Results in Nonlinear Analysis $5(2022)$ No. 2, $151-160$. https://doi.org/10.53006/rna.754938 Available online at www.nonlinear-analysis.com

Suzuki - $(\mathcal{Z}_{\psi}(\alpha,\beta))$ - type rational contractions

MadhuLatha HimaBindu Venigalla^a

aDepartment of Mathematics, Koneru Lakshmaiah Educational Foundation, Vaddeswaram, Guntur - 522 502, Andhra Pradesh, India.

Abstract

In this paper, we obtain a unique common fixed point results by using Suzuki - $(\mathcal{Z}_{\psi}(\alpha,\beta))$ - type rational contractive mappings in metric spaces. Also we give an example which supports our main theorem.

Keywords: Metric space Suzuki- $\mathcal{Z}_{\psi}(\alpha,\beta)$ -type rational contraction Z- contraction.

1. Introduction

In 2008, the generalization theorem of Banach contraction principle [\[1\]](#page-8-0), which was introduced by T.Suzuki [\[3\]](#page-8-1), later this theorem is also referred as Suzuki type contraction. In 2012, Samet et al. [\[4\]](#page-8-2) introduced the concept of $\alpha-\psi$ -contractive and α - admissible mappings and obtained various fixed point theorems for such mappings in complete metric spaces.

Recently, Khojasteh et al. [\[5\]](#page-8-3) introduced the notion of Simulation function and the notion of Z - contraction with respect to η which generalized the Banach contractions. Following this direction of research, we introduce the notion Suzuki - $\mathcal{Z}_{\psi}(\alpha,\beta)$ - type rational contractive mapping and establish common fixed point theorems for such mappings in metric spaces.

Throughout this paper, N denotes the set of all nonnegative integers. Further, R represent the real numbers and $R^+ = [0, \infty)$.

2. Preliminaries

Recently, Khojasteh et al. [\[5\]](#page-8-3) introduced the notion of Simulation function and the notion of Z contraction with respect to η which generalized the Banach contractions. (see, ([\[6\]](#page-8-4)- [\[13\]](#page-9-1))

Email address: v.m.l.himabindu@gmail.com (MadhuLatha HimaBindu Venigalla)

Definition 2.1. [\[5\]](#page-8-3) Let $\eta : [0, \infty) \to [0, \infty)$ be a mapping, then η is called a simulation function if it satisfies the following condtions:

- (η_1) $\eta(0,0) = 0$,
- (η_2) $\eta(t, s) < s t$ for all $t, s > 0$,
- (η_3) if $\{t_n\}, \{s_n\}$ are the sequences in $(0, \infty)$ such that $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n > 0$ then $\lim_{n\to\infty} supp(t_n, s_n) < 0$. We denote the set of all simulation function by Z.

Joonaghany et al. [\[6\]](#page-8-4) proposed a new notion, the ψ -simulation function, and with the help of it, the \mathcal{Z}_{ψ} -contraction in the setting of the standard metric space. The notion of the \mathcal{Z}_{ψ} -contraction covers several distinct types of contraction, including the Z -contraction that was defined in [\[5\]](#page-8-3)

 $\Psi = {\psi : R^+ \to R^+|\psi \text{ is continuous and nondecreasing, and } \psi(r) = 0 \Leftrightarrow r = 0}$

Definition 2.2. [\[6\]](#page-8-4) We say that $\zeta: R^+ \times R^+ \to R$ is a ψ -simulation function, if there exists $\psi \in \Psi$ such that:

- (ζ_1) $\zeta(t,s) < \psi(s) \psi(t)$ for all $t,s > 0$,
- (ζ_2) if $\{t_n\}, \{s_n\}$ are the sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0$ then $\lim_{n \to \infty} \sup \zeta(t_n, s_n) < 0$.

Let \mathcal{Z}_{ψ} be the set of all ψ - simulation functions. Note that if we take ψ as an identity mapping, then " ψ simulation" becomes "simulation function" in the sencse of [\[5\]](#page-8-3)

Example 2.3. [\[6\]](#page-8-4) Let $\psi \in \Psi$

- (i) $\zeta_1(t,s) = k\psi(s) \psi(t)$ for all $t, s \in [0,\infty,$ where $k \in [0,1)$.
- (ii) $\zeta_2(t,s) = \phi(\psi(s)) \psi(t)$ for all $t,s \in [0,\infty,$ where $\phi : [0,+\infty) \to [0,+\infty)$ so that $\phi(0) = 0$ and for each $s > 0$, $\phi(s) < s$

$$
\limsup_{t \to s} \phi(t) < s
$$

(iii) $\zeta_3(t,s) = \psi(s) - \phi(s) - \psi(t)$ for all $t, s \in [0, \infty)$, where $\phi : [0, +\infty) \to [0, +\infty)$ is a mapping such that, for each $s > 0$,

$$
\liminf_{t\to s}\phi(t)>0.
$$

It is clear that $\zeta_1, \zeta_2, \zeta_3 \in \mathcal{Z}_{\psi}$.

Remark 2.4. Each simulation function forms a ψ - simulation function. The contrary of the statement is false [\[6\]](#page-8-4).

