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Abstract
In this paper, we study Einstein warped product space with respect to semi symmetric
metric connection. During this study we establish some results on curvature, Ricci and
scalar tensors with respect to semi symmetric metric connection and second order semi
symmetric metric connection. In the last section, we investigate under what conditions, if
M is an Einstein warped space with nonpositive scalar curvature and compact base with
respect to semi symmetric metric connection then M is simply a Riemannian product
space.
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1. Introduction
Let (B, gB) and (F, gF ) be two Riemannian manifolds with a positive smooth function

f on B. The metric on the product space B × F is given by
g = π∗(gB) + (f ◦ π)2σ∗(gF ), (1.1)

where π : B × F → B and σ : B × F → F are the projections on the manifolds B and
F respectively and * denotes pull-back operator on tensors. The product space B × F
equipped with metric tensor g is called warped product space, was first introduced by R.
Bishop and B. O’Neil [2]. It is denoted by M = B ×f F . The function f is called warping
function of the warped product. B and F are called the base and fiber of M respectively.
When the warping function f is constant then the warped product B ×f F is simply a
Riemannian product space. After that B. O’Nill [13], studied the geometric properties of
warped product in detail.

A Riemannian manifold (Mn,g), (n > 2) is said to be an Einstein manifold if the
condition S(X, Y ) = r

ng(X, Y ) holds on M , where S and r denote the Ricci tensor and
the scalar curvature of (Mn, g) respectively. According to [3] the above equation is called
the Einstein metric condition.

In 2002, D. S. Kim [10] and in 2003, Kim and Kim [11] discussed the results about
compact Einstein warped product space. After that in 2005, Mustafa [12] extended the
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theorem of Kim and Kim. Then in [5], D. Dumitru studied the existence of compact
Einstein warped products. In 2017, F. E. S. Feitosa, A. A. F. Filho and J. N. V. Gomes [7]
proved that if warping function on gradient Ricci soliton warped product attains maximum
and minimun then it must be Riemannian product.

The concept of a semi-symmetric linear connection on a differential manifold was intro-
duced by Friedmann and Schouten [6]. After that in 1932, Hayden [9] and in 1970, K.Yano
[16] discussed some properties of semi-symmetric metric connection. K.Yano established
that a Riemannian manifold is of constant curvature iff it considers a semi-symmetric met-
ric connection for which the manifold becomes a group manifold. In 1992, N. S. Agashe
and M. R. Chafle [1], studied properties of semi-symmetric non-metric connection on Rie-
mannian manifold and in 2017 S. Pahan, B. Pal, A. Bhattacharyya [14] studied multiply
warped product on quasi-Einstein manifold with respect to semi-symmetric metric con-
nection.

2. Preliminaries
A linear connection ∇ on a Riemannian manifold (Mn, g) is called metric connection if

∇g = 0, otherwise, it is called non-metric connection. A linear connection is symmetric
metric connection iff it is Levi-Civita connection. A linear connection ∇ on (M, g) is said
to be semi-symmetric connection if its torsion tensor T is of the form

T (X, Y ) = π(Y )X − π(X)Y,

where π is a 1-form with the allied vector field P defined by π(X) = g(X, P ), for any
vector field X on M .

The relation between semi-symmetric metric connection ∇ and the Levi-Civita connection
∇ on M is given by

∇XY = ∇XY + π(Y )X − g(X, Y )P, (2.1)
for each smooth vector fields X and Y on M . Further, a relation between the curvature
tensors R and R of type (1,3) of the connections ∇ and ∇ respectively is given by

R(X, Y )Z =R(X, Y )Z + g(Z, ∇XP )Y − g(Z, ∇Y P )X
+ g(X, Z)[∇Y P + π(P )Y − π(Y )P ]
− g(Y, Z)[∇XP + π(P )X − π(X)P ]
+ π(Z)[π(Y )X − π(X)Y ], (2.2)

for each smooth vector fields X, Y and Z on M .

Also the Ricci tensor and scalar tensor with respect to the semi-symmetric metric connec-
tion ∇ are, respectively, as follows:

Ric(X, Y ) =
n∑

i=1
g(R(Ei, X)Y, Ei), (2.3)

and

S =
n∑

i=1
Ric(Ei, Ei), (2.4)

where {E1, ..., En} is a frame field on M .

