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ABSTRACT 
 

The Rayleigh-Taylor instability of an infinitely conducting plasma of variable density in the presence of a horizontal magnetic 

field is considered when the effects of finite ion Larmor radius (FLR) and collisions with neutral atoms simultaneously present. 

Here we considered the perturbations propagating along the ambient magnetic field. It is observed that, real part of 𝑛 is negative, 

where 𝑛 is the growth rate of disturbance, so that instability does not arise in the form of increasing amplitude, i.e. overstability. 

To obtain an approximate solution of the problem, a variational principle is used. The case of two semi-infinitely extending 

plasmas of constant densities separated by a horizontal interface is also considered, where it is found that the system is stable 

(for some wave numbers) for potentially stable configuration and unstable (for other wave numbers) for potentially unstable 

configuration even if there are collisions with dust particles. Also it is observed that the criteria determining stability and 

instability are independent of FLR effects. 
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1. INTRODUCTION 
 

The instability of the plane interface separating two fluids when one is accelerated towards the other or when one is 

superposed over the other has been studied by several authors and Chandrasekhar [1] has given a detailed account of these 

investigations together with the possible extensions in various domains of interest. The stabilizing influence of finite Larmor 

radius effects has individually been shown on thermal instability, thermosolutal instability, gravitational instability and Rayleigh-

Taylor instability, by several authors [2-6].  

Quite often the plasma is not fully ionized and is, instead, partially ionized. Partially ionized plasma represents a state which 

often exists in the Universe and there are several situations when the interaction between the ionized and neutral gas components 

becomes important in cosmic physics. The study of partially ionized plasmas has become a hot topic because solar structures 

such as spicules, prominences, as well as layers of the solar atmosphere (photosphere and chromosphere), are made of partially 

ionized plasmas. On the other hand, considerable developments have taken place in the study of partially ionized plasmas applied 

to the physics of the interstellar medium, molecular clouds, the formation of protostellar discs, planetary 

magnetospheres/ionospheres, exoplanets atmospheres, etc. For instance, molecular clouds are mainly made up of neutral material 

which does not interact with magnetic fields. However, neutrals are not the only constituent of molecular clouds since there are 

also several types of charged species which do interact with magnetic fields. Furthermore, the charged fraction also interacts 

with the neutral material through collisions. These multiple interactions produce many different physical effects which may have 

a strong influence on star formation and molecular cloud turbulence. A further example can be found in the formation of dense 

cores in molecular clouds induced by MHD waves. Because of the low ionization fraction, neutrals and charged particles are 

weakly coupled and ambipolar diffusion plays an important role in the formation process. Even in the primeval universe, during 

the recombination era, when the plasma, from which all the matter of the universe was formed, evolved from fully ionized to 

neutral, it went through a phase of partial ionization. Partially ionized plasmas introduce physical effects which are not considered 

in fully ionized plasmas, for instance, Cowling’s resistivity, isotropic thermal conduction by neutrals, heating due to ion/neutral 

friction, heat transfer due to collisions, charge exchange, ionization energy, etc., which are crucial to fully understand the 

behaviour of astrophysical plasmas in different environments. Stromgren [7] has reported that ionized hydrogen is limited to 

certain rather sharply bounded regions in space surrounding, for example, O-type stars and clusters of such stars and that the gas 

outside these regions is essentially non-ionized. Other examples of the existence of such situations are given by Alfven’s [8] 

theory on the origin of the planetary system, in which a high ionization rate is suggested to appear from collisions between a 

plasma and a neutral-gas cloud and by the absorption of plasma waves due to ion-neutral collisions such as in the solar 

photosphere and chromosphere and in cool interstellar clouds [9, 10]. Lehnert [11] has found that both ion viscosity and neutral 

gas friction have a stabilizing influence on cosmical plasma interacting with a neutral gas. According to Hans [12] and Bhatia 

[13], the medium may be idealized as a composite mixture of a hydromagnetic (ionized) component and a neutral component, 

https://orcid.org/0000-0002-2731-9236
https://orcid.org/0000-0003-1959-6425


Eurasian J. Sci. Eng. Tech.1(1): 41-49 

 

P. Kumar, H. Mohan 

42 
 

the two interacting through mutual collisional (frictional) effects. A stabilizing effect of collisionals on Rayleigh-Taylor 

configuration has been shown by [12] and [13]. But the collisional effects are found to be destabilizing for a sufficiently large 

collisional frequency on Kelvin-Helmholtz configuration by Rao and Kalra [14] and [12]. Chhajlani et. al [15] considered the 

hydromagnetic Rayleigh-Taylor instability of a composite medium in the presence of suspended particles for an exponentially 

varying density distribution. The Rayleigh-Taylor instability of a partially ionized plasma in a porous medium in the presence of 

magnetic field perpendicular to gravity has been considered by Sharma and Sunil [16]. The gravitational instability of a rotating 

Walters B’ viscoelastic partially ionized plasma permeated by an oblique magnetic field in the presence of the effects of Hall 

currents, electrical resistivity and ion viscosity has been considered by El-Sayed and Mohamed [17]. Hoshoudy [18] has 

investigated the Rayleigh-Taylor instability in stratified plasma in the presence of combined effect of horizontal and vertical 

magnetic field. Sharma et. al [19] have investigated the effect of surface tension on hydromagnetic Rayleigh-Taylor instability 

of two incompressible superimposed fluids in a medium with suspended dust particles in a uniform horizontal magnetic field. 