Lemma 2.5. (See e.g., [\[2\]](#page-8-5)) Let (X, d) be a metric space, and let $\{\rho_n\}$ be a sequence in X such that

$$
\lim_{n \to \infty} d(\rho_n, \rho_{n+1}) = 0.
$$

If $\{\rho_{2n}\}\$ is not a Cauchy sequence. Then, there exists an $\epsilon > 0$ and monotone increasing sequences of natural numbers $\{m_k\}$ and $\{n_k\}$ such that $n_k > m_k$ and $d(\rho_{2m_k}, \rho_{2n_k}) \geq \epsilon$ and

(*i*) $\lim_{n\to\infty} d(\rho_{2m_k}, \rho_{2n_k}) = \epsilon$

- (ii) $\lim_{n\to\infty} d(\rho_{2m_k-1}, \rho_{2n_{k+1}}) = \epsilon$
- (iii) $\lim_{n\to\infty} d(\rho_{2m_k}, \rho_{2n_k+1}) = \epsilon$
- (iv) $\lim_{n \to \infty} d(\rho_{2m_{k-1}}, \rho_{2n_k}) = \epsilon.$

In 2012, Samet et al. [\[4\]](#page-8-2) introduced the class of α - admissible mappings.

Definition 2.6. [\[4\]](#page-8-2) A mapping $\mathcal{F}: X \to X$ is called α - admissible if for all $\rho, \sigma \in X$ we have

$$
\alpha(\rho, \sigma) \ge 1 \Rightarrow \alpha(\mathcal{F}\rho, \mathcal{F}\sigma) \ge 1,
$$

where $\alpha: X \times X \rightarrow [0, \infty)$ is a given function.

Definition 2.7. Let X be a nonempty set, $\mathcal{F}, \mathcal{G} : X \to X$ and $\alpha, \beta : X \times X \to [0, \infty)$. The two mappings $(\mathcal{F}, \mathcal{G})$ is called a pair of (α, β) - admissible mappings, if

$$
\alpha(\rho, \sigma) \geq 1
$$
 and $\beta(\rho, \sigma) \geq 1$

implies

$$
\alpha(\mathcal{F}\rho,\mathcal{G}\sigma) \geq 1
$$
 and $\beta(\mathcal{G}\rho,\mathcal{F}\sigma) \geq 1$ and $\beta(\mathcal{F}\rho,\mathcal{G}\sigma) \geq 1$ and $\alpha(\mathcal{G}\rho,\mathcal{F}\sigma) \geq 1$ for all $\rho,\sigma \in X$.

Motivated by the above results, we introduce the notion of Suzuki- $(\mathcal{Z}_{\psi}(\alpha,\beta))$ - type rational contraction and prove some common fixed point results in metric spaces. Also we give an example which supports our main theorem.

3. Main Results

We begin with the following notion:

Definition 3.1. Let (X, d) be a metric space. Let $\mathcal{F}, \mathcal{G} : X \to X$ be two mappings. we say that the pair $(\mathcal{F},\mathcal{G})$ is Suzuki - $\mathcal{Z}_{(\psi)}(\alpha,\beta)$ - type rational contraction if for all $\rho,\sigma\in X$ and $L\geq 0$

 $\frac{1}{2} \min\{d(\rho, \mathcal{F}\rho), d(\sigma, \mathcal{G}\sigma)\}\leq d(\rho, \sigma)$ implies

$$
\zeta(\alpha(\rho, \mathcal{F}\rho)\beta(\sigma, \mathcal{G}\sigma)d(\mathcal{F}\rho, \mathcal{G}\sigma), M(\rho, \sigma)) \ge 0
$$
\n(1)

where $\zeta \in \mathcal{Z}_{\psi}$

$$
M(\rho, \sigma) = \max \left\{ d(\rho, \sigma), \frac{d(\rho, \mathcal{F}\rho)[1 + d(\sigma, \mathcal{G}\sigma)]}{1 + d(\rho, \sigma)}, \frac{d(\sigma, \mathcal{G}\sigma)[1 + d(\rho, \mathcal{F}\rho)]}{1 + d(\rho, \sigma)}, \frac{d(\sigma, \mathcal{G}\sigma)d(\rho, \mathcal{F}\rho)}{d(\rho, \sigma)} \right\} + L \min \{ d(\rho, \mathcal{F}\rho), d(\sigma, \mathcal{F}\rho) \}
$$

Theorem 3.2. Let (X,d) be a complete metric space, and let $\mathcal{F}, \mathcal{G}: X \to X$ be two mappings and α, β : $X \times X \rightarrow [0, \infty)$. Suppose that the following conditions are satisfied:

- (i) $(\mathcal{F}, \mathcal{G})$ is pair of (α, β) admissible mappings;
- (ii) there exists $\rho_0 \in X$ such that $\alpha(\rho_0, \mathcal{F}\rho_0) \geq 1$ and $\beta(\rho_0, \mathcal{G}\rho_0) \geq 1$;
- (iii) the pair $(\mathcal{F}, \mathcal{G})$ is Suzuki- $\mathcal{Z}_{(\psi)}(\alpha, \beta)$ type rational contraction;
- (iv) either, $\mathcal F$ and $\mathcal G$ are continuous or for every sequence $\{\rho_n\}$ in X such that $\alpha(\rho_n, \rho_{n+1}) \geq 1$ and $\beta(\rho_n, \rho_{n+1}) \geq 1$ for all $n \in N_0$ and $\rho_n \to x$, we have $\alpha(\rho, \mathcal{F}\rho) \geq 1$ and $\beta(\rho, \mathcal{G}\rho) \geq 1$.