Notation: Throught this paper, we will consider the followings:
(1) M = B ×f F , dim(B) = n1, dim(F ) = n2, dim(M) = n1 + n2 = n.
(2) Ric denotes the Ricci curvature on M = B ×f F .
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(3) RicB and RicF denote the lifts to M of the Ricci curvature of B and F respectively,
and Ric

B and Ric
F denote the lifts to M of the Ricci curvature of B and F with

respect to the semi-symmetric metric connection ∇, respectively.
(4) RicB and RicF denotes the Ricci curvature of B and F respectively, RicB and

RicF denotes the Ricci curvature of B and F with respect to the semi-symmetric
metric connection ∇ respectively.

(5) div, Ric and H
f represent divergence, Ricci and Hessian of f with respect to ∇

respectively.
(6) |∇Bf |2B = g(∇Bf, ∇Bf).

Now from Proposition 3.5 of [15], we have the following theorem.

Theorem 2.1. Let M = B ×f F be a warped product, dim(B) = n1, dim(F ) = n2,
dim(M) = n1 + n2 = n. If X, Y ∈ Γ(TB), V, W ∈ Γ(TF ) and P ∈ Γ(TB), then

(2.1.1) Ric(X, Y ) = Ric
B(X, Y ) − n2

[Hf
B(X, Y )

f
+ {Pf

f
+ π(P )}g(X, Y )

+ g(Y, ∇XP ) − π(X)π(Y )
]
,

(2.1.2) Ric(X, V ) = Ric(V, X) = 0,

(2.1.3) Ric(V, W ) = Ric
F (V, W ) −

{∆Bf

f
+ (n2 − 1) |∇Bf |2B

f2 + (n − 2)π(P )

+ divBP + (n + n2 − 2)Pf

f

}
g(V, W ),

where div(P ) =
n1∑

k=1

⟨
∇Ek

P, Ek

⟩
, and Ek, 1 ≤ k ≤ n1 is an orthonormal basis of B.

From the above theorem, we get the necessary and sufficient condition for warped
product M = B ×f F to be an Einstein manifold with respect to semi-symmetric metric
connection ∇.

Corollary 2.2. The warped product M = B ×f F with Ric = λg is Einstein if and only
if the following conditions hold:
(2.2.1) RicB(X, Y ) =

[
λ + n2

P f
f + n2π(P )

]
gB(X, Y )

+n2
[Hf

B(X, Y )
f

+ gB(Y, ∇XP ) − π(X)π(Y )
]
.

(2.2.2) (F, gF ) is Einstein with RicF (X, Y ) = λ′gF (X, Y ), for every X, Y ∈ Γ(TB) and
V, W ∈ Γ(TF ).

(2.2.3) λ′ = λf2 + f∆Bf + (n2 − 1)|∇Bf |2 + (n − 2)f2π(P ) + f2divBP + (n + n2 − 2)fPf.

3. Curvature, Ricci and scalar tensor with respect to the semi-symmetric
metric connection

In (2.2), (2.3) and (2.4), we have seen the expression for the curvature, Ricci and scalar
tensor with respect to the semi-symmetric metric connection respectively.
We know that, if (M, g) is a Riemannian manifold with Levi-civita connection ∇ and Z
is a gradient vector field on M , then

g(X, ∇Y Z) = g(Y, ∇XZ), (3.1)

for every smooth vector fields X and Y on M .
Now using this result, we prove the following lemma.