In the present work, we study the simultaneous effects of ion Larmor radius and collisions with neutral atoms on the stability 

of well-known Rayleigh-Taylor configuration in hydromagnetics. We regard the medium as being a mixture of an infinitely 

conducting component a neutral component interacting through mutual collisions. We make the assumptions that the individual 

components by themselves, behave like continuum plasmas and that the effects on the neutral component resulting from magnetic 

field, pressure and gravity are negligible. The case of a uniform horizontal field and longitudinal perturbations is considered. 

Next a variational principle is developed to obtain the approximate solutions. 

 

 

2. FORMULATION OF THE PROBLEM 
 

Here we consider two inviscid, homogeneous, semi-infinitely extending plasmas separated by a plane interface at 𝑧 = 0, each 

region being permeated with a neutral component of the same density. Initially the configuration is at rest. We give a small 

disturbance to the system. The linearized perturbation equations for the mixture of the hydromagnetic plasma and a neutral gas 

moving together in a uniform horizontal magnetic field �⃗⃗� (𝐻, 0,0)  and downward gravitational field 𝑔 (0, 0, −𝑔) are 

 

𝜌
𝜕𝑞 

𝜕𝑡
= −∇𝛿𝑃 +

1

4𝜋
(∇ × ℎ⃗ ) × �⃗⃗� + 𝑔 (𝛿𝜌) + 𝜌𝑑𝜈𝑐(𝑞𝑑⃗⃗⃗⃗ − 𝑞 ),                                                                                                                   (1) 

 

𝜕𝑞𝑑⃗⃗⃗⃗ 

𝜕𝑡
= −𝜈𝑐(𝑞𝑑⃗⃗⃗⃗ − 𝑞 ),                                                                                                                                                                                           (2) 

 
𝜕

𝜕𝑡
(𝛿𝜌) = (𝑞 . ∇)𝜌,                                                                                                                                                                                               (3) 

 

𝜕ℎ⃗ 

𝜕𝑡
= (�⃗⃗� . ∇)𝑞 ,                                                                                                                                                                                                      (4) 

 

∇. 𝑞 = 0       and         ∇. ℎ⃗ = 0,                                                                                                                                                                        (5) 
 

where 𝜌 and 𝜌𝑑 are the unperturbed densities for the hydromagnetics and the neutral component, respectively. 𝜈𝑐 denotes the 

collisional frequency between the two components and 𝑃 denotes the plasma pressure rendered tensorial due to finite ion Larmor 

radius effect. Here 𝛿𝜌, 𝛿𝑃, 𝑞 (𝑢, 𝑣, 𝑤), 𝑞𝑑⃗⃗⃗⃗ (𝑙, 𝑟, 𝑠), ℎ⃗ (ℎ𝑥 , ℎ𝑦 , ℎ𝑧) denote, respectively, the perturbations in density 𝜌, stress tensor 

𝑃, hydromagnetic plasma velocity (initially zero), neutral component velocity (initially zero) and magnetic field �⃗⃗� . Magnetic 

permeability of the medium is assumed to be unity. 

For the magnetic field along 𝑥-axis, 𝛿𝑃 taking into account the FLR effects has the following components 
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𝑃𝑥𝑥 = 𝑝,      𝑃𝑥𝑦 = 𝑃𝑦𝑥 = −2𝜌𝜈 (
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
) ,

𝑃𝑥𝑧 = 𝑃𝑧𝑥 = 2𝜌𝜈 (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) ,

𝑃𝑦𝑧 = 𝑃𝑧𝑦 = 𝜌𝜈 (
𝜕𝑣

𝜕𝑦
−
𝜕𝑤

𝜕𝑧
) ,

𝑃𝑦𝑦 = 𝑝 − 𝜌𝜈 (
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) ,

𝑃𝑧𝑧 = 𝑝 + 𝜌𝜈 (
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) ,

}
 
 
 
 
 

 
 
 
 
 

                                                                                                                                            (6) 

 

where 𝑝 is the scalar part of the pressure and    𝜌𝜈 =
𝑁𝑇

4𝜔𝐻
; 𝜔𝐻 is the ion-gyration frequency, while 𝑁 and 𝑇 denote, respectively, 

the number density and temperature of ions and 𝐾∗ is the Boltzmann constant. 