Then $\mathcal F$ and $\mathcal G$ have a unique common fixed point in X.

Proof. By assumption there exists $\rho_0 \in X$ such that $\alpha(\rho_0, \mathcal{F}\rho_0) \geq 1$. Define the sequence $\{\rho_n\}$ in X by letting $\rho_1 \in X$ such that $\rho_1 = \mathcal{F}\rho_0$, $\rho_2 = \mathcal{G}\rho_1$, $\rho_3 = \mathcal{F}\rho_2$, $\rho_4 = \mathcal{G}\rho_3$

continuing this process we get $\mathcal{F}\rho_n = \rho_{n+1}$, $\mathcal{G}\rho_{n+1} = \rho_{n+2}$ where $n \geq 0$. Since $(\mathcal{F}, \mathcal{G})$ is a pair of (α, β) – admissible, so

 $\alpha(\rho_0, \mathcal{FG}\rho_0) = \alpha(\rho_0, \rho_1) \geq 1, \ \alpha(\mathcal{F}\rho_0, \mathcal{G}\rho_1) = \alpha(\rho_1, \rho_2) \geq 1$ and $\alpha(\mathcal{G}\rho_1, \mathcal{F}\rho_2) = \alpha(\rho_2, \rho_3) \geq 1$ continuing this manner, we obtain

$$
\alpha(\rho_n, \rho_{n+1}) \ge 1 \quad \text{for all} \quad n \ge 0.
$$

Similarly, we can get

$$
\beta(\rho_n, \rho_{n+1}) \ge 1 \quad \text{for all} \quad n \ge 0.
$$

If $\rho_n = \rho_{n+1}$ for some $n \in N$, then $u = \rho_n$ is a common fixed point for $\mathcal F$ or $\mathcal G$. Consequently, we suppose that $\rho_n \neq \rho_{n+1}$ for all $n \in N$. Since $\frac{1}{2} \min\{d(\rho_{2n}, \mathcal{F}\rho_{2n}), d(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})\} \leq d(\rho_{2n}, \rho_{2n+1})$ from [1,](#page-2-0) we have

$$
0 \leq \zeta(\alpha(\rho_{2n}, \mathcal{F}\rho_{2n})\beta(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})d(\mathcal{F}\rho_{2n}, \mathcal{G}\rho_{2n+1}), M(\rho_{2n}, \rho_{2n+1}))
$$

\n
$$
0 \leq \psi(M(\rho_{2n}, \rho_{2n+1})) - \psi(\alpha(\rho_{2n}, \mathcal{F}\rho_{2n})\beta(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})d(\rho_{2n+1}, \rho_{2n+2})),
$$

so

$$
\psi(M(\rho_{2n}, \rho_{2n+1})) > \psi(\alpha(\rho_{2n}, \mathcal{F}\rho_{2n})\beta(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})d(\rho_{2n+1}, \rho_{2n+2})).
$$

Since ψ is strictly increasing,

$$
M(\rho_{2n}, \rho_{2n+1}) > \alpha(\rho_{2n}, \mathcal{F}\rho_{2n})\beta(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})d(\rho_{2n+1}, \rho_{2n+2}),
$$
\n(2)

on the other hand,

$$
M(\rho_{2n}, \rho_{2n+1})
$$
\n
$$
= \max \left\{ \begin{array}{c} d(\rho_{2n}, \rho_{2n+1}), \frac{d(\rho_{2n}, \mathcal{F}\rho_{2n})[1+d(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})]}{1+d(\rho_{2n}, \rho_{2n+1})}, \\ \frac{d(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})[1+d(\rho_{2n}, \mathcal{F}\rho_{2n})]}{1+d(\rho_{2n}, \mathcal{F}\rho_{2n})}, \frac{d(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})d(\rho_{2n}, \mathcal{F}\rho_{2n})}{d(\rho_{2n}, \rho_{2n+1})} \right\} \\ + L \min \{d(\rho_{2n}, \mathcal{F}\rho_{2n}), d(\rho_{2n+1}, \mathcal{F}\rho_{2n})\} \\ = \max \left\{ \begin{array}{c} d(\rho_{2n}, \rho_{2n+1}), \frac{d(\rho_{2n}, \rho_{2n+1})[1+d(\rho_{2n+1}, \rho_{2n+2})]}{1+d(\rho_{2n}, \rho_{2n+1})}, \\ \frac{d(\rho_{2n+1}, \rho_{2n+2})[1+d(\rho_{2n}, \rho_{2n+1})]}{1+d(\rho_{2n}, \rho_{2n+1})}, \frac{d(\rho_{2n+1}, \rho_{2n+2})d(\rho_{2n}, \rho_{2n+1})}{d(\rho_{2n}, \rho_{2n+1})} \right\} \\ + L \min \{d(\rho_{2n}, \rho_{2n+1}), d(\rho_{2n+1}, \rho_{2n+1})\} \\ d(\rho_{2n+1}, \rho_{2n+2})] \cdot d(\rho_{2n+1}, \rho_{2n+2}) \right\} \end{array} \right\}
$$