1480 B. Pal, P. Kumar

Lemma 3.1. Let (M, g) be a Riemannian manifold with Levi-civita connction ∇ and P
is a gradient vector field on (M, g), then

g(X, ∇P P ) = (∇P π)(X) = 1
2

d(π(P ))(X), (3.2)

for every smooth vector field X on M .
Proof. Since ∇ is Levi-Civita connection therefore

0 = (∇P g)(X, P )
= (∇P π)(X) − g(X, ∇P P ),

and
0 = (∇Xg)(P, P )

= ∇Xπ(P ) − 2g(P, ∇XP ).
As P is a gradient vector field thus the result follows. �

Using g(R(X, Y )Z, W ) = R(X, Y, Z, W ), we prove the following propositions.
Proposition 3.2. Let (M, g) be a Riemannian manifold with semi-symmetric metric con-
nection ∇, then
(3.2.1) R(X, Y )Z = −R(Y, X)Z.
(3.2.2) R(X, Y, Z, W ) = −R(Y, X, Z, W ).
(3.2.3) R(X, Y, Z, W ) = −R(X, Y, W, Z).
(3.2.4) If P is gradient vector field then

(i) R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0.
(ii) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) = 0.
(iii) R(X, Y, Z, W ) = R(Z, W, X, Y ).

Proof. The proof of (3.2.1) is straightforward from the definition of curvature tensor in
(2.2) and the second part will follow immediate from the first part. After some manipu-
lation we can also prove (3.2.3). Next, we will prove the first part of (3.2.4)

R(X, Y )Z+R(Y, Z)X + R(Z, X)Y = R(X, Y )Z + R(Y, Z)X + R(Z, X)Y
+ g(X, ∇Y P )Z − g(X, ∇ZP )Y + g(Y, ∇ZP )X
− g(Y, ∇XP )Z + g(Z, ∇XP )Y − g(Z, ∇Y P )X.

From the Bianchi’s first identity and equation (3.1), we have R.H.S. of the above equation
will be zero. The second and third part of (3.2.4) follows from the first part of (3.2.4). �
Proposition 3.3. Let (Bn1 , gB) be a Riemannian manifold and {E1, ..., En1} is a frame
field on B, then
(3.3.1) RicB(X, Y ) = RicB(X, Y ) + (2 − n1)gB(Y, ∇XP ) + [−divP

+(2 − n1)π(P )]gB(X, Y ) + (n1 − 2)π(X)π(Y ),
for every smooth vector fields X and Y on B.

(3.3.2) SB = SB + (n1 − 1)[(2 − n1)π(P ) − 2divP ].
Proof. If X and Y are any smooth vector fields on B, then

RicB(X, Y ) =
n∑

i=1
gB(R(Ei, X)Y, Ei).

Using (2.2) in the above equation and some manipulations provide (3.3.1). Next,

SB =
n∑

i=1
RicB(Ei, Ei).

Using (3.3.1) in the above equation provides (3.3.2). �
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Remark. RicB is symmetric (0,2)-type tensor if and only if P is gradient vector field.

Proposition 3.4. Let (Bn1 , gB) be a Riemannian manifold and RicB is the symmetric
(0, 2)−type tensor then for each smooth vector fields X on B

(3.4.1) div(RicB)(X) = div(RicB)(X) − SBπ(X) − d(divP )(X) + n1RicB(X, P )

+ (2 − n1)g
(
X,

n1∑
i=1

∇2
Ei,Ei

P
)

+ [(2 + 2n1 − n2
1)]

2
d(π(P ))(X)

+ 2(2n1 − 3)(divP )π(X) + (1 − n1)(2 − n1)π(P )π(X).
(3.4.2) div(RicB)(X) = div(RicB)(X) − d(divP )(X) + (n1 − 2)(divP )π(X)

+ (2 − n1)g
(
X,

n1∑
i=1

∇2
Ei,Ei

P
)

+ (2 − n1)
2

d(π(P ))(X).

Proof. Let {E1, ..., En1} is a frame field on B. RicB is symmetric (0, 2)−type tensor
therefore

div(RicB)(X) =
n1∑
i=1

(∇EiRicB)(Ei, X)

=
n1∑
i=1

∇Ei(RicB(Ei, X)) −
n1∑
i=1

RicB(∇EiEi, X) −
n1∑
i=1

RicB(Ei, ∇EiX).