Analyzing the disturbances in terms of longitudinal modes, we seek the solutions of equations (1) - (5) in which 𝑥 − 𝑡 
dependence is given by 

 

𝑒𝑥𝑝(𝑖𝑘𝑧 + 𝑛𝑡),                                                                                                                                                                                                     (7) 
 

where 𝑘 denotes the wave number of disturbance and 𝑛 is the growth rate of disturbance. 

Eliminating 𝑞𝑑 between  equations (1) and (2), and using (6) and (7), equations (1)-(5) can be written as 

 

[𝑛𝜌 +
𝜌𝑑𝜈𝑐
𝑛 + 𝜈𝑐

] 𝑢 = −𝑖𝑘𝛿𝑝 − 2𝑖𝑘𝑣𝐷(𝜌𝑣),                                                                                                                                                      (8) 

 

[𝑛𝜌 +
𝜌𝑑𝜈𝑐
𝑛 + 𝜈𝑐

] 𝑣 = −2𝜌𝑣(𝐷2 + 𝑘2)𝑤 + 𝑣𝐷(𝜌𝐷𝑤) +
𝑖𝑘𝐻ℎ𝑦

4𝜋
,                                                                                                                (9) 

 

[𝑛𝜌 +
𝜌𝑑𝜈𝑐
𝑛 + 𝜈𝑐

]𝑤 = −𝐷(𝛿𝑝) + 2𝜌𝜈𝑘2𝑣 − 𝜈𝐷(𝜌𝐷𝑣) +
𝑔𝑤

𝑛
(𝐷𝑃) +

𝐻

4𝜋
(𝑖𝑘ℎ𝑧 − 𝐷ℎ𝑥),                                                                   (10) 

 

𝑛𝛿𝜌 = −𝑤(𝐷𝜌),                                                                                                                                                                                                (11) 
 

𝑛ℎ⃗ = 𝑖𝑘𝐻𝑞 ,                                                                                                                                                                                                        (12) 
 

𝑖𝑘𝑢 + 𝐷𝑤 = 0,                                                                                                                                                                                                  (13) 
 

and 

 

𝑖𝑘ℎ𝑧 + 𝐷ℎ𝑥 = 0,                                                                                                                                                                                               (14) 
 

Where 

 

𝐷 =
𝑑

𝑑𝑧
. 

 

If we eliminate 𝛿𝑝 from equations (8) and (10), and use equations (11)-(14), we obtain the following pair of equations in 𝑤 

and 𝑣 

𝑛2(𝜌𝑘2𝑤 − 𝐷(𝜌𝐷𝑤)) − 𝑔𝑘2(𝐷𝜌)𝑤 −
𝐻2𝑘2

4𝜋
(𝐷2 − 𝑘2)𝑤 − 𝜈𝑛𝑘2[2(𝐷2 + 𝑘2)(𝜌𝜈) − 𝐷(𝜌𝐷𝑣)]

+
𝜈𝑐

𝑛 + 𝜈𝑐
𝑛2[𝜌𝑑𝑘

2𝑤 − 𝐷(𝜌𝑑𝐷𝑤)] = 0,                                                                                                                      (15) 

 

and 
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[𝑛𝜌 +
𝜌𝑑𝜈𝑐
𝑛 + 𝜈𝑐

𝑛 +
𝐻2𝑘2

4𝜋𝑛
] 𝑣 = −𝜈[2𝜌(𝐷2 + 𝑘2)𝑤 − 𝐷(𝜌𝐷𝑤)].                                                                                                            (16) 

 

Boundary conditions 

 

On a boundary, vertical motion is not possible, thus 

 

𝑤 = 0                                                  (17) 

 

on a boundary free or rigid. 

If the plasma is bounded by two rigid boundaries which are both ideally conducting, no disturbance within it can change the 

electromagnetic quantities outside. This merely leads to the boundary condition (17). A boundary condition on 𝑣 can be 

prescribed by preluding the presence of surface charge or surface current at the rigid boundaries which are perfectly conducting. 

Thus we choose 

 

 𝑣 = 0,                          (18) 

 

at a surface bounded by an ideal conduction. 

If the plasma is confined between two free boundaries, the tangential stresses 

 

𝑃𝑥𝑥 = 2𝜌𝜈𝑖𝑘𝑣 +
𝑖𝑘𝐻2𝑤

4𝜋𝑛
 

 

and   𝑃𝑦𝑧 = −𝜌𝜈𝐷𝑤   vanish. Hence 

 

𝑣 = 𝐷𝑤 = 0,                               (19) 

 

at a free boundary. Should there be discontinuities in the density as in the case of two superposed layers of different densities, 

we require the continuity of the vertical component of velocity, tangential stresses and pressure at interface. Thus 

 

𝑤,  𝜌𝐷𝑤,  𝜌𝑣,  𝜌𝑑𝐷𝑤,  𝜌𝑑𝑣                         (20) 

and the total pressure must be continuous as at the interface. 

