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ABSTRACT

The aim of this work is to introduce and study the nondegenerate inner product < ·, · >det induced
by the determinant map on the space Sym(2) of symmetric 2× 2 real matrices. This symmetric
bilinear form of index 2 defines a rational symmetric function on the pairs of rays in the plane
and an associated function on the 2-torus can be expressed with the usual Hopf bundle projection
S3 → S2( 1

2 ). Also, the product < ·, · >det is treated with complex numbers by using the Hopf
invariant map of Sym(2) and this complex approach yields a Heisenberg product on Sym(2).
Moreover, the quadratic equation of critical points for a rational Morse function of height type
generates a cosymplectic structure on Sym(2) with the unitary matrix as associated Reeb vector and
with the Reeb 1-form being half of the trace map.
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1. Introduction

This short paper, whose nature is mainly expository, is dedicated to the memory of Professor Dr. Aurel
Bejancu, who was equally a gifted mathematician and a dedicated professor. As we hereby present an in
memoriam paper, we feel it would be better if we choose an informal presentation rather than a classical
structured discourse, where theorems and propositions are followed by their proofs.

The starting point is the remark that in order to re-prove the Herglotz lemma, in the paper [14] the 4-
dimensional real space gl(2,R) is endowed with a symmetric bilinear form of index 2 (the subscript NP
corresponds to the initials of name of authors):

< A,B >NP=
1

2
[Tr(AB)− TrA · TrB] =

1

2
[det(A−B)− detA− detB] . (1.1)

Its associated norm is:
< A,A >NP= − detA (1.2)

and (Sym(2), < ·, · >NP |Sym(2)
) is a Lorentzian 3-dimensional inner product space with the identity matrix as

unit timelike vector.

The purpose of this note is to define directly on Sym(2) a symmetric bilinear form of index 2 having as
associated quadratic form the determinant function; hence the identity matrix will be an unit spacelike vector.
While the determinant and Nomizu-Pinkall inner product differ only by a sign, we have chosen to work with
the former as it seems more natural to us in terms of linear algebra; in any case, all results below can be easily
reformulated in terms of < ·, · >NP .

We start the second section with the general Hilbert-Schmidt inner product on n× n matrices and restrict
gradually to Sym(2) performing also a comparison with the complementary o(2). Several times we exemplify
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our computations with projectors and reflections. Our symmetric bilinear form is denoted < ·, · >det and is
introduced and studied in the third section. We apply our construction to derive a rational symmetric function
on the torus T 2 and consequently on the set of pairs of rays in the plane and we put our function in relationship
with the case n = 2 of a Morse function introduced and studied by Liviu Nicolaescu in [13] on arbitrary
dimension n ≥ 2. Also, we express our function with the help of well-known Hopf projection from S3 to S2( 1

2 ).

In the fourth section we present an approach based on complex numbers by using the Hopf invariant of
any symmetric 2× 2 matrix. With this formalism we compute both the critical points and the critical values of
Morse function of Nicolaescu, again in the restricted dimension n = 2. This complex approach identifies Sym(2)
with the product H1 := C×R and the Heisenberg product of H1 is transported on Sym(2). We exemplify
the Heisenberg product of two projectors and of two reflections and we obtain that the product of two
projectors/reflections is not a projector/reflection.

In the last section we return to the Nomizu-Pinkall inner product and study new aspects concerning it, in
addition to the direct relationship < A,B >NP= − < A,B >det. For example, the quadratic equation of critical
points for a rational Morse function generates an almost contact structure on Sym(2) with the unitary matrix
as associated Reeb vector. In fact, this structure is a cosymplectic one since its Reeb 1-form is exact.

2. The Hilbert-Schmidt inner product

Fix n ∈ N, n ≥ 2. The starting point of this note is the well-known Cartan decomposition of the Lie algebra
gl(n,R) = Mn(R) with respect to the negative transpose endomorphism ·t:{

Mn(R) = Sym(n)⊕ o(n) = m⊕ h, dim : n2 = n(n+1)
2 + n(n−1)

2
[m,m] ⊂ h, [m, h] ⊂ m, [h, h] ⊂ h.