Now, we calculate the value of all terms of the R.H.S. of the above equation

n1∑
i=1

∇Ei(RicB(Ei, X) =
n1∑
i=1

∇Ei(RicB(Ei, X)) − d(divP )(X)

+ (2 − n1)
n1∑
i=1

∇Ei(g(X, ∇EiP )) + [(2 − n1)π(P ) − divP ]

×
n1∑
i=1

∇Ei(g(Ei, X)) + (2 − n1)d(π(P ))(X)

+ (n1 − 2)
{
d(π(X))(P ) + π(X)

n1∑
i=1

∇Ei(π(Ei))
}
, (3.3)

n1∑
i=1

RicB(∇EiEi, X) =
n1∑
i=1

RicB(∇EiEi, X) + (2 − n1)
n1∑
i=1

g(X, ∇∇Ei
EiP )

+ [(2 − n1)π(P ) − divP ]
n1∑
i=1

g(∇EiEi, X)

+ (n1 − 2)π(X)
n1∑
i=1

π(∇EiEi) + (1 − n1)[RicB(X, P )

+ divPπ(X)] + (2 − 3n1 + n2
1)g(X, ∇P P ), (3.4)
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n1∑
i=1

RicB(Ei, ∇EiX) =
n1∑
i=1

RicB(Ei, ∇EiX) + SBπ(X) − RicB(X, P )

+ (2 − n1)
n1∑
i=1

g(∇EiX, ∇EiP ) + [(2 − n1)π(P ) − divP ]

×
n1∑
i=1

g(Ei, ∇EiX) + (3 − 2n1)divPπ(X) + (n1 − 2)

× [π(∇P X) + π(∇XP )] + (n1 − 1)(2 − n1)π(P )π(X). (3.5)

Now, after substituting the value of (3.3), (3.4), and (3.5) in the expression of div(RicB)(X)
and using (3.2) we get the first part. Proof of the second part is same as above. �

4. Second order semi-symmetric metric connection
Let (M, g) be a Riemanniam manifold with semi-symmetric metric connection ∇. Let

T be a (r, s) − type tensor field. The second order semi-symmetric metric connection
derivative of T denoted by ∇2

T is a (r, s + 2) − type tensor field and

(∇2
X,Y T )(θ1, ..., θr, Z1, ..., Zs) = (∇X(∇T ))(Y, θ1, ..., θr, Z1, ..., Zs)

= ∇X(∇Y T ))(θ1, ..., θr, Z1, ..., Zs)
− (∇∇XY T )(θ1, ..., θr, Z1, ..., Zs). (4.1)

From the above, we have the followings:

(i) If f : M → R is a smooth function then the second order semi-symmetric metric
tensor derivative of f with respect to X and Y is

∇2
X,Y f = (∇X∇f)(Y )

= (∇Xdf)(Y )
= ∇2

X,Y f − π(Y )Xf + g(X, Y )Pf, (4.2)

where we use the fact that ∇f = df in the second line.
(ii) If X, Y and Z are smooth vector fields on (M, g) then second order semi-symmetric

metric tensor derivative of Z with respect to X and Y is

∇2
X,Y Z = ∇X∇Y Z − ∇∇XY Z

= ∇2
X,Y Z + (∇Xπ(Z))Y + π(∇Y Z)X − π(Y )∇XZ

+g(X, Y )[∇P Z − π(Z)P ] + g(Y, Z)[−∇XP − π(P )X + π(X)P ]
+g(X, Z)π(Y )P − [g(X, ∇Y Z) − g(Y, ∇XZ)]P. (4.3)

(iii)

∇2
X,Y Z − ∇2

Y,XZ = R(X, Y )Z + g(Z, ∇XP )Y − g(Z, ∇Y P )X + π(X)∇Y Z

− π(Y )∇XZ + g(X, Z)[∇Y P + π(P )Y ]
− g(Y, Z)[∇XP + π(P )X].
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Lemma 4.1. Let X and Y be smooth vector fields on Riemannian manifold M . If w is
a first form and ∇ is a semi-symmetric metric connection on M then

(4.1.1) (∇Xw)# = ∇Xw# − w(X)P + w(P )X,

(4.1.2) (∇2
X,Y w)# = ∇2

X,Y w# − ∇X(w(Y )P ) − ((∇Y w)(X))P − π(Y )∇Xw#

+ w(∇XY )P + ∇X(w(P )Y ) + ((∇Y w)(P ))X + g(X, Y )[∇P w# − w(P )P ]
− w(P )∇XY + w(Y )[π(X)P − π(P )X] + π(Y )[w(X)P − w(P )X],