 

 

3. DISCUSSION 
 

Theorem I: A necessary and sufficient condition for 𝛿𝑛2 to be zero to the first order for all small arbitrary variations 𝛿𝑤 and 

𝛿𝑣 (connected by equation (38)) in 𝑤 and 𝑣 which is compatible with the boundary conditions is that 𝑤 and 𝑣 should be the 

solutions of the eigenvalue problem governed by equations (15) and (16). 

Proof: Let 𝑛𝑖 and 𝑛𝑗 denote the two characteristic values, and let the solutions belonging to these characteristics values be 

distinguished by the subscripts 𝑖 and j. Multiplying equation (15) for 𝑖  by 𝑤𝑗   and integrating with respect to 𝑧 over the whole 

vertical extent of the plasma (denoted by ∫
𝐿 

), we obtain with the help of equation (16) and boundary conditions, 

 

𝑛𝑖
2 ∫

𝐿 
𝜌 (𝑤𝑖𝑤𝑗 +

1

𝑘2
𝐷𝑤𝑖𝐷𝑤𝑗) 𝑑𝑧 +

𝜈𝑐
𝑛𝑖 + 𝜈𝑐

𝑛𝑖
2 ∫

𝐿 
𝜌𝑑 (𝑤𝑖𝑤𝑗 +

1

𝑘2
𝐷𝑤𝑖𝐷𝑤𝑗) − 𝑔 ∫𝐿 (𝐷𝜌)𝑤𝑖𝑤𝑗𝑑𝑧

+
𝐻2𝑘2

4𝜋
 ∫
𝐿 
(𝑤𝑖𝑤𝑗 +

1

𝑘2
𝐷𝑤𝑖𝐷𝑤𝑗) 𝑑𝑧 + 𝑛𝑖𝑛𝑗 ∫𝐿 𝜌𝑣𝑖𝑣𝑑𝑧 +

𝜈𝑐𝑛𝑖𝑛𝑗

𝑛𝑗 + 𝜈𝑐
 ∫
𝐿 
𝜌𝑑𝑣𝑖𝑣𝑗𝑑𝑧 +

𝐻2𝑘2𝑛𝑖
4𝜋𝑛𝑗

 ∫
𝐿 
𝑣𝑖𝑣𝑗𝑑𝑧

= 0.                                                                                                                                                                                                                       (21) 
 

Taking 𝑖 = 𝑗  and suppressing the subscripts, we obtain the following variational formulation of the problem 

 

𝑛2[𝐼1 + 𝐼4 + 𝐼6 + 𝐼7] − 𝑔𝐼2 + 𝐼3 + 𝐼5 = 0,                                                                                                                                                  (22) 
 

where  
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𝐼1 = ∫
𝐿 
𝜌 [𝑤2 +

1

𝑘2
(𝐷𝑤)2] 𝑑𝑧,                                                                                                                                                                     (23) 

 

𝐼2 = ∫𝐿 (𝐷𝜌)𝑤
2𝑑𝑧,                                                                                                                                                                                          (24) 

 

𝐼3 =
𝐻2𝑘2

4𝜋
 ∫
𝐿 
[𝑤2 +

1

𝑘2
(𝐷𝑤)2] 𝑑𝑧,                                                                                                                                                           (25) 

 

𝐼4 = ∫𝐿 𝜌𝑣
2𝑑𝑧,                                                                                                                                                                                                  (26) 

 

𝐼5 =
𝐻2𝑘2

4𝜋
 ∫
𝐿 
𝑣2𝑑𝑧,                                                                                                                                                                                         (27) 

 

𝐼6 =
𝜈𝑐

𝑛 + 𝜈𝑐
 ∫
𝐿 
𝜌𝑑 [𝑤

2 +
1

𝑘2
(𝐷𝑤)2] 𝑑𝑧,                                                                                                                                                     (28) 

 

𝐼7 =
𝜈𝑐

𝑛 + 𝜈𝑐
 ∫
𝐿 
𝜌𝑑𝑣

2𝑑𝑧.                                                                                                                                                                                  (29) 

 

Consider a change 𝛿𝑛2 on 𝑛2 of an arbitrary variation 𝛿𝑤 and 𝛿𝑣 in 𝑤 and  , respectively to satisfy the boundary conditions 

(17) and (18) of the eigen-value problem, we have to the first order, from 22 

 

𝛿𝑛2(𝐼1 + 𝐼4 + 𝐼6 + 𝐼7) + 𝑛
2(𝛿𝐼1 + 𝛿𝐼4 + 𝛿𝐼6 + 𝛿𝐼7) − 𝑔𝛿𝐼2 + 𝛿𝐼3 + 𝛿𝐼5 = 0,                                                                                (30) 

 

where 𝛿𝐼𝑠(𝑠 = 1 𝑡𝑜 7) are the corresponding variations in 𝐼𝑠(𝑠 = 1 𝑡𝑜 7). After one or more integrations by parts, we find that 

these latter variations are given by 

 
1

2
𝛿𝐼1 =  ∫

𝐿 
[𝜌𝑤 −

1

𝑘2
𝐷(𝜌𝐷𝑤)] 𝛿𝑤𝑑𝑧,                                                                                                                                                       (31) 

