 420 

15 Inlet lub oil 38.88 65 420 

16 Charge air (inlet) water for CT HE 31.66 50 260 

17 Water (outlet) CT   31.94 30 300 

18 LT (Inlet) water 31.94 30 300 

19 LT (Outlet) water  31.94 40 300 

20 Heat Recovery (Engine) Exchanger 31.66 25 300 

21 HT (Inlet) water 31.66 25 300 

22 HT (Outlet) water  31.66 25 300 

23 Heat Recovery (Outlet)  20 90 420 

24 Water (Return line) 38.88 70 600 

25 Water (to factory) 38.88 90 550 

26 HT Exchanger (inlet) 20 70 420 

27 HT Exchanger (outlet)  20 80 420 
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Figure 4. Operating hours of the cogeneration power plant 
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Figure 5. Fuel consumed in the cogeneration power plant 

 

The graph of the amount of fuel consumed in the 

cogeneration power plant operating with heavy fuel oil no:6 

over a period of 60 months is shown in Figure 5. In this 

process, between 285.698 kg and 841.073 kg fuel was 

consumed in the power plant and a total of 37.729.499 kg of 

fuel consumption was realized, with an average of 621.325 

kg per month. The reason for the difference in fuel 

consumption in the power plant is that the working hours 

differ each month due to the circumstance that the power 

plant stops owing to the reasons explained previously. 

During the operation of the cogeneration power plant, the 

equipment such as the fuel module, instrument air 

compressors, separators, lubrication and cooling water 

pumps, water treatment system and lighting consume 

electrical energy. Such consumption in the power plant is 

expressed as the internal consumption or internal need of the 

power plant. During the 60-month period in which the study 

data were taken, the total electricity consumption of 

6.305.137 kWh was realized for the internal consumption of 

the cogeneration power plant ranging from 73.350 kWh to 

132.062 kWh, with an average of 105.086 kWh per month. 

Figure 6 indications the graph of the internal consumption of 

the cogeneration power plant.  
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Figure 6. Internal consumption of the cogeneration power 

plant 
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4 Artificial Neural Network 

One of the ideal methods for estimating the electricity 

generation of a cogeneration power plant is the use of ANN. 

ANNs generally be made of three separate layers: input, 

hidden and output layers. The input layer is where data is 

received and behaves like a self-determining variable. The 

sum of input layer neurons unwavering by the structure of 

the model depends on the sum of arguments. The other layer, 

the hidden layer, does not characterize any impression and 

only affords midway results to calculate output values and 

calculates the sum of each unit in ANNs by multiplying the 

weights corresponding to the input values. The sum of the 

calculated morals is then mapped to the output value using a 

transfer function [58]. Multi-layer perceptron (MLP) model 

is one of the most widely used ANN models. In ANNs 

developed using this model, prediction of nonlinear 

mathematical equations can be performed at high 

performance levels. 

The multi-layer perceptron model includes an input layer, 

as a minimum one hidden layer, and an output layer, each 

layer being entirely linked to the next layer. These bonds 

between layers consist of neurons, the basic processing 

element. Neurons are identified by bias (b), weights (w) and 

a transfer function (f). The weight values fixed using a 

unsystematic number generator are multiplied by the input 

values of each neuron, and the values obtained are added to 

each other and to the bias value. The neuron value is 

calculated as follows: 

 

Yj = f (∑ Wj,ixi + bj

n

i=1

)  (1) 

 
Where Y is the neuron output, n is the number of neurons 

that connect to the jth neuron, and x is the incoming signals. 
In the ANN developed using multi-layer perception, the 

process of determining the appropriate weight and bias for 

learning the functional relationship between input and output 

is entitled "training". One of the most efficient and common 

algorithms used for training ANN is feed-forward 

backpropagation (FF-BP) algorithm. In this algorithm, 

information processing is performed in the feed-forward 

phase and this process is propagated from the input layer to 

the output layer. The errors between the predicted and actual 

data are calculated in the backward processing stage and sent 

back to the input layer to adjust the biases and weights. This 

process continues step by step until the error rate in the ANN 

is minimized. In estimating the energy production values of 

cogeneration power plants, since the operating hours of the 

plant, the amount of fuel consumed and the internal 

consumption values of the plant are the parameters that affect 

the result, these three parameters are defined as the input 

value. The output parameter is the amount of electrical 

energy manufactured by the cogeneration power plant, and 

this value is obtained in the one-dimensional output layer. 