(4.1.3) (∇2
X,Y w)(Z) = (∇2

X,Y w)(Z) − π(Z)(∇Xw)(Y ) − w(Y )(∇Xπ)(Z)
− π(Z)(∇Y w)(X) − π(Y )(∇Xw)(Z) + g(X, Y )[(∇P w)(Z)
− π(Z)w(P )] + g(X, Z)[(∇Y w)(P ) − π(P )w(Y )]
+ g(Y, Z)(∇Xw(P ))] + [π(X)w(Y ) + π(Y )w(X)]π(Z),

(4.1.4) (∇2
X,Y w)(Z) − (∇2

Y,Xw)(Z) = −w(R(X, Y )Z) + π(X)(∇Y w)(Z)
− π(Y )(∇Xw)(Z) + w(X)(∇Y π)(Z) − w(Y )(∇Xπ)(Z)
− g(X, Z)[w(∇Y P ) + π(P )w(Y )] + g(Y, Z)[w(∇XP ) + π(P )w(X)],

where # is musically operator and ∇2
X,Y = ∇X∇Y − ∇∇XY denote the second order semi-

symmetric metric connection on M .

Proof. Let w stands for the dual 1-form associated to w# that is, we know that if w is a
first form then w# is a vector field corresponding to w and we can define

w(X) = g(w#, X), (4.4)

for any smooth vector fields X on B.
From (4.4), we deduce the following results

(∇Xw)# = ∇Xw#, (4.5)

i.e.,
g(∇Xw#, Y ) = (∇Xw)(Z) (4.6)

and
(∇2

X,Y w)# = ∇2
X,Y w#. (4.7)

Recall that
(∇Xπ)(Z) = g(∇XP, Z). (4.8)

The proof of (4.1.1) goes as follows:

(∇Xw)(Y ) = ∇Xw(Y ) − w(∇XY )
= (∇Xw)(Y ) − π(Y )w(X) + g(X, Y )w(P )
= g(∇Xw#, Y ) − g(w(X)P, Y ) + g(w(P )X, Y )
= g(∇Xw# − w(X)P + w(P )X, Y ),

where we have used (4.6) in the third line. Therefore from (4.5) the last equation implies
that

(∇Xw)# = ∇Xw# − w(X)P + w(P )X.

Hence (4.1.1) is proved.
Now, we prove the second part of the lemma. Since # is a linear operator we have

(∇2
X,Y w)# = (∇X(∇Y w))# − (∇∇XY w)#, (4.9)
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Applying (4.1.1) to both terms of the right hand side of (4.9), we have

(∇X(∇Y w))# = ∇X(∇Y w#) − ∇X(w(Y )P ) − ((∇Y w)(X))P
+ ∇X(w(P )Y ) + ((∇Y w)(P ))X + w(P )[π(Y )X
− g(X, Y )P ] + w(Y )[π(X)P − π(P )X] (4.10)

and
(∇∇XY w)# = ∇∇XY w# + π(Y )∇Xw# − w(∇XY )P + w(P )∇XY

− g(X, Y )∇P w# + π(Y )[w(P )X − w(X)P ]. (4.11)
After putting (4.10) and (4.11) in (4.9) we get the result (4.1.2).
Next, we prove the third part of the lemma. We can write

(∇2
X,Y w)(Z) = g((∇2

X,Y w)#, Z).

After using the value of (∇2
X,Y w)# from (4.1.2), and applying (4.6) and (4.8) to the last

equation we get the result (4.1.3). Hence third part of lemma is proved. The proof of the
last part of the lemma follows immediately from (4.1.3). �
Remark. The result (4.1.4) of Lemma 4.1 is the expression of Ricci identity [8, p. 159]
with respect to the semi-symmetric metric connection.