 
1

2
𝛿𝐼2 =  ∫

𝐿 
(𝐷𝜌)𝑤𝛿𝑤𝑑𝑧,                                                                                                                                                                                (32) 

 

1

2
𝛿𝐼3 =

𝐻2𝑘2

4𝜋
 ∫
𝐿 
(𝑤 −

1

𝑘2
𝐷2𝑤) 𝛿𝑤𝑑𝑧,                                                                                                                                                     (33) 

 
1

2
𝛿𝐼4 =  ∫

𝐿 
𝜌𝑣𝛿𝑣𝑑𝑧,                                                                                                                                                                                         (34) 

 

1

2
𝛿𝐼5 =

𝐻2𝑘2

4𝜋
 ∫
𝐿 
𝑣𝛿𝑣 𝑑𝑧,                                                                                                                                                                               (35) 

 
1

2
𝛿𝐼6 =

𝜈𝑐
𝑛 + 𝜈𝑐

 ∫
𝐿 
[𝜌𝑑𝑤 −

1

𝑘2
𝐷(𝜌𝑑𝐷𝑤)] 𝛿𝑤 𝑑𝑧                                                                                                                                      (36) 

 

and 

 
1

2
𝛿𝐼7 =

𝜈𝑐
𝑛 + 𝜈𝑐

 ∫
𝐿 
𝜌𝑑𝛿𝑣 𝑑𝑧.                                                                                                                                                                           (37) 

 

Furthermore, 𝛿𝑤 and 𝛿𝑣 are connected by the relation 

 

𝛿𝑛 [𝜌 −
𝐻2𝑘2

4𝜋𝑛2
+

𝜌𝑑𝜈𝑐
2

(𝑛 + 𝜈𝑐)
2
] 𝑣 + 𝑛 [𝜌 +

𝐻2𝑘2

4𝜋𝑛2
+
𝜌𝑑𝜈𝑐
𝑛 + 𝜈𝑐

] 𝛿𝑣 = −𝜈[2𝜌(𝐷2 + 𝑘2)𝛿𝑤 − 𝐷(𝜌𝐷𝑤)].                                              (38) 
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If we substitute for 𝐼𝑠 and 𝛿𝐼𝑠(𝑠 = 1 𝑡𝑜 7) in equation (30) and make use of equation (38), we obtain after some further 

integrations by parts, 

 

𝛿𝑛2 [𝐼1 +
1

𝑛2
𝐼5 + 𝐼6]

+
2

𝑘2
 ∫
𝐿 
[𝑛2{𝜌𝑘2𝑤 − 𝐷(𝜌𝐷𝑤)} − 𝑔𝑘2(𝐷𝜌)𝑤 +

𝜈𝑐
𝑛 + 𝜈𝑐

𝑛2{𝜌𝑑𝑘
2𝑤 − 𝐷(𝜌𝑑𝐷𝑤)} −

𝐻2𝑘2

4𝜋
(𝐷2 − 𝑘2)𝑤

− 𝜈𝑘2𝑛{2(𝐷2 + 𝑘2)(𝜌𝑣) − 𝐷(𝜌𝐷𝑣)}] 𝛿𝑤 𝑑𝑧

= 0.                                                                                                                                                                                                                      (39) 
 

We observe that the quantity occurring as a factor of 𝛿𝑤 under the integral sign vanishes if and only if equation (15) is 

satisfied. Thus a necessary and sufficient condition for 𝛿𝑛2 to be zero to the first order for all small arbitrary variations 𝛿𝑤 and 

𝛿𝑣 (connected by equation (38)) in 𝑤 and 𝑣 which is compatible with the boundary conditions is that 𝑤 and 𝑣 should be the 

solutions of the eigenvalue problem governed by equations (15) and (16). A variational procedure of solving for the characteristic 

values is, therefore, possible. 

 

Theorem II: If oscillatory modes exist they should be stable. 

 

Proof: From equation (21), we have 

 

𝑛𝑖  ∫𝐿 (𝑤𝑖𝑤𝑗 +
1

𝑘2
𝐷𝑤𝑖𝐷𝑤𝑗) 𝑑𝑧 −

𝑔

𝑛𝑖
 ∫
𝐿 
(𝐷𝜌)𝑤𝑖𝑤𝑗  𝑑𝑧 +

𝐻2𝑘2

4𝜋𝑛𝑖
 ∫
𝐿 
(𝑤𝑖𝑤𝑗 +

1

𝑘2
𝐷𝑤𝑖𝐷𝑤𝑗) 𝑑𝑧 + 𝑛𝑗 ∫𝐿 𝜌𝑣𝑖𝑣𝑗  𝑑𝑧

+
𝐻2𝑘2

4𝜋𝑛𝑗
 ∫
𝐿 
𝑣𝑖𝑣𝑗  𝑑𝑧 +

𝜈𝑐𝑛𝑖
𝑛𝑖 + 𝜈𝑐

 ∫
𝐿 
𝜌𝑑 (𝑤𝑖𝑤𝑗 +

1

𝑘2
𝐷𝑤𝑖𝐷𝑤𝑗) 𝑑𝑧 +

𝜈𝑐𝑛𝑖
𝑛𝑗 + 𝜈𝑐

 ∫
𝐿 
𝜌𝑑𝑣𝑖𝑣𝑗  𝑑𝑧 = 0.                       (40) 