(2.1)

We remark here that the first works as well as the PhD Thesis of professor Aurel Bejancu are concerned with
Banach-Lie groups; see, for example, [1] and [2]. Furthermore we fix x ∈ Rn \ {0̄}which defines another direct
sum decomposition:

Rn = span{x} ⊕ (span{x})⊥, dim : n = 1 + (n− 1) (2.2)

which is an orthogonal decomposition with respect to the Euclidean inner product < ·, · > of Rn. Considering
x as being a column matrix i.e. as element in Mn,1(R) it follows the existence of two linear maps:{

sym(x; ·) : Rn → Sym(n), sym(x; y) := 1
2‖x‖2 (x · yt + y · xt)

o(x; ·) : Rn → o(n), o(x; y) := 1
2‖x‖2 (x · yt − y · xt). (2.3)

Hence, every y ∈ Rn has the orthogonal decomposition y = y
‖
x + y⊥x with:

y‖x := Px(y) = sym(x;x)(y) =
< x, y >

‖x‖2
x, y⊥x = (In − sym(x;x))(y) (2.4)

with In ∈ Sym(n) the identity matrix. It results the reflection with respect to x:

Rx : Rn → Sym(n), Rx := 2Px − In = 2sym(x;x)− In. (2.5)

The ambient space Mn(R) of (2.1) is Euclidean with respect to the Hilbert-Schmidt (or Frobenius) inner
product:

< A,B >HS :=
1

n
Tr(A ·Bt) =

1

n

n∑
i,j=1

aijb
i
j , < A, In >HS=

1

n
Tr(A), ‖In‖HS = 1. (2.6)

We point out that (2.1) is an orthogonal decomposition with respect to < ·, · >HS . In the following we discuss
the restriction of this inner product on both summands of (2.1) with a special view towards the case n = 2.

2.1. The restriction of < ·, · >HS on the second summand

On the Lie algebra h = o(n) we have:

< A,B >o(n)= −
1

n
Tr(A ·B) (2.7)
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which is an Ad-invariant inner product and thus it defines a bi-invariant Riemannian metric on the
corresponding Lie groupO(n) = SO(n) tO−(n) conform [12, p. 71]. We recall after [16, p. 11] that the manifold
En := GL(n,R)/O(n) smoothly parametrizes the space of all (positive definite) inner products of Rn; hence, the
tangent space of En at the origin is identified with the space m. A natural Riemannian metric onM is introduced
in the exercise 6 from page 12 of the above book.

A straightforward computation gives:

< o(x; y), o(x; z) >o(n)=
1

2n‖x‖4
[‖x‖2 < y, z > − < x, y >< x, z >] (2.8)

with the following consequences in which ∠(x, y) denotes the angle between the vectors x, y:

‖o(x; y)‖o(n) =
‖y‖| sin∠(x, y)|√

2n‖x‖
, y, z ∈ (span{x})⊥ →< o(x; y), o(x; z) >o(n)=

< y, z >

2n‖x‖2
. (2.9)

In particular, if n = 2, then:

A = A(a) =

(
0 −a
a 0

)
, B = A(b)→< A,B >o(2)= ab. (2.10)

The skew-symmetric endomorphism J = A(1) is the (almost) complex structure of R2 and:

< A, J >o(2)= a = ‖A(a)‖o(2), ‖J‖o(2) = 1. (2.11)

The triple (R2, < ·, · >, J) is a Kähler geometry i.e. J is an isometry of the Euclidean plane and yields the
symplectic 2-form ω given by:

ω(·, ·) =< ·, J · > . (2.12)

Fix a regular plane curve C : r̄(t) = (x(t), y(t)) ∈ R2, t ∈ I ⊆ R. Its curvature function is:

k(t) =
x′(t)y′′(t)− y′(t)x′′(t)

‖r̄′(t)‖3
=
ω(r̄′(t), r̄′′(t))

‖r̄′(t)‖3
. (2.13)

From the point of view of G-structures the geometry of (R2, J) is controlled by the multiplicative group G of
CR-matrices:

R2 = C 3 z := x+ iy → CR(z) :=

(
x −y
y x

)
= xI2 + yJ. (2.14)

The associated linear transformation of the plane is called similarity being a composition of a rotation and a
homothety; we have:

< CR(z1), CR(z2) >HS= x1x2 + y1y2 =< z1, z2 >R2 . (2.15)

The case n = 2 of (2.10) can be generalized as follows. To an arbitrary A ∈Mn(R) we associate:

XA =

(
On −At
A On

)
∈ o(2n) (2.16)

and then:
< XA, XB >o(2n)=

1

2n
Tr(At ·B +A ·Bt) =< A,B >HS(n) . (2.17)

2.2. The restriction of < ·, · >HS on the first summand

On m = Sym(n) we have:

< A, Ã >Sym(n)=
1

n
Tr(A · Ã), < Px, In >Sym(n)=

1

n
, < Rx, In >Sym(n)=

2

n
− 1. (2.18)

We derive immediately:

< sym(x; y), sym(x, z) >Sym(n)=
1

2n‖x‖4
[
‖x‖2 < y, z > + < x, y >< x, z >

]
(2.19)
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with the following consequences:
‖sym(x; y)‖Sym(n) =

‖y‖
√

1+cos2 ∠(x,y)√
2n‖x‖ ,

y, z ∈ (span{x})⊥ 7→< sym(x; y), sym(x; z) >Sym(n)=
<y,z>
2n‖x‖2 ,

< Px, Py >Sym(n)=
cos2 ∠(x,y)

n ∈ [0, 1
n ] ⊆ [0, 1

2 ], ‖Px‖Sym(n) = 1√
n
,

< Rx, Ry >Sym(n)= 1− 4 sin2 ∠(x,y)
n ∈ [1− 4

n , 1], ‖Rx‖Sym(n) = 1

(2.20)

and hence Px⊥Sym(n)Py if and only if x⊥y in Rn. Also Rx⊥Sym(n)Ry if and only if n = 2 and x⊥y.