The basic structure and configuration topology of the 

developed ANN is presented in Figure 7 and 8, respectively. 

In the developed ANN model, the sum of hidden layers 

and neurons are the most imperative factors that 

unswervingly affect the predictive performance [59]. The 

presence of a small number of hidden layers and neurons in 

an ANN causes the ANN to be incorrectly trained, and the 

accuracy of prediction is low. With the purpose of minimize 

the guesstimate error, the excessive number of neurons is not 

an accurate approach. It is important to optimize the data to 

be used in the ANN in order to obtain the ideal estimation 

accuracy. In this study, feed-forward back-propagation 

multi-layer perceptron ANN has been developed by using 

data obtained from a diesel engine cogeneration power plant, 

and this model has been used to estimate the electricity 

generation values of the cogeneration power plant. In the 

ANN developed using 60 data, the data were separated into 

three groups as training, testing and validation. 42 (70%) of 

the 60 data were used for the training phase, 9 (15%) for the 

test phase and 9 (15%) for the validation phase. The values 

obtained from the mean square error (MSE) and R equations 

given in Equation (2) and (3), respectively, were chosen as 

norms for the optimization and performance analysis of the 

developed ANN.  

 

MSE =
1

N
∑(Wexp (i) − WANN(i))2

N

i=1

      (2) 

 

R = √1 −
∑ (Wexp(i) − WANN(i))

2N
i=1

∑ (Wexp(i))
2N

i=1

  (3) 

 
Where N is the number of data points, Wexp is the 

experimental production value of the cogeneration power 

plant, and WANN is the production value obtained from the 

ANN model. The flow chart of this ANN with 10 neurons is 

presented in Figure 9. 

5 Results and discussion 

In this study, a single hidden layer feed-forward multi-

layer perceptron method was chosen as an ANN modeling, 

and Levenberg-Marquardt backpropagation algorithm, 

which is one of the most proper models for training ANN, 

was preferred. As transfer functions of hidden and output 

layers, Tangent sigmoid (Tan-Sig) and linear (Purelin) 

functions are selected respectively.  

The Tan-Sig transfer function and purelin are presented 

in Equation (4) and (5) 

 

f(x) =
1

1 + exp (−x)
   (4) 

 

purelin(x)  =  x   (5) 

 

 

Figure 7. Basic structure of the ANN 
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Figure 8. Configuration topology of the ANN 

 
Figure 9. The flow chart of the ANN 

 

In Figure 10, the deviation between the values obtained 

from the cogeneration power plant and the values obtained 

from the ANN is plotted. As can be seen in Figure 10, when 

the training phase of the ANN starts, the high MSE value 

decreases with increasing periods (epoch). It means that the 

training stage of the developed ANN model is premeditated 

acceptably. According to the graph, the MSE rate drops 

continuously and it is the best result with the lowest MSE 

value of 27112400562 immediately after 5 iterations. The 

reason that the ANN achieves the ideal result with the 

minimum MSE value with a low iteration like 5 is an 

indication that the data optimization used in the experiment 

set is done in an ideal way. Figure 11 shows the training 

status of the ANN model. As shown in Figure 11, the errors 

were repeated 6 times after epoch 6 and stopped at epoch 11. 