 

Interchanging 𝑖 and 𝑗 and noting that the above integrals are symmetric in 𝑖 and 𝑗, we obtain 

 

𝑛𝑗  ∫𝐿 𝜌 (𝑤𝑖𝑤𝑗 +
1

𝑘2
𝐷𝑤𝑖𝐷𝑤𝑗) 𝑑𝑧 −

𝑔

𝑛𝑗
 ∫
𝐿 
(𝐷𝜌)𝑤𝑖𝑤𝑗  𝑑𝑧 +

𝐻2𝑘2

4𝜋𝑛𝑗
 ∫
𝐿 
(𝑤𝑖𝑤𝑗 +

1

𝑘2
𝐷𝑤𝑖𝑤𝑗) 𝑑𝑧 + 𝑛𝑖  ∫𝐿 𝜌𝑣𝑖𝑣𝑗  𝑑𝑧

+
𝐻2𝑘2

4𝜋𝑛𝑖
 ∫
𝐿 
𝑣𝑖𝑣𝑗  𝑑𝑧 +

𝜈𝑐𝑛𝑗

𝑛𝑗 + 𝜈𝑐
 ∫
𝐿 
𝜌𝑑 (𝑤𝑖𝑤𝑗 +

1

𝑘2
𝐷𝑤𝑖𝐷𝑤𝑗) 𝑑𝑧 +

𝜈𝑐𝑛𝑖
𝑛𝑖 + 𝜈𝑐

 ∫
𝐿 
𝜌𝑑𝑣𝑖𝑣𝑗  𝑑𝑧 = 0.                       (41) 

 

Let us consider two solutions characterized by 𝑛 and 𝑛∗, the complex conjugate of 𝑛. We expect that the corresponding 

solutions will also be the complex conjugates of each other. Hence if 𝑛𝑖 = 𝑛, 𝑛𝑖 = 𝑛
∗, then 𝑤𝑖 = 𝑤,𝑤𝑗 = 𝑤

∗, 𝑣𝑖 = 𝑣 𝑎𝑛𝑑 𝑣𝑗 =

𝑣∗. 
Then, from (40) and (41) by addition and subtraction, we have 

 

𝑅𝑒(𝑛) [𝐼1̅ + 𝐼5̅ −
𝑔

|𝑛|2
𝐼2̅ +

𝐻2𝑘2

4𝜋|𝑛|2
𝐼3̅ +

𝐻2𝑘2

4𝜋|𝑛|2
𝐼4̅ +

𝜈𝑐
2(𝐼6̅ + 𝐼7̅)

|𝑛|2 + 2𝜈𝑐𝑅𝑒(𝑛) + 𝜈𝑐
2
] =

−𝜈𝑐|𝑛|
2(𝐼6̅ + 𝐼7̅)

|𝑛|2 + 2𝜈𝑐𝑅𝑒(𝑛) + 𝜈𝑐
2
,                                     (42) 

 

and 

 

𝐼𝑚(𝑛) [𝐼1̅ − 𝐼5̅ +
𝑔

|𝑛|2
𝐼2̅ −

𝐻2𝑘2

4𝜋|𝑛|2
(𝐼3̅ − 𝐼4̅) +

𝜈𝑐
2(𝐼6̅ − 𝐼7̅)

|𝑛|2 + 2𝜈𝑐𝑅𝑒(𝑛) + 𝜈𝑐
2
] = 0,                                                                                (43) 

 

where  

𝐼1̅ =  ∫
𝐿 
𝜌 [|𝑤|2 +

1

𝑘2
|𝐷𝑤|2] 𝑑𝑧,    𝐼2̅ =  ∫𝐿 (𝐷𝜌)|𝑤|

2𝑑𝑧,   𝐼3̅ =  ∫
𝐿 
[|𝑤|2 +

1

𝑘2
|𝐷𝑤|2] 𝑑𝑧,

𝐼4̅ =  ∫𝐿 |𝑣|
2𝑑𝑧, 𝐼5̅ =  ∫𝐿 𝜌|𝑣|

2𝑑𝑧,   𝐼6̅ =  ∫
𝐿 
𝜌𝑑 [|𝑤|

2 +
1

𝑘2
|𝐷𝑤|2] 𝑑𝑧,

𝐼7̅ =  ∫
𝐿 
𝜌|𝑣|2𝑑𝑧.