5. Hessian of f with respect to semi-symmetric metric connection
Definition 5.1. Let (M, g) be Riemannian manifold of dim n. Then, Hessian of a smooth
function f : M → R with respect to the semi-symmetric metric connection ∇ is denoted
by H

f and defined by H
f := ∇(∇f)

Lemma 5.2. The Hessian H
f of f is a (0,2)-type tensor such that

H
f (X, Y ) = Hf (X, Y ) − π(Y )Xf + g(X, Y )Pf, (5.1)

for every smooth vector fields X and Y on M .

Proof. Since ∇f = df we have

H
f (X, Y ) = ∇(df)(X, Y ) = (∇Xdf)(Y ).

Then the proof follows from (4.2). �

Remark. The Hessian H
f is a symmetric (0,2)-type tensor if and only if

π(Y )Xf = π(X)Y f, (5.2)
for any smooth vector fields X and Y on M.

Lemma 5.3. If H
f is a symmetric (0,2)-type tensor then

π(X)|∇f |2 = df(P )df(X), (5.3)
for any smooth vector field X on M .

Proof. Let X be a smooth vector field on M . Then
π(X)|∇f |2 = π(X)g(∇f, ∇f)

= π(X)df(∇f)
(5.2)= π(∇f)df(X)
= df(P )df(X).

�
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Lemma 5.4. Let (M, g) be a Riemannian manifold and f : M → R be a smooth function.
If H

f is symmetric then

(5.4.1) (∇Xdf)(Y ) = (∇Y df)(X),
(5.4.2) (∇2

X,Y df)(Z) = (∇2
X,Zdf)(Y ),

for every smooth vector fields X,Y and Z on M .

Proof. From definition of H
f , we have

(∇Xdf)(Y ) = H
f (X, Y ).

Hence, the symmetry of H
f proves the first part. Now, we prove the second part. Let us

write

L.H.S = ∇X(∇Y df(Z)) − (∇Y df)(∇XZ) − (∇∇XY df)(Z).

After using (5.4.1) in this equation, we get

= ∇X(∇Zdf(Y )) − (∇∇XZdf)(Y ) − (∇Zdf)(∇XY ) = R.H.S.

�

Proposition 5.5. Let (Bn1 , gB) be a Riemannian manifold. If H
f is a symmetric (0, 2)−type

tensor then for every smooth vector fields X on B:
(5.5.1) div(Hf )(X) = div(Hf )(X) − (∇∇f π)(X) + d(Pf)(X) − 2∆fπ(X)

+n1Hf (X, P ) + (1 − n1)π(P )df(X).

(5.5.2) div(Hf )(X) = div(Hf )(X) + (∇∇π)(X) − ∆fπ(X) + d(Pf)(X).

(5.5.3) div( 1
f H

f )(X) = div( 1
f Hf )(X) + 1

f

{
d(Pf)(X) − (∇∇f π)(X) − 2∆fπ(X)

+n1Hf (X, P ) + (1 − n1)π(P )df(X)
}
.

(5.5.4) div( 1
f H

f )(X) = div( 1
f Hf )(f) + 1

f

{
d(Pf)(X) − ∇fπ(X) − (∇∇f π)(X)

}
.

Proof. Let {E1, ..., En1} be a frame field on B. Since H
f is symmetric (0, 2)−type tensor,

we get

div(Hf )(X) =
n1∑
i=1

(∇EiH
f )(Ei, X)

=
n1∑
i=1

∇Ei(H
f (Ei, X)) −

n1∑
i=1

H
f (∇EiEi, X) −

n1∑
i=1

H
f (Ei, ∇EiX). (5.4)
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Now, we need to calculate the value of all terms of the R.H.S. of the above equation:
n1∑
i=1

∇Ei(H
f (Ei, X)) =

n1∑
i=1

∇Ei(Hf (Ei, X)) − ∇∇f (π(X)) + d(Pf)(X)

− π(X)
n1∑
i=1

∇Ei∇Eif + (Pf)
n1∑
i=1

∇Eig(Ei, X), (5.5)

n1∑
i=1

H
f (∇EiEi, X) =

n1∑
i=1

H
f (∇EiEi, X) − π(X)

n1∑
i=1

∇∇Ei
Eif

+ (Pf)
n1∑
i=1

gB(∇EiEi, X) + (1 − n1)Hf (X, P ), (5.6)

n1∑
i=1

H
f (Ei, ∇EiX) =

n1∑
i=1

Hf (Ei, ∇EiX) + π(X)∆f − π(∇∇f X)) − Hf (X, P )