This error showed that the over-matching of the repeated 

data starting from the 6th epoch is very good. Thus, the fifth 

epoch was chosen as the base, but their weights were chosen 

as final weights. Furthermore, due to the errors repeated six 

times before the process is stopped, the validation process is 

equal to 6. Figure 12 shows the error histogram of the 

training, validation and testing of the ANN. The distribution 

of the error distribution around the zero line indicates that the 

designed ANN can estimate the electrical energy production 

of the cogeneration power plant with an ideal accuracy rate. 

Figure 13 appearances the assessment of the experimental 

results with the data used for training the ANN.  

The fact that the training data located on the 

compatibility line is compatible with the experimental data 

and the R-value obtained as 0.99586 is an indication that the 

training process of the ANN is finalized with high accuracy 

and precision. Figure 14 shows the comparison of tentative 

data with the data used for testing the ANN. 

 

 

Figure 10. Performance chart of artificial neural network 

 
Figure 11. Training status of artificial neural network 

model 

 
The performance of the test data is important in assessing 

the suitability and performance of the ANN. The position of 

the test data close to the equality line and the R-value of the 
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test data, which is 0.97918, can be interpreted as the ideal 

performance of the improved ANN. Figure 15 shows the 

validation outcomes of the ANN. The proximity of the 

validation data to the equality line is indicative of the proper 

modeling of the ANN. It can be seen that the R-value for the 

validation results is 0.99227. All the data of the ANN, 

designed with 60 tentative data, are shown in Figure 16. As 

can be seen from the graph, all data points obtained from the 

ANN are located very close to the equality line. This 

closeness of the data points to the compatibility line indicates 

that the developed ANN model is capable of generated 

electrical energy from the cogeneration power plant; time, 

working hours, fuel consumption and internal power 

consumption of the plant. The R-value for all ANN results is 

0.99073. The performance values of the ANN developed for 

the purpose of estimating the electricity generation values of 

the cogeneration power plant are given in Table 4 and Figure 

17. The electrical energy production values of the 

cogeneration power plant are associated with the data 

obtained from the ANN developed with experimental data. 

The results have shown that the ANN can accurately predict 

the electrical energy generation of the cogeneration power 

plant based on four different input variables. Figure 18 

shows the comparison of the values obtained from the ANN 

with the production values of the cogeneration power plant. 

 

Table 4. ANN performance values 

Data Set MSE MoD (%) R 
Number of 

Data 

Train 3.48E-03 -0,65 0.99586 42 

Test 5.69E-03 -1,02 0.97918 9 

Validation 5.64E-04 0,06 0.99227 9 

All 4.48E-04 -0,61 0.99073 60 

 

 
Figure 12. Error histogram 

 

One of the methods used to evaluate the performance of 

the developed ANN is a standard deviation analysis. The 

values obtained from the ANN were compared with the 

electrical energy generation values of the cogeneration 

power plant, and the deviation values realized for each value 

were calculated. In the graph given in Figure 19, the electric 

energy generation values of the cogeneration power plant are 

placed on the x-axis, and the production values obtained 

from the ANN developed on the y-axis are placed. The 

positioning of the data points around the equality line is an 

indication that the developed ANN accurately predicts the 

electrical energy generation values of the cogeneration 

power plant. The deviation between the output values of the 

ANN and electrical energy generation values of the 

cogeneration power plant was calculated using the 

theoretical correlation given in Equation (6) [60]. 

 

 
Figure 13. Training data performance 

 

 

 
Figure 14. Test data performance 

 

Margin of Deviation = [
Wexp − WANN

Wexp

] x 100%  (6) 

 

The electricity generation values of the cogeneration 

power plant were compared according to the number of data 

obtained by using an ANN. The comparison was performed 

separately for three different data sets used in the 

development of the ANN.  
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Figure 15. Validation Data Performance 

 

 
Figure 16. General performance 

 

As can be seen in Figure 20, the estimated values using 

the ANN and the production values of the cogeneration 

power plant are very close to each other. It means that the 

ratio between the values estimated by the ANN and the 

production values of the cogeneration power plant is 

acceptable. In Figure 21, error rates of electrical energy 

generation values estimated using the ANN are shown based 

on the number of data. Determination of error rates is one of 

the studies conducted to evaluate the performance of the 

ANN model whose training phase has been completed. The 

amount of deviation between the electrical energy generation 

values of the cogeneration power plant and the data obtained 

from the ANN was calculated using Equation (6). 