for refining the inequality above, we shall consider the following Cases: Case(i): If $M(\rho_{2n}, \rho_{2n+1}) = d(\rho_{2n+1}, \rho_{2n+2})$, then by [2](#page-3-0) we have $d(\rho_{2n+1}, \rho_{2n+2}) > d(\rho_{2n+1}, \rho_{2n+2})$, which is a contradiction. Case(ii): If $M(\rho_{2n}, \rho_{2n+1}) = d(\rho_{2n}, \rho_{2n+1})$, then the inequality [2](#page-3-0) turns into the inequality

$$
d(\rho_{2n+1}, \rho_{2n+2}) < d(\rho_{2n}, \rho_{2n+1}).\tag{3}
$$

.

Case(iii): Suppose that

$$
M(\rho_{2n}, \rho_{2n+1}) = \frac{d(\rho_{2n}, \rho_{2n+1})[1+d(\rho_{2n+1}, \rho_{2n+2})]}{1+d(\rho_{2n}, \rho_{2n+1})}
$$

This yields

$$
\max\{d(\rho_{2n}, \rho_{2n+1}), d(\rho_{2n+1}, \rho_{2n+2})\} \le \frac{d(\rho_{2n}, \rho_{2n+1})[1 + d(\rho_{2n+1}, \rho_{2n+2})]}{1 + d(\rho_{2n}, \rho_{2n+1})}.
$$
\n(4)

We shall illustrate that this case is not possible. For this reason, we consider the following subcases: Case(iii)_a: Suppose max $\{d(\rho_{2n}, \rho_{2n+1}), d(\rho_{2n+1}, \rho_{2n+2})\} = d(\rho_{2n+1}, \rho_{2n+2}),$ that is,

$$
d(\rho_{2n}, \rho_{2n+1}) \le d(\rho_{2n+1}, \rho_{2n+2}) \tag{5}
$$

on the other hand, from [4,](#page-3-1) we have

$$
d(\rho_{2n}, \rho_{2n+1}) \le \frac{d(\rho_{2n}, \rho_{2n+1})[1 + d(\rho_{2n+1}, \rho_{2n+2})]}{1 + d(\rho_{2n}, \rho_{2n+1})}.
$$
\n
$$
(6)
$$

By a simple conclusion, we have, from the inequality above, that $d(\rho_{2n+1}, \rho_{2n+2}) < d(\rho_{2n}, \rho_{2n+1})$, which contradicts the assumption [5.](#page-4-0)

 $Case(iii)_b$: Assume that

$$
\max\{d(\rho_{2n},\rho_{2n+1}),d(\rho_{2n+1},\rho_{2n+2})\}=d(\rho_{2n},\rho_{2n+1}),
$$

that is,

$$
d(\rho_{2n+1}, \rho_{2n+2}) < d(\rho_{2n}, \rho_{2n+1}).\tag{7}
$$

Furthermore, from [6,](#page-4-1) we have

$$
d(\rho_{2n}, \rho_{2n+1}) \le \frac{d(\rho_{2n}, \rho_{2n+1})[1 + d(\rho_{2n+1}, \rho_{2n+2})]}{1 + d(\rho_{2n}, \rho_{2n+1})}.
$$
\n(8)

A simple evaluation implies, from the inequality above, that

$$
d(\rho_{2n}, \rho_{2n+1}) < d(\rho_{2n+1}, \rho_{2n+2})
$$

which contradicts the assumption [7.](#page-4-2) Hence, Case(iii) does not occur. Hence,

$$
d(\rho_{2n+1}, \rho_{2n+2}) < d(\rho_{2n}, \rho_{2n+1}).
$$

Hence, we deduce that the sequence $\{d(\rho_n, \rho_{n+1})\}$ is nonnegative and nonincreasing.

Consequently, there exists $r \geq 0$ such that $\lim_{n \to \infty} d(\rho_n, \rho_{n+1}) = r$. We claim that $r = 0$. Suppose, on the contrary, that $r > 0$.

$$
\lim_{n \to \infty} d(\rho_n, \rho_{n+1}) = \lim_{n \to \infty} M(\rho_n, \rho_{n+1}) = r.
$$
\n(9)

For each $n \ge 0$ we have $\frac{1}{2} \min\{d(\rho_{2n}, \mathcal{F}\rho_{2n}), d(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})\} \le d(\rho_{2n}, \rho_{2n+1})$ from [1](#page-2-0), we have

$$
\zeta(\alpha(\rho_{2n}, \mathcal{F}\rho_{2n})\beta(\rho_{2n+1}, \mathcal{G}\rho_{2n+1})d(\mathcal{F}\rho_{2n}, \mathcal{G}\rho_{2n+1}), M(\rho_{2n}, \rho_{2n+1})) \geq 0
$$

so

$$
\limsup_{n\to\infty}\zeta(\alpha(\rho_{2n},\mathcal{F}\rho_{2n})\beta(\rho_{2n+1},\mathcal{G}\rho_{2n+1})d(\mathcal{F}\rho_{2n},\mathcal{G}\rho_{2n+1}),M(\rho_{2n},\rho_{2n+1}))\geq 0.
$$
\n(10)