}
 
 

 
 

                (44) 

Integrals 𝐼�̅�(𝑠 = 1 𝑡𝑜 7) are all positive. 
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If 𝑛 is complex, 𝐼𝑚(𝑛) ≠ 0, hence (43) gives 

 

𝐼1̅ − 𝐼5̅ +
𝑔

|𝑛|2
𝐼2̅ −

𝐻2𝑘2

4𝜋|𝑛|2
(𝐼3̅ − 𝐼4̅) +

𝜈𝑐
2(𝐼6̅ − 𝐼7̅)

|𝑛|2 + 2𝜈𝑐𝑅𝑒(𝑛) + 𝜈𝑐
2
= 0,                                                                                                      (45) 

 

so that (42) gives 

 

2𝑅𝑒(𝑛) [𝐼1̅ +
𝐻2𝑘2

4𝜋|𝑛|2
𝐼4̅ +

𝜈𝑐
2𝐼6̅

|𝑛|2 + 2𝜈𝑐𝑅𝑒(𝑛) + 𝜈𝑐
2
] = −

𝜈𝑐|𝑛|
2(𝐼6̅ + 𝐼7̅)

|𝑛|2 + 2𝜈𝑐𝑅𝑒(𝑛) + 𝜈𝑐
2
.                                                                               (46) 

 

From equation (46) it follows that 𝑅𝑒(𝑛) is negative, which implies that if oscillatory modes exist they should be stable, thus 

ruling out possibility of overstability. 

 

 

4. DISCUSSION ON THE CASE OF TWO SEMI-INFINITELY EXTENDING PLASMAS OF 

CONSTANT DENSITIESSEPARATED BY A HORIZONTAL PLANE 
 
We consider the case when two semi-infinitely extending plasma layers of constant densities 𝜌1 and 𝜌2, and dust particle 

densities 𝜌𝑑1 and 𝜌𝑑2  are separated by a horizontal boundary at 𝑧 = 0. The subscripts 1 and 2 distinguish the lower and upper 

plasma layers, respectively. 

We choose the following trial function for 𝑤(𝑧), 
 

𝑤(𝑧) = {
𝐴𝑒+𝑘𝑧              𝑧 < 0;

𝐴𝑒−𝑘𝑧                𝑧 > 0 ,
                                                                                                                                                                    (47) 

 

which is consistent with the boundary conditions (17) - (19). Here the same constant has been chosen to ensure the continuity 

of 𝑤  at 𝑧 = 0. 
The value of 𝑣 in the two regions can be calculated from equation (16) and noting that 𝜌 is constant, we have  

 

𝑣(𝑧) = {
𝑍1𝑒

+𝑘𝑧              𝑧 < 0;

𝑍2𝑒
−𝑘𝑧                𝑧 > 0 ,

                                                                                                                                                                   (48) 

 

where 

 

𝑍1  ,2 =
−3𝜈𝑘2𝑛𝐴

𝑛2 [1 +
𝛼0𝜈𝑐

𝑛+𝜈𝑐
] + 𝑘2𝑉1 ,2

2
,                                                                                                                                                                    (49) 

 

𝑉1
2 =

𝐻2

4𝜋𝜌1
 𝑎𝑛𝑑 𝑉2

2 =
𝐻2

4𝜋𝜌2
.                                                                                                                                                                         (50) 

 

We assume that 
𝜌𝑑1

𝜌1
=

𝜌𝑑2

𝜌2
= 𝛼0 as the simplifying assumption does not obscure any of the essential features of the problem. 

To evaluate the integrals 𝐼𝑠(𝑠 = 1 𝑡𝑜 7) in equation (22), we divide the region of integration into three parts (𝑖) − ∞ < 𝑧 <
−𝜀 (𝑖𝑖) 𝜀 < 𝑧 < ∞  (𝑖𝑖𝑖) − 𝜀 < 𝑧 < 𝜀 and then pass it over to the limit 𝜀 → 0. On substituting their values in equation (22), we 

obtain the following dispersion relation between ℎ and 𝑘, 
 

𝑛2 − 𝑔𝑘(𝛼2 − 𝛼1) + 𝑘
2𝑉𝐴

2 +
𝛼0𝜈𝑐
𝑛 + 𝜈𝑐

𝑛2(𝛼1 + 𝛼2) +
𝑔

2
𝜈2𝑘4𝑛2 {

𝛼1

𝑛2 [1 +
𝛼0𝜈𝑐

𝑛+𝜈𝑐
] + 𝑘2𝑉1

2
+

𝛼2

𝑛2 [1 +
𝛼0𝜈𝑐

𝑛+𝜈𝑐
] + 𝑘2𝑉2

2
} = 0,        (51) 

 

where 

𝑉𝐴 = {
𝐻2

2𝜋(𝜌1 + 𝜌2)
}

1
2⁄

                                                                                                                                                                                   (52) 
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can be termed as mean Alfven velocity and  

 

𝛼1 ,2 =
𝜌1 ,2

𝜌1 + 𝜌2
.                                                                                                                                                                                                 (53) 

 

Letting 

 