For n = 2 we have that Rx⊥Sym(2)I2, < Px, PJx >Sym(2)= 0 and if s is a natural parameter on the curve C or
C is the circle C(O,R) with its trigonometrical parametrization r̄(s) = R(cos s, sin s) then:

< Pr̄′(s), Pr̄′′(s) >Sym(2)= 0, < Rr̄′(s), Rr̄′′(s) >Sym(2)= −1. (2.21)

If A and Ã from (2.18) are explicitly written then:

A =

(
a1

1 a1
2

a1
2 a2

2

)
→< A, Ã >Sym(2)=

1

2

[
a1

1ã
1
1 + 2a1

2ã
1
2 + a2

2ã
2
2

]
. (2.22)

Returning to the general case of n for arbitrary A ∈ gl(n,R) we have A ·At ∈ Sym(n) with:

< A ·At, In >Sym(n)= ‖A‖2HS ≥ 0. (2.23)

In particular, if A ∈ SL(n,R) then A ·At ∈ Pos1
Sym(n)=the (n−1)(n+2)

2 -dimensional manifold of all symmetric
and positive definite matrices with determinant 1. Moreover, the tangent space is well-known:

T(A·At)Pos
1
Sym(n) = {B ∈ Sym(n);Tr(A−1 ·B · (At)−1) = 0}. (2.24)

3. The determinant inner product on Sym(2)

In this section we restrict our setting to the 3-dimensional space Sym(2) since here the determinant function
det : Sym(2)→ R is a quadratic form: detA = a1

1a
2
2 − (a1

2)2; of course the determinant function is a quadratic
form also on the ambient space gl(2,R) but we restrict our setting in order to compare with the results of
the previous section. Hence it corresponds in a polarization way to the symmetric bilinear form < ·, · >det:
Sym(2)× Sym(2)→ R given by:

< A, Ã >det:=
1

2
Tr(A · Ã∗) =

1

2
Tr(Ã ·A∗) =< A∗, Ã >Sym(2), A

∗ =

(
a2

2 −a1
2

−a1
2 a1

1

)
∈ Sym(2). (3.1)

Its explicit form is:

< A, Ã >det=
1

2

[
a1

1ã
2
2 − 2a1

2ã
1
2 + a2

2ã
1
1

]
=

1

2
d(det)(A)(Ã) =

1

2
d(det)(Ã)(A), ‖A‖2det = detA, ‖I2‖det = 1. (3.2)

< ·, · >det is a nondegenerate inner product on Sym(2) = R3 with the null cone NC provided by the cone
Sym(2) \GL(2,R) of singular matrices:

NC ⊂ R3(x, y, z) : xz = y2. (3.3)

For example, each projector Px belongs to NC and:{
< Px, Py >det=

1
2

[
ω
(

x
‖x‖ ,

y
‖y‖

)]2
= cos2 ∠(x,Jy)

2 ∈ [0, 1
2 ]

< Rx, Ry >det= cos 2∠(x, Jy) ∈ [−1, 1], detRx = −1 = ‖Rx‖2det
(3.4)

and hence each reflection Rx is a timelike vector with respect to < ·, · >det. We have Px⊥detPy if and only if
∠(x, y) ∈ {0, π} and Rx⊥detRy if and only if ∠(x, y) ∈ {π4 ,

7π
4 }.
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For the considered curve C we have:

2 < Pr̄′(t), Pr̄′′(t) >det=

[
‖r̄′(t)‖2k(t)

‖r̄′′(t)‖

]2

(3.5)

and in particular, if s is the natural parameter then:

2 < Pr̄′(s), Pr̄′′(s) >det= − < Rr̄′(s), Rr̄′′(s) >det= 1. (3.6)

If Ã = diag(ã, b̃) then:

< A, Ã >det=
1

2

[
a1

1b̃+ a2
2ã
]
, < A, I2 >det=

1

2
Tr(A). (3.7)

If one of the given matrices, say Ã, belongs to Sym(2) ∩GL(2,R) then:

< A, Ã >det=
det Ã

2
Tr(A · Ã−1). (3.8)

In particular, if Ã ∈ O−(2) ⊂ Sym(2) ∩GL(2,R) then:

< A, Ã >det= −
1

2
Tr(A · Ãt) = −1

2
Tr(A · Ã) = − < A, Ã >Sym(2) (3.9)

and we remark a formal similarity with the relation (2.7) for n = 2. We point out here a remarkable application
of the relation (3.8). Fix S ⊂ R3 a regular surface and denote, as usually, I and II its two fundamental forms.
Then, its mean curvature is:

H =
1

det I
< I, II >det

and hence S is a minimal surface if and only if I⊥detII!