Therefore, from (ζ_2)

$$
\limsup_{n\to\infty}\zeta(\alpha(\rho_{2n},\mathcal{F}\rho_{2n})\beta(\rho_{2n+1},\mathcal{G}\rho_{2n+1})d(\mathcal{F}\rho_{2n},\mathcal{G}\rho_{2n+1}),M(\rho_{2n},\rho_{2n+1}))<0,
$$

which contradicts [10.](#page-4-3) So the claim is proved, that is,

$$
\lim_{n \to \infty} d(\rho_n, \rho_{n+1}) = \lim_{n \to \infty} M(\rho_n, \rho_{n+1}) = 0.
$$
\n(11)

-
- (*i*) $\lim_{n\to\infty} d(\rho_{2m_k}, \rho_{2n_k}) = \epsilon_0$
- (ii) $\lim_{n\to\infty} d(\rho_{2m_k-1}, \rho_{2n_{k+1}}) = \epsilon_0$
- (iii) $\lim_{n\to\infty} d(\rho_{2m_k}, \rho_{2n_k+1}) = \epsilon_0$
- (iv) $\lim_{n\to\infty} d(\rho_{2m_{k-1}}, \rho_{2n_k}) = \epsilon_0.$

Therefore, from the definition of $M(\rho, \sigma)$ we have

$$
\lim_{n \to \infty} M(\rho_{2n_k}, \rho_{2m_k-1})
$$
\n
$$
= \lim_{n \to \infty} \max \left\{ \begin{array}{c} d(\rho_{2n_k}, \rho_{2m_{k-1}}), \frac{d(\rho_{2n_k}, \rho_{2n_{k+1}})[1+d(\rho_{2m_{k-1}}, \rho_{2m_{k+1}})]}{1+d(\rho_{2n_k}, \rho_{2m_{k-1}})}, \\ \frac{d(\rho_{2m_{k-1}}, \rho_{2m_{k+1}})[1+d(\rho_{2n_k}, \rho_{2n_{k+1}})]}{1+d(\rho_{2n_k}, \rho_{2n_{k-1}})}, \frac{d(\rho_{2m_{k-1}}, \rho_{2m_{k+1}})[d(\rho_{2n_k}, \rho_{2n_{k+1}})]}{d(\rho_{2n_k}, \rho_{2m_{k-1}})} \end{array} \right\}
$$
\n
$$
+ L \min \{ d(\rho_{2n_k}, \rho_{2n_{k+1}}), d(\rho_{2m_k-1}, \rho_{2n_{k+1}}) \}
$$
\n
$$
= \max \{ 0, \epsilon_0 \} = \epsilon_0
$$

so

$$
\lim_{k \to \infty} d(\rho_{2m_k}, \rho_{2n_k+1}) = \lim_{k \to \infty} M(\rho_{2n_k}, \rho_{2m_k-1}) = \epsilon_0 > 0.
$$

Hence, ζ_2 implies that

$$
\lim_{k \to \infty} d(\rho_{2m_k}, \rho_{2n_k+1}) = \lim_{k \to \infty} M(\rho_{2n_k}, \rho_{2m_k-1}) = \epsilon_0 > 0.
$$
\n(12)

On the other hand, we claim that for sufficiently large $k \in N$, if $n_k > m_k > k$, then

$$
\frac{1}{2}\min\{d(\mathcal{F}\rho_{n_k}, \rho_{n_k}), d(\rho_{m_k-1}, \mathcal{G}\rho_{m_k-1})\} > d(\rho_{n_k}, \rho_{m_k-1})
$$
\n(13)

on letting as $k \to \infty$ in [13,](#page-5-0) we get that $\epsilon_0 \leq 0$, contradiction. Therefore

$$
\frac{1}{2}\min\{d(\mathcal{F}\rho_{n_k}, \rho_{n_k}), d(\rho_{m_k-1}, \mathcal{G}\rho_{m_k-1})\} \leq d(\rho_{n_k}, \rho_{m_k-1})
$$

and from [1](#page-2-0), we have

$$
0 \leq \ \zeta(\alpha(\rho_{2n_k}, \mathcal{F}\rho_{2n_k})\beta(\rho_{2m_k-1}, \mathcal{G}\rho_{2m_k-1})d(\mathcal{F}\rho_{2n_k}, \mathcal{G}\rho_{2m_k-1}), M(\rho_{2n_k}, \rho_{2m_k-1}))
$$

Hence

$$
\limsup_{k \to \infty} \zeta(\alpha(\rho_{2n_k}, \mathcal{F}\rho_{2n_k})\beta(\rho_{2m_k-1}, \mathcal{G}\rho_{2m_k-1})d(\mathcal{F}\rho_{2n_k}, \mathcal{G}\rho_{2m_k-1}), M(\rho_{2n_k}, \rho_{2m_k-1})) \ge 0
$$

which contradicts [12.](#page-5-1) This contradiction proves that $\{\rho_n\}$ is a Cauchy sequence and, since X is complete, there exists $u \in X$ such that $\{\rho_n\} \to u$ as $n \to \infty$.