𝑛 =
𝑔

𝑉𝐴
𝑛∗, 𝑘 =

𝑔

𝑉𝐴
2 𝑘

∗ 

 

and omitting the asterisks for simplicity, so that the equation (51) takes the following dimensionless form 

 

𝐴9𝑛
9 + 𝐴8𝑛

8 + 𝐴7𝑛
7 + 𝐴6𝑛

6 + 𝐴5𝑛
5 + 𝐴4𝑛

4 + 𝐴3𝑛
3 + 𝐴2𝑛

2 + 𝐴1𝑛 + 𝐴0 = 0,                                                                           (54) 
 

𝐴9 = 4,   𝐴8 = 12𝐴, 𝐴7 = 4𝐴
2 +

2𝑘2𝐵

𝛼1 + 𝛼2
+ 4{𝑘2 − 𝑘(𝛼2 − 𝛼1)} + 2𝐿𝑘

4𝐵, 

𝐴6 = 2𝑘2𝐵 {
1

𝛼1𝛼2
+ 𝐿𝑘2} (𝐴 + 𝜈𝑐

′) + 4𝐴3 +
2𝑘2𝐴𝐵

𝛼1𝛼2
+ (8𝐴 + 4𝜈𝑐

′){𝑘2 − 𝑘(𝛼2 − 𝛼1)}, 

𝐴5 =
2𝐴𝐵𝑘2

𝛼1𝛼2
(𝐴 + 2𝜈𝑐

′) +
𝑘4

𝛼1𝛼2
+ 2𝐿𝑘4(𝑘2 + 𝐵𝜈𝑐

′2) + (4𝐴2 +
2𝑘2𝐵

𝛼1𝛼2
+ 8𝐴𝜈𝑐

′) {𝑘2 − 𝑘(𝛼2 − 𝛼1)}, 

𝐴4 =
𝑘4

𝛼1𝛼2
(𝐴 + 2𝜈𝑐

′) + 2𝐴𝑘2𝜈𝑐
′ (

𝐴𝐵

𝛼1𝛼2
+ 𝐿𝑘2𝜈𝑐

′𝐵 + 3𝐿𝑘4) + {
2𝐵𝑘2

𝛼1𝛼2
(𝐴 + 2𝜈𝑐

′) + 4𝐴2𝜈𝑐
′} {𝑘2 − 𝑘(𝛼2 − 𝛼1)}, 

𝐴3 =
𝑘4𝜈𝑐

′

𝛼1𝛼2
(1 + 2𝐴) + 6𝐿𝑘6𝜈𝑐

′2 + {
2𝐵𝑘2𝜈𝑐

′

𝛼1𝛼2
(2𝐴 + 𝜈𝑐

′) +
𝑘4

𝛼1𝛼2
} {𝑘2 − 𝑘(𝛼2 − 𝛼1)}, 

𝐴2 =
𝑘4𝜈𝑐

′𝐴

𝛼1𝛼2
+ 2𝐿𝑘6𝜈𝑐

′3 +
𝑘4𝜈𝑐

′

𝛼1𝛼2
(3 + 2𝐴𝐵𝜈𝑐

′){𝑘2 − 𝑘(𝛼2 − 𝛼1)}, 

𝐴1 =
𝑘4𝜈𝑐

′

𝛼1𝛼2
(1 + 2𝜈𝑐

′){𝑘2 − 𝑘(𝛼2 − 𝛼1)}, 

𝐴0 =
𝑘4𝜈𝑐

′2

𝛼1𝛼2
{𝑘2 − 𝑘(𝛼2 − 𝛼1)}, 

 

𝐴 = (1 + 𝛼0)𝜈𝑐
′ ,       𝐵 = 𝛼1 + 𝛼2,        𝜈𝑐

′ = 𝜈𝑐
𝑉𝐴
𝑔
,                                                                                                                                    (55) 

 

and  

 

𝐿 =
𝜈2𝑔2

𝑉𝐴
6  

 

is a non-dimensional number measuring the relative importance of FLR effects and magnetic field. 

For the potentially stable configuration (𝛼2 < 𝛼1), all the coefficients of equation (54) are positive, if 

 

𝑘 > 𝑘∗,                                                                                                                                                                                                                (56) 
 

where 

 

𝑘∗ = 𝛼2 − 𝛼1.                                                                                                                                                                                                    (57) 
 

So no positive real root or complex root with negative real part exists. Therefore, the medium is stable even in the presence 

of collisions for disturbances of all wave numbers as it is if there are none. 

For the potentially unstable configuration (𝛼2 > 𝛼1), the absolute term in equation (54) is negative, if 

 

0 < 𝑘 < 𝑘∗.                                                                                                                                                                                                        (58) 
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Therefore (54) possesses at least one real root which is positive leading to an instability of the configuration even if 

there are collisions with dust particles. 

Also we see that 𝒌∗ is independent of 𝑳, a measure of FLR effect. Hence we conclude that for longitudinal 

perturbations, the stability criterion is independent of magnetic viscosity. 
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