We present now an application of the O−(2) case. Let T 2 := S1 × S1 be the algebraic 2-torus and its points
(z, z̃) ∈ T 2 expressed in the exponential form: z = eiu, z̃ = eiũ. Remark that if instead of the pair (z1, z2) we work
with the matrix diag(z1, z2) then we identify T 2 with the maximal torus of U(2). Recall the correspondence
of S1 ' SO(2) with O−(2) (which is not a group, but in relationship with the axial symmetries of the plane
conform [9]):

S1 3 z = eiu → R
ei
u
2

=

(
cosu sinu
sinu − cosu

)
∈ O−(2) ∩ sl(2,R). (3.10)

Hence, we define a map fdet : T 2 → R by:

fdet(z, z̃) =< R
ei
u
2
, R

ei
ũ
2
>det= − < R

ei
u
2
, R

ei
ũ
2
>Sym(2) . (3.11)

Its properties are immediately:
i) is symmetric: fdet(z, z̃) = fdet(z̃, z),
ii) its relationship with the determinant function: fdet(z, z) = −1 = detR

ei
u
2

= −‖R
ei
u
2
‖2Sym(2),

iii) its explicit expression is:

fdet(z, z̃) = − cos(u− ũ) =
1

2
‖z − z̃‖2R2 − 1 =

1

2
d2
R2(z, z̃)− 1 = − cos dS1(z, z̃) (3.12)

with dR2 and dS1 the Euclidean distance and the spherical (S1) distance respectively,
iv) the relationship with the product structure of S1:

fdet(z1 · z2, z3) = fdet(z2, z
−1
1 · z3) (3.13)

is a direct consequence of (3.12).

A geometrical interpretation of fdet can be given by the Euclidean geometry of the plane R2(x, y). For any
t ∈ R let rt ∈ R2 be the ray with slope t given by rt : y = tx with x ≥ 0 and let us consider t = tan u

2 . Hence rt
is "half" of the line Lt = rt t r−t and its is well-known that Lt is characterized by its orthogonal projector PLt
which is exactly Rei u2 . It follows a symmetrical function on the set of pairs of rays:

fdet(rt, rt̃) = − cos 2(arctan t− arctan t̃), fdet(rt, rt) = −1 (3.14)
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with the explicit rational expression:

fdet(rt, rt̃) =
t2 + t̃2 − 1− 4tt̃− (tt̃)2

(1 + t2)(1 + t̃2)
=

(t− t̃+ 1 + tt̃)(t− t̃− 1− tt̃)
(1 + t2)(1 + t̃2)

. (3.15)

By adapting the chordal distance χ of the Riemann sphere ([10, p. 63]) to the unit circle we have:

χ(t, t̃) :=
|t− t̃|

√
1 + t2

√
1 + t̃2

≤ 1

and then:

fdet(rt, rt̃) = χ2(t, t̃)−

[
1 + tt̃

√
1 + t2

√
1 + t̃2

]2

≤ 1−

[
1 + tt̃

√
1 + t2

√
1 + t̃2

]2

.

For the example of positive axis Ox+ = r0 i.e. u = 0 and the first bisectrix B+
1 : y = x ≥ 0 i.e. ũ = π

2 we have:
fdet(Ox

+, B+
1 ) = 0. The pair of orthogonal rays (rt, r− 1

t
) corresponds to ũ = u+ π and then: fdet(rt, r− 1

t
) = 1.

Also, for the pair of opposite rays (rt, r−t) i.e. ũ = −u we have:

fdet(rt, r−t) = − cos(2u), u = 2 arctan t, χ(tanu, tan ũ) = | sin(u− ũ)|. (3.16)

We remark that in the paper [13], by using the matrix Rei·0 = diag(1,−1), thus corresponding to the line
Ox = L0, the function:

fR0
(Lt) = −2 cosu = 2fdet(rt, Ox

+) (3.17)

is obtained as a Morse function on the Grassmannian G1(2) ' S1 ' SO(2)/SO(1) of lines in R2. Hence, our
flow t ∈ R→ fdet(rt, Ox

+) is "half" of the Morse flow of Nicolaescu as can be expected from our choice of
considering rays instead of lines.