We claim that u is a common fixed point of $\mathcal F$ and $\mathcal G$. Since $\mathcal F$ and $\mathcal G$ are continuous, we deduce that

$$
u = \lim_{n \to \infty} \rho_{2n+1} = \lim_{n \to \infty} \mathcal{F} \rho_{2n} = \mathcal{F}(\lim_{n \to \infty} \rho_{2n}) = \mathcal{F} u
$$

and

$$
u = \lim_{n \to \infty} \rho_{2n+2} = \lim_{n \to \infty} \mathcal{G} \rho_{2n+1} = \mathcal{G}(\lim_{n \to \infty} \rho_{2n+1}) = \mathcal{G} u.
$$

Therefore $\mathcal{F}u = \mathcal{G}u = u$, that is, u is a common fixed point of $\mathcal F$ and $\mathcal G$. Since from (iv) , we have

for every sequence $\{\rho_n\}$ in X such that $\alpha(\rho_n, \rho_{n+1}) \geq 1$ and $\beta(\rho_n, \rho_{n+1}) \geq 1$ for all $n \in N_0$ and $\rho_n \to u$ as $n \to \infty$, this implies $\rho_{2n_k+1} \to u$ and $\rho_{2n_k+2} \to u$ as $k \to \infty$. Now we show that $\mathcal{F}u = \mathcal{G}u = u$.

Suppose $u \neq \mathcal{G}u$.

Now we claim that, for each $n \geq 1$, at least one of the following assertions holds.

$$
\frac{1}{2}d(\rho_{n_k-1},\rho_{n_k}) \leq d(\rho_{n_k-1},u)
$$

or

$$
\frac{1}{2}d(\rho_{n_k}, \rho_{n_k+1}) \leq d(\rho_{n_k}, u).
$$

On contrary suppose that

$$
\frac{1}{2}d(\rho_{n_k-1}, \rho_{n_k}) > d(\rho_{n_k-1}, u)
$$

and

$$
\frac{1}{2}d(\rho_{n_k}, \rho_{n_k+1}) > d(\rho_{n_k}, u).
$$

For some $n \geq 1$. Then we have

$$
d(\rho_{n_k-1}, \rho_{n_k}) \leq d(\rho_{n_k-1}, u) + d(u, \rho_{n_k})
$$

$$
< \frac{1}{2}[d(\rho_{n_k-1}, \rho_{n_k}) + d(\rho_{n_k}, \rho_{n_k+1})]
$$

$$
\leq d(\rho_{n_k-1}, \rho_{n_k}),
$$

which is a contradiction and so the claim holds. From [1](#page-2-0) we have $\frac{1}{2} \min\{d(\rho_{2n_k}, \mathcal{F}\rho_{2n_k}), d(u, \mathcal{G}u)\} \leq d(\rho_{2n_k}, u)$ implies

$$
0 \leq \zeta(\alpha(\rho_{2n_k}, \mathcal{G}\rho_{2n_k})\beta(u, \mathcal{G}u)d(\mathcal{F}\rho_{2n_k}, \mathcal{G}u), M(\rho_{2n_k}, u)) \n< \psi(M(\rho_{2n_k}, u)) - \psi(\alpha(\rho_{2n_k}, \mathcal{F}\rho_{2n_k})\beta(u, \mathcal{G}u)d(\mathcal{F}\rho_{2n_k}, \mathcal{G}u))
$$

$$
\psi(M(\rho_{2n_k},u)) > \psi(\alpha(\rho_{2n_k},\mathcal{F}\rho_{2n_k})\beta(u,\mathcal{G}u)d(\mathcal{F}\rho_{2n_k},\mathcal{G}u)).
$$

Since ψ is strictly increasing,

$$
\alpha(\rho_{2n_k}, \mathcal{F}\rho_{2n_k})\beta(u, \mathcal{G}u)d(\mathcal{F}\rho_{2n_k}, \mathcal{G}u) < M(\rho_{2n_k}, u)
$$
\n(14)

on the other hand,

$$
M(\rho_{2n_k}, u) = \max \left\{ d(\rho_{2n_k}, u), \frac{d(\rho_{2n_k}, \mathcal{F}\rho_{2n_k})[1 + d(u, \mathcal{G}u)]}{1 + d(\rho_{2n_k}, u)}, \frac{d(u, \mathcal{G}u)[1 + d(\rho_{2n_k}, \mathcal{F}\rho_{2n_k})]}{1 + d(\rho_{2n_k}, u)}, \frac{d(u, \mathcal{G}u)d(\rho_{2n_k}, \mathcal{F}\rho_{2n_k})}{d(\rho_{2n_k}, u)} \right\}
$$

+L $\min \{ d(\rho_{2n_k}, \mathcal{F}\rho_{2n_k}), d(u, \mathcal{F}\rho_{2n_k}).$

Taking limit $k \to \infty$, we get

$$
\lim_{k \to \infty} M(\rho_{2n_k}, u) = d(u, \mathcal{G}u).
$$

Since, from [14,](#page-6-0) we have

$$
d(\mathcal{F}\rho_{2n_k},\mathcal{G}u) \leq \alpha(\rho_{2n_k},\mathcal{F}\rho_{2n_k})\beta(u,\mathcal{G}u)d(\mathcal{F}\rho_{2n_k},\mathcal{G}u) < M(\rho_{2n_k},u).
$$
 (15)

We claim F and G have a unique common fixed points $u, v \in X$. Therefore $Fu = Gu = u$, $Fv = Gv = v$ and $d(u, v) > 0$.