The calculated deviation amounts are shown in separate 

graphs for each training, test and validation data set used in 

the ANN. As can be seen in Figure 21, the production values 

predicted by the ANN are very close to the zero line and the 

deviation amounts are very low and acceptable. These error 

rates indicate that the results obtained from the ANN are 

accurate with acceptable deviation rates. As can be seen in 

the three-dimensional graph given in Figure 22, the ANN 

was able to estimate the electrical energy generation values 

of the cogeneration power plant in the range of -5.34% to 

2.57% with an average deviation of -0.61%. In the graph, the 

intensity of the zero error area indicated by the green region 

is an expression of the good agreement between 

experimental results and ANN outputs.  
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Figure 17. Mean square error values for training, 

validation, test, and all data 
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Figure 18. Comparison of production values with ANN 

outputs 

 

Comprehensive studies have been carried out on the 

energy and exergy analysis of this cogeneration power plant, 

where electricity energy generation values are predicted 

using ANNs [57, 61]. 

W
Exp

 (kWh)

1e+6 2e+6 3e+6 4e+6

W
A

N
N
 (

k
W

h
)

1e+6

2e+6

3e+6

4e+6

Data points

Equality Line

 
Figure 19. Comparison of experimental production data 

with artificial neural network data 
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Figure 20. Comparison of ANN and plant production 

values according to data number 
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Figure 21. Prediction error by ANN according to data 

number 
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6 Conclusion 

Numerous studies on cogeneration power plants in the 

literature have focused on the efficiency and exergy analysis 

of cogeneration power plants, while various optimization 

studies with ANNs are also available. In this study, in order 

to estimate the electricity generation values of a 12-cylinder 

32/40 type diesel engine cogeneration power plant operating 

with heavy fuel oil, a multi-layer perception forward-feed 

backpropagation ANN was developed through the 

Levenberg-Marquardt algorithm. 

In the ANN model, time (t), working hours (h), fuel 

consumption (m) and power plant internal consumption (Wp) 

are defined as input variables, and the electricity generation 

values (W) of the cogeneration power plant are estimated 

based on these four input values. 
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Figure 22. Deviation rates of experimental and ANN data 

 

The ANN was designed using the 5-year (60 months) 

data of the cogeneration power plant. 42 (70%) data were 

used for training, 9 (15%) were used for validation, and 9 

(15%) were used for testing. The obtained results showed 

that the R-value obtained for the ANN is 0.99073, The mean 

error square value is 4.734e-8, and the ANN is modeled 

optimally. The ANN was able to estimate the electrical 

energy generation values of the cogeneration power plant in 

the range of -5.34% to 2.57% and with an average error 

margin of -0.61%. In the future, different estimation and 

optimization studies of cogeneration power plants can be 

made by using ANNs. 
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Nomenclature 

AI  Artificial Intelligence 

ANN  Artificial Neural Network 

b  Bias 

BS&W  Basic Sediment and Water 

BTU  British Thermal Unit 

CHP  Combined Heat and Power 

CT  Cooling Tower 

f  Transfer Function 

FF-BP  Feed Forward Back Propagation 

h  Working hour (h) 

H  Hydrogen 

HE  Heat Exchanger 

HT  High Temperature 

HHV  Higher Heating Values 

IEA  International Energy Agency 

LT  Low Temperature 

MLP  Multi-layer perception 

MSE  Mean Square Error 

S  Sulphite 

t  Time period (month) 

m  Fuel Consumption (kg) 

w  weights 

W  Power generation of power plant (kWh) 

Wp  Internal power consumption (kWh) 
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