We finish this section with an interpretation of the formula (3.12) in terms of Hopf bundle
H : S3 ⊂ C2 → S2( 1

2 ) ⊂ R×C:

H(z, w) =

(
1

2
(|z|2 − |w|2), zw̄

)
. (3.18)

Since the Clifford torus 1√
2
T 2 ⊂ S3 one follows:

π2 ◦H
(

1√
2

(z, z̃)

)
=

1

2
ei(u−ũ) (3.19)

and we have the claimed interpretation:

1√
2
fdet :

1√
2
T 2 ⊂ S3 → R, 1√

2
fdet = −2Re(π2 ◦H). (3.20)

Remark that in terms of complex numbers z := x+ iy the line Lt has the equations:

Lt : (1− ti) · z ∈ R↔ Lt : Im((1− ti) · z) = 0. (3.21)

More generally, let z0, v ∈ C with v 6= 0. The line Lz0,v : z(λ) = z0 + λv ∈ C with the real parameter λ has the
equation:

Lz0,v : Im((z − z0) · v̄) = 0. (3.22)

4. A complex approach to < ·, · >det and the Heisenberg product on Sym(2)

Let H(2) ⊂M2(C) be the 4-dimensional real space of Hermitian 2× 2 matrices with its Pauli basis:

σ0 = I2, σ1 =

(
0 1
1 0

)
= R

ei
π
4
, σ2 =

(
0 −i
i 0

)
= iJ, σ3 = diag(1,−1) = Rei·0 . (4.1)
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Hence J = σ1σ3 = (−i)σ2 and Sym(2) = H(2) ∩ {hyperplane : σ∗2 = 0} with the basis {σ0, σ1, σ3} orthonormal
with respect to < ·, · >Sym(2) and {σ∗i ; 0 ≤ i ≤ 4} the dual basis in H(2)∗. This basis is only orthogonal with
respect to < ·, · >det with ‖σ0‖2det = 1 = −‖σ1‖2det = −‖σ3‖2det which means that the index of the symmetric
bilinear form < ·, · >det is 2 with σ0 as spacelike vector and σ1 and σ3 as timelike vectors. We note that a
trace-type inner product of complex 2× 2 matrices appears in the formula (3.20) of [7].

In [5] (see also [6, p. 89]) an embedding of Sym(2) into H(2) is introduced by the map: Sym(2) 3 Γ = Γ(a, b, c) :=

(
a b
b c

)
7→ Γc :=

(
B Ā
A B

)
∈ H(2) ∩ {hyperplane : σ∗3 = 0},

2B := TrΓ = a+ c ∈ R, A := a−c
2 − bi ∈ C.

(4.2)

In the book [11, p. 56] the complex number A is denoted L(Γ) and is called the Hopf invariant of Γ. The initial
matrix Γ can be recovered by its image Γc through the relations:

a = B +Re(A), c = B −Re(A), b = −Im(A) (4.3)

and then the following decompositions hold:

Γ = Bσ0 + (−Im(A))σ1 + (Re(A))σ3, Γc = Bσ0 + (Re(A))σ1 + (Im(A))σ2. (4.4)

For the example of projectors and reflections we have:
Peiu =

(
cos2 u sin 2u

2
sin 2u

2 sin2 u

)
= 1

2 [σ0 + (sin 2u)σ1 + (cos 2u)σ3]→ P ceiu = 1
2

(
1 e2iu

e−2iu 1

)
,

Rceiu =

(
0 e2iu

e−2iu 0

)
= (cos 2u)σ1 + (− sin 2u)σ2, σ1 = Rcei·0 = σc3, σ2 = Rc

e−i
π
4

= −σc1.
(4.5)

The map ·c preserves I2 = σ0 and the inner product< ·, · >Sym(2) corresponds to the restriction of the Hilbert-
Schimdt inner product of H(2) to its hyperplane σ∗2 = 0:{

Ic2 = I2, < Γ1,Γ2 >Sym(2)=
1
2Tr(Γ

c
1 · Γc2) = B1B2 +Re(A1Ā2),

‖Γ‖2Sym(2) = B2 + |A|2 = (‖B‖R1)2 + (‖A‖R2)
2
.

(4.6)

Moreover, the map ·c preserves the algebraic invariants:

TrΓ = TrΓc = 2B, det Γ = det Γc = B2 − |A|2 (4.7)

which implies immediately that the equation of the null cone is NC : B = |A| ≥ 0 and:{
< Γ1,Γ2 >det= B1B2 − (ReA1 ·ReA2 + ImA1 · ImA2) =< B1, B2 >R1 − < A1, A2 >R2 ,
‖Γ‖2det = B2 − |A|2 = (‖B‖R1)2 − (‖A‖R2)2.

(4.8)

The first formula (4.8) appears in Remark 3.1 of [8]. The matrix Γ is positive-definite i.e. its eigenvalues λ1,2 are
positive if and only if a = B +ReA > 0 andB2 > |A|2. The general formula of eigenvalues is: λ1,2(Γ) = B ± |A|.