Therefore

$$
\frac{1}{2}\min\{d(u,\mathcal{F}u),d(v,\mathcal{G}v)\}=\frac{1}{2}\min\{0,0\}=0
$$

from [1](#page-2-0) we have

$$
0 \leq \zeta(\alpha(u, \mathcal{F}u)\beta(v, \mathcal{G}v)d(\mathcal{F}u, gv), M(u, v)) \n< \psi(M(u, v)) - \psi(\alpha(u, \mathcal{F}u)\beta(v, \mathcal{G}v)d(u, v)),
$$

Since ψ is strictly increasing

$$
d(u, v) < \alpha(u, \mathcal{F}u)\beta(v, \mathcal{G}v)d(u, v) < M(u, v) \tag{16}
$$

on the other hand,

$$
M(u, v)
$$

= max $\left\{ d(u, v), \frac{d(u, Fu)[1 + d(v, Gv)]}{1 + d(u, v)}, \frac{d(v, Gv)[1 + d(u, Fu)]}{1 + d(u, v)}, \frac{d(v, Gv)d(u, Fu)}{d(u, v)} \right\}$
+ L min $\left\{ d(u, Fu), d(v, Fu) \right\}$
= max $\left\{ d(u, v), \frac{d(u, u)[1 + d(v, v)]}{1 + d(u, v)}, \frac{d(v, v)[1 + d(u, u)]}{1 + d(u, v)}, \frac{d(v, v)d(u, u)}{d(u, v)} \right\}$
= $d(u, v) > 0$.

Therefore, from [15,](#page-6-1) we have

$$
d(u, v) < \alpha(u, \mathcal{F}u)\beta(v, v\mathcal{G})d(u, v) < M(u, v) = d(u, v)
$$

a contradiction. Hence $\mathcal F$ and $\mathcal G$ have a unique common fixed point.

Corollary 3.3. Let (X, d) be a complete metric space, and let $\mathcal{F}: X \to X$ be a mapping and $\alpha, \beta: X \times X \to Y$ $[0, \infty)$. Suppose that the following conditions are satisfied:

(i) if for all $\rho, \sigma \in X$

 $\frac{1}{2} \min\{d(\rho, \mathcal{F}\rho), d(\sigma, \mathcal{F}\sigma)\}\leq d(\rho, \sigma)$ implies

$$
\zeta(\alpha(\rho, \mathcal{F}\rho)\beta(\sigma, \mathcal{F}\sigma)d(\mathcal{F}\rho, \mathcal{F}\sigma), M(\rho, \sigma)) \ge 0
$$
\n(17)

where $\zeta \in \mathcal{Z}_{\psi}$

$$
M(\rho, \sigma)
$$

= max $\left\{ d(\rho, \sigma), \frac{d(\rho, \mathcal{F}\rho)[1 + d(\sigma, \mathcal{F}\sigma)]}{1 + d(\rho, \sigma)}, \frac{d(\sigma, \mathcal{F}\sigma)[1 + d(\rho, \mathcal{F}\rho)]}{1 + d(\rho, \sigma)}, \frac{d(\sigma, \mathcal{F}\sigma)d(\rho, \mathcal{F}\rho)}{d(\rho, \sigma)} \right\}$
+ L min $\left\{ d(\rho, \mathcal{F}\rho), d(\sigma, \mathcal{F}\rho) \right\}$

- (ii) F is (α, β) admissible mapping;
- (iii) there exists $\rho_0 \in X$ such that $\alpha(\rho_0, \mathcal{F}\rho_0) \geq 1$;
- (iv) either, F is continuous or for every sequence $\{\rho_n\}$ in X such that $\alpha(\rho_n, \rho_{n+1}) \geq 1$ and $\beta(\rho_n, \rho_{n+1}) \geq 1$ for all $n \in N_0$ and $\rho_n \to x$, we have $\alpha(\rho, \mathcal{F}\rho) \geq 1$ and $\beta(\rho, \mathcal{F}\rho) \geq 1$.

Then F has a unique fixed point in X .

 \Box

Example 3.4. Let $X = [0, \infty)$, and let $d : X \times X \rightarrow [0, \infty)$ be defined by

$$
d(\rho, \sigma) = \begin{cases} \max\{\rho, \sigma\} & \text{if } \rho \neq \sigma, \\ 0 & \rho = \sigma. \end{cases}
$$

We define $\mathcal{F}, \mathcal{G} : X \to X$ by $\mathcal{F}(\rho) = \frac{\rho}{2}$ and $\mathcal{G}(\rho) = \frac{\rho}{3}$ for all $\rho \in X$. Clearly (X, d) is complete and F and G are continuous self- mappings on X and $\alpha, \beta : X \times X \to [0, \infty)$ are two mappings defined by

$$
\alpha(\rho, \sigma) = \begin{cases} 1 & \text{if } \rho, \sigma \in [0, 1], \\ 0 & \text{otherwise} \end{cases}
$$

and

$$
\beta(\rho, \sigma) = \begin{cases} 1 & \text{if } \rho, \sigma \in [0, 1], \\ 0 & \text{otherwise} \end{cases}
$$