In fact, the map ·c can be considered as the restriction to Sym(2) = R3 of the linear endomorphism T c : R4 →
R4:

T c =

 1 0 0 0
0 0 0 1
0 −1 0 0
0 0 −1 0

 ∈M4(R), T c(x, y, z, t) = (x, t,−y,−z).

This endomorphism belongs to the Lie group SO(4) = R6 having TrT c = 1 = detT c and the eigevalues λ1 =

λ2 = 1, λ3 = λ4 = e
2πi
3 . It results that T c is a third-order root of the unit matrix: (T c)3 = I4. It follows a second

third-order root of the unit matrix:

T cr =

 0 0 1
−1 0 0
0 −1 0

 ∈ SO(3), (T cr )3 = I3, (T cr )(x, y, z) = (z,−x,−y).
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In the following we study in this setting the previous called function of Nicolaescu from [13]. For a fixed
Γ ∈ Sym(2) the function is of height type:

fΓ : G1(2) ⊂ Sym(2)→ R, fΓ(Lt) = fΓ(PLt) = fΓ(t) :=< Γ, PLt >Sym(2) . (4.9)

With Γ = Γ(a, b, c) as in (4.2) it follows a rational expression of fΓ:

fΓ(t) =
a+ 2bt+ ct2

1 + t2
, t = tan

ϕ

2
→ fΓ(ϕ) = B+ < A, e−iϕ >R2 (4.10)

and its critical points are solutions to:

bt2 + (a− c)t− b = 0 = (b+ ct)− t(a+ bt). (4.11)

It is amazing that the same equation (4.11) gives the fixed points of the linear fractional transformation:

FΓ : S1 ' R ∪ {∞} → S1, FΓ(t) :=
ct+ b

bt+ a
= t′

which, in an old fashion style, can be written as: btt′ − ct+ at′ − b = 0. The second equality says that the critical
Lt are orthogonal invariant lines through the linear action of Γ on R2. Supposing that b = −Im(A) 6= 0 the
discriminant of the second-order equation (4.11) is:

∆ = (a− c)2 + 4b2 = 4|A|2 > 0 (4.12)

and thus the critical points of fΓ are:

t± =
Re(A)∓ |A|
Im(A)

. (4.13)

Expressing A exponentially as A = |A|eiu with u = u(Γ) it results: t+ = − tan u
2 , t− = cot u2 ,

fΓ(t+) = a cos2 u
2 − b sinu+ c sin2 u

2 = B + |A| = λ1(Γ),
fΓ(t−) = a sin2 u

2 + b sinu+ c cos2 u
2 = B − |A| = λ2(Γ).

(4.14)

If b = 0 i.e. Γ is a diagonal matrix then fΓ has t = 0 as unique critical point and the illustrative example of the
paper [3, p. 258] is of this type with a = 1 and c ∈ (0, 1). The Hessian of the general fΓ is:

1

2
f ′′Γ (t) =

(c− a)− 6bt− 3(c− a)t2 + 2bt3

(1 + t2)3
.

Particular cases and examples I) It is well-known that the chart map R 3 t 7→ (cosu, sinu) ∈ S1 for u =
2 arctan t is the stereographic projection of S1 from its point P (−1, 0) and is useful to derive the general
expression of Pythagorean triples. We have then the trigonometric parametrization of S1:

x(t) =
1− t2

1 + t2
, y(t) =

2t

1 + t2
, P = lim

t→∞
(x(t), y(t))→ S1 : z(t) =

1 + ti

1− ti
, t ∈ R ∪ {∞}.

Hence the scalar combination a · x(t) + b · y(t) has the expression (4.10) with c = −a which means a traceless
matrix Γ ∈ Sym(2).

We point out that for Γ ∈ Sym(2) with b 6= 0 the following statements are equivalent: i) Γ is traceless; ii)B = 0;
iii) the linear fractional transformation FΓ is an involution: FΓ ◦ FΓ = 1S1 . This is the case of:
a) the inversion R(t) = 1

t with:

R =

(
0 1
1 0

)
= Rei π4 ∈ O

−(2) ∩ sl(2,R), A(R) = −i ∈ C \R

b) the map FΓ(t) = 1−t
1+t corresponding to:

Γ =

(
1 1
1 −1

)
, A(Γ) = A(R) = −i.
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Hence Rc = Γc = −σ2. The fixed (or double) points of R are ±1 while that of FΓ are t1,2 = −1±
√

2.
II) Fix three distinct points t1, t2, t3. Through the cross-ratio formula we define the linear fractional:

FΓ(t) := (t1, t2; t3, t) =
t− t2
t− t1

:
t3 − t2
t3 − t1

.

We identify the coefficients: c = t3 − t1 6= 0, b = t3 − t2( 6= 0) = t2(t1 − t3), a = −t1b and the equality from the
expression of b reads as:

t3 =
t2(1 + t1)

1 + t2
.

This expression is different to t1 and t2 for t2 6= 0 and hence we impose t2 /∈ {0,−1} and different to t1. The final
expression of the coefficients is:{

a = t1t2(t2−t1)
1+t2

, b = t2(t1−t2)
1+t2

, c = t2−t1
1+t1

,

A(Γ) = t2−t1
1+t2

(
t1t2−1

2 + it2
)
, B(Γ) = (t2−t1)(t1t2+1)

2 , det Γ = − t2(t2−t1)3

(1+t2)2 6= 0.

The discriminant ∆ of (4.12) is:

∆ =

(
t2 − t1
1 + t2

)2

[(t1t2 − 1)2 + 4t22].

2

Returning to the map ·c we remark that it identifies Sym(2) with the product C×R. Recall that this set when
is endowed with the product:

(z1, t1) ∗ (z2, t2) := (z1 + z2, t1 + t2 + Im(z1z2)) = (z1 + z2, t1 + t2 − ω(z1, z2)) (4.15)

becomes a group, called Heisenberg and denoted H1. It follows a Heisenberg group law on Sym(2):

Γ1 ∗ Γ2 := Γ((a, b, c) := (A1, B1) ∗ (A2, B2)) (4.16)

or, explicitly:

a := a1 + a2 +
b1
2

(a2 − c2)− b2
2

(a1 − c1), c := c1 + c2 +
b1
2

(a2 − c2)− b2
2

(a1 − c1), b = b1 + b2. (4.17)

We derive immediately that O2 = Γ(0, 0, 0) is the neutral element, the inverse is [Γ(a, b, c)]−1 = Γ(−a,−b,−c)
while the squares are Γ ∗ Γ = 2Γ and Γ ∗ I2 = Γ + I2. For the example of projectors and reflections we have:

Peiu1 ∗ Peiu2 : a = cos2 u1 + cos2 u2 +
1

4
sin 2(u1 − u2), c = sin2 u1 + sin2 u2 +

1

4
sin 2(u1 − u2),

b =
1

2
(sin 2u1 + sin 2u2), (4.18)

Reiu1 ∗Reiu2 : a = cos 2u1 + cos 2u2 + sin 2(u1 − u2), c = − cos 2u1 − cos 2u2 + sin 2(u1 − u2),

b = sin 2u1 + sin 2u2. (4.19)

An explicit example is:

σ1 ∗ σ3 =

(
2 1
1 0

)
(4.20)

and a direct argument proves that the product of two projectors is not a projector; indeed the trace of a projector
is 1 while the corresponding sum for (4.18) is: a+ c = 2 + 1

2 sin 2(u1 − u2) ≥ 2− 1
2 = 3

2 . Analogous a product of
reflections is not a reflection; since a reflection belongs to sl(2,R) the corresponding sum a+ c for (4.19) implies
2(u2 − u2) ∈ Zπ and then the corresponding product of reflections is R ∗R = 2R or O2 and both these matrices
are not reflections.

We finish this section with the well-known remark that H1 can be though as a subgroup in U(1, 2) by
considering:

Λ(z, t) :=

 1 + |z|2
2 + it z̄ − |z|

2

2 − it
z 1 z

|z|2
2 + it z̄ 1− |z|

2

2 − it

 , T rΛ(z, t) = 3, det Λ(z, t) = 1− 2|z|2. (4.21)
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5. Back to the Nomizu-Pinkall inner product

In this last section we return to the inner product < ·, · >NP and its explicit formula:

< A,B >NP=
1

2
[a1

2b
2
1 + a2

1b
1
2 − a1

1b
2
2 − a2

2b
1
1]. (5.1)

We recall the relation < A,A >NP= −detA. We obtain also:

< Peiu1 , Reiu2 >NP=< Peiu1 , Reiu2 >Sym(2)=
1

2
cos 2(u1 − u2) (5.2)

and then Peiu1⊥Sym(2)Reiu2 if and only if 4(u1 − u2) ∈ (2Z + 1)π2 . The orthonormal basis used in
[14, p. 208] is {E1 = I2, E2 = σ3, E3 = σ1, E4 = J}with:

‖E1‖2NP = ‖E4‖2NP = −1, ‖E2‖2NP = ‖E3‖2NP = +1. (5.3)

It results that Sym(2) is the hyperplane span{E1, E2, E3} of gl(2,R) and the decomposition of arbitrary
Γ ∈ Sym(2) is:

Γ = Γ(a1, a2, a3) := a1E1 + a2E2 + a3E3 =

(
a1 + a2 a3

a3 a1 − a2

)
(5.4)

which in our complex formalism means: B = a1 and A = a2 − a3i. The hyperplane sl(2,R) of gl(2,R) is
span{E2, E3, E4}.