We now define $\zeta : [0, \infty) \times [0, \infty) \to [0, \infty)$ by $\zeta(t, s) = \frac{1}{2}\psi(s) - \psi(t)$, for all $s, t \in [0, \infty)$ and $\psi(t) = \frac{t}{2}$ Now

$$
\frac{1}{2}\min\{d(\rho,\mathcal{F}\rho),d(\sigma,g\sigma)\}\leq d(\rho,\sigma)
$$

implies

$$
\zeta(\alpha(\rho, \mathcal{F}\rho)\beta(\sigma, \sigma)d(\mathcal{F}\rho, \mathcal{F}\sigma), M(\rho, \sigma)) = \frac{1}{2}\psi(M(\rho, \sigma)) - \psi(\alpha(\rho, \mathcal{F}\rho)\beta(\sigma, \mathcal{G}\sigma)d(\mathcal{F}\rho, \mathcal{G}\sigma))
$$

\n
$$
= \frac{1}{2}\psi(M(\rho, \sigma)) - \psi(d(\mathcal{F}\rho, \mathcal{G}\sigma))
$$

\n
$$
< \frac{1}{4}M(\rho, \sigma) - \frac{1}{2}d(\mathcal{F}\rho, \mathcal{G}\sigma) \geq 0,
$$

where

$$
M(\rho, \sigma)
$$

= max $\left\{ d(\rho, \sigma), \frac{d(\rho, \mathcal{F}\rho)[1+d(\sigma, \mathcal{G}\sigma)]}{1+d(\rho, \sigma)}, \frac{d(\sigma, \mathcal{G}\sigma)[1+d(\rho, \mathcal{F}\rho)]}{1+d(\rho, \sigma)}, \frac{d(\sigma, \mathcal{G}\sigma)d(\rho, \mathcal{F}\rho)}{d(\rho, \sigma)} \right\}$
+ L min $\left\{ d(\rho, \mathcal{F}\rho), d(\sigma, \mathcal{F}\rho) \right\}$.

Hence for $\rho, \sigma \in [0,1]$ and $L \geq 0$ the pair $(\mathcal{F}, \mathcal{G})$ is a Suzuki - $\mathcal{Z}_{\psi(\alpha,\beta)}$ - type rational contraction. In either case $\alpha(\rho,\sigma)=0$ and $\beta(\rho,\sigma)=0$ then pair $(\mathcal{F},\mathcal{G})$ is a Suzuki - $\mathcal{Z}_{\psi(\alpha,\beta)}$ - type rational contraction. Thus all the assumptions of Theorem [3.2](#page-2-1) are satisfied and $\mathcal F$ and $\mathcal G$ have a common fixed point in X.

References

- [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.,3(1922),133-181.1
- [2] S. Radenovic, Z. Kadelburg, D. Jandrlixex and A. Jandrlixex, Some results on weak contraction maps, Bull. Iran. Math. Soc. 2012, 38, 625-645.
- [3] T.Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 2008. vol. 136, pp. 1861-1869.
- [4] B. Samet, C. Vetro, P. Vetro, Fixed point Theorems for α - ψ - contractive type mappings, Nonlinear Anal. 75, 2154-2165(2012).
- [5] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29, 1189-1194 (2015).
- [6] Gh. Heidary J, A. Farajzadeh, M. Azhini and F. Khojasteh, A New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized ψ -simulation Functions, Sahand Communications in Mathematical Analysis (SCMA) Vol. 16 No. 1 (2019), 129-148.
- [7] A.S.S. Alharbi, H.H. Alsulami and E. Karapnar, On the Power of Simulation and Admissible Functions in Metric Fixed Point Theory, Journal of Function Spaces, 2017 (2017), Article ID 2068163, 7 pages.
- [8] B. Alqahtani, A. Fulga, E. Karapnar, Fixed Point Results On ∆-Symmetric Quasi-Metric Space Via Simulation Function With An Application To Ulam Stability, Mathematics 2018, 6(10), 208.
- [9] H. Aydi, A. Felhi, E. Karapnar, F.A. Alojail, Fixed points on quasi-metric spaces via simulation functions and consequences, J. Math. Anal.(ilirias) 9(2018) No:2, Pages 10-24.
- [10] R.P. Agarwal and E. Karapnar, Interpolative Rus-Reich-Ciric Type Contractions Via Simulation Functions, An. St. Univ. Ovidius Constanta, Ser. Mat., Volume XXVII (2019) fascicola 3 Vol. 27(3),2019, 137-152.
- [11] H. Aydi, E.Karapnar and V. Rakocevic, Nonunique Fixed Point Theorems on b-Metric Spaces Via Simulation Functions, Jordan Journal of Mathematics and statistics, Volume: 12 Issue: 3 Pages: 265-288 Published: SEP 2019.
- [12] A.F. Roldán-López-de-Hierro, E. Karapnar, C. Roldán-López-de-Hierro, J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345-355.
- [13] H. Aydi, M. A. Barakat, E. Karapnar, Z.D. Mitrovic, T.Rashid, On L-simulation mappings in partial metric spaces, AIMS Mathematics , 4(4)(2019): 1034-1045. Doi:10.3934/math.2019.4.1034.