Another important class of symmetric 2× 2 matrices, useful in 2D dynamics of Teichmüller flows ([17, p.
95]), are Exp(t) = diag(et, e−t) ∈ SL(2,R) for any t ∈ R. It follows:

< Exp(t1), Exp(t2) >Sym(2)= cosh(t1 + t2) ≥ 1, < Exp(t1), Exp(t2) >det= cosh(t1 − t2) ≥ 1. (5.5)

Hence in this class of matrices there are no orthogonal pairs both to < ·, · >Sym(2) and < ·, · >det.

Another method to obtain new symmetric matrices is provided by the function fΓ of (4.10) and the equation
(4.11) of its critical points. More precisely, we define the function Cr : Sym(2)→ Sym(2) ∩ sl(2,R):

Cr(Γ(a, b, c)) := Γ(b,
c− a

2
,−b) =

(
b c−a

2
c−a

2 −b

)
, A(Cr(Γ)) = iA(Γ), B(Cr(Γ)) = 0. (5.6)

Its unique fixed point is the null matrix O2 and in terms of Pauli basis we have:

Cr(Γ) =
c− a

2
σ1 + bσ3 = (−Re(A))σ1 + (−Im(A))σ3 (5.7)

which means that the linear endomrphism Cr of Sym(2) has the rank two. Its kernel is R · I2 and as example
Cr(Peiu) = R

ei(
3π
2

+u) ; also from detCr(Γ) = det Γ− (a+c)2

4 it results that detCr(Γ) ≤ min{0,det Γ}. An important
conclusion is that Cr(Γ) is orthogonal to Γ with respect to both inner products:

< Γ, Cr(Γ) >Sym(2)= 0 =< Γ, Cr(Γ) >det . (5.8)

With the matrix representation of the endomorphism Cr:

Cr =

 0 1 0
− 1

2 0 1
2

0 −1 0

 (5.9)

we deduce that Cr is an f -structure ([15]) i.e. it satisfies:

Cr3 + Cr = 0 (5.10)

but having the maximally (even) rank is actually an almost contact structure on Sym(2). Its Reeb vector ξ is the
unique vector of the basis of its kernel hence: ξ = σ0 = Γ(1, 0, 1). From the first decomposition (4.4) it results
that the dual of the Reeb vector is the 1-form η : Sym(2)→ R:

η(Γ(x, y, z)) = B =
x+ z

2
=

1

2
TrΓ. (5.11)
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Expressing these objects in a differential-geometry manner:

ξ =
∂

∂x
+

∂

∂z
, η =

1

2
(dx+ dz) (5.12)

it results that η is an exact form and hence Cr is a cosymplectic structure on Sym(2). We point out that the
usual almost contact structure of the Heisenberg group is Sasakian, [4, p. 42-43].

A more simple transformation on Sym(2) is provided by the Pauli matrix σ3:

σ3 · Γ(a, b, c) · σ3 =

(
a −b
−b c

)
∈ Sym(2), A(σ3 · Γ · σ3) = A(Γ), B(σ3 · Γ · σ3) = B(Γ). (5.13)

The last method to obtain new symmetric matrices from old symmetric matrices is through the Adjoint
representation of SO(n) on m:

Ad : SO(n)→ GL(m), g → Adg : Γ ∈ Sym(n)→ Adg(Γ) := gΓg−1 ∈ Sym(n). (5.14)

For n = 2, Γ = Γ(a, b, c) and g expressed as usually:

g = g(t) =

(
cos t − sin t
sin t cos t

)
= cos t · σ0 − i sin t · σ2 = cos t · I2 + sin t · J, t ∈ R (5.15)

we get that Adg is an orthogonal operator with respect to < ·, · >Sym(2): Adg(t)(Γ) =

(
a cos2 t− b sin 2t+ c sin2 t a−c

2 sin 2t+ b cos 2t
a−c

2 sin 2t+ b cos 2t a sin2 t+ b sin 2t+ c cos2 t

)
∈ Sym(2),

< Adg(t)(Γ1), Adg(t)(Γ2) >Sym(2)=< Γ1,Γ2 >Sym(2)

(5.16)

and its Hermitian parameters are:{
A(Adg(t)(Γ)) =

[
a−c

2 cos 2t− b sin 2t
]
− i
[
a−c

2 sin 2t+ b cos 2t
]

= a−c
2 ei(−2t) − bei(π2−2t),

B(Adg(t)(Γ)) = a+c
2 = B(Γ)

(5.17)

and hence B is a (real) invariant of the Ad representation. For fixed Γ ∈ Sym(2) and t = u
2 of (4.14) we have

exactly the diagonal form of Γ:
Adg(u2 )(Γ) = diag(λ1(Γ), λ2(Γ)). (5.18)

For example:

Adg(t)(R) =

(
− sin 2t cos 2t
cos 2t sin 2t

)
= R

ei(t+
π
4

) ∈ O−1 ∩ sl(2,R). (5.19)
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