+ (Pf)
n1∑
i=1

gB(Ei, ∇EiX) + (n1 − 1)π(P )df(X). (5.7)

After introducing (5.5), (5.6) and (5.7) in (5.4) we get the result (5.5.1).
The proof of (5.5.2) is the same as the above. Next, we prove (5.5.3). We have

div( 1
f

H
f )(X) =

n1∑
i=1

(∇Ei(
1
f

H
f ))(Ei, X)

=
n1∑
i=1

∇Ei(
1
f

H
f (Ei, X)) − 1

f

n1∑
i=1

H
f (∇EiEi, X) − 1

f

n1∑
i=1

H
f (Ei, ∇EiX), (5.8)

and
n1∑
i=1

∇Ei(
1
f

H
f (Ei, X)) =

n1∑
i=1

∇Ei(
1
f

Hf (Ei, X)) + 1
f

{
− ∇∇f (π(X)) + d(Pf)(X)

− π(X)
n1∑
i=1

∇Ei∇Eif + (Pf)
n1∑
i=1

∇Ei(g(Ei, P ))
}
. (5.9)

Therefore, substituting (5.9), (5.6) and (5.7) into (5.8) implies the result (5.5.3). The proof
of (5.5.4). is similar to the above. �

6. Einstein warped product space with non positive scalar curvature with
respect to semi-symmetric metric connection

Lemma 6.1. Let (Bn1 , gB) be a Riemannian manifold with semi-symmetric metric con-
nection ∇ and f be a smooth function on B. If H

f is symmetric then for any smooth
vector field X on B the following holds:

div(Hf )(X) = d(∆f)(X) + Ric(∇f, X)
+ (∆f)π(X) − d(Pf)(X). (6.1)

Proof. Substituting w = df in (4.1.4) and using the result (5.4.2), we get

(∇2
X,Zdf)(Y ) − (∇2

Y,Xdf)(Z) = −df(R(X, Y )Z) + π(X)(∇Y df)(Z) − π(Y )(∇Xdf)(Z)
+ df(X)(∇Y π)(Z) − df(Y )(∇Xπ)(Z)
− g(X, Z)[df(∇Y P ) + π(P )df(Y )]
+ g(Y, Z)[df(∇XP ) + π(P )df(X)], (6.2)

for any smooth vector fields X,Y and Z on B.
For a fixed p ∈ B, we can find a local orthonormal frame {E1, ...En1} of the space B such
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that ∇EiEi(p) = 0. We can also choose ∇EiY (p) = ∇EiP (p) = 0. Taking trace of (6.2)
with respect to X, Z and from the symmetry of H

f , we have
n1∑
i=1

(∇2
Ei,Ei

df)(Y ) =
n1∑
i=1

(∇2
Y,Ei

df)(Ei) −
n1∑
i=1

df(R(Ei, Y )Ei)

+ d(Pf)(Y ) − (∆f)π(Y ) + (1 − n1)π(P )df(Y ). (6.3)

Since,
n1∑
i=1

(∇2
Ei,Ei

df)(Y ) = div(Hf )(Y ) − 2(∆f)π(Y )

+ (n1 + 1)d(df)(Y ) + (1 − n1)π(P )df(X) (6.4)

and
n1∑
i=1

(∇2
Y,Ei

df)(Ei) = d(∆f)(Y ) + (n1 − 1)d(Pf)(X). (6.5)

Therefore after using (6.4), (6.5) in (6.3) we get the result (6.1). Hence proved the lemma.
�

Proposition 6.2. Let (Bn1 , gB) be a compact Riemannian manifold with semi-symmetric
metric connection ∇ of dimension n1 > 2, and both of H

f and RicB both be symmetric
tensors. Let f be a non-constant smooth function on B satisfying (2.2.1) for a constant
λ ∈ R and a natural number n2 ∈ N. Then f satisfies (2.2.3) for a constant λ′ if

a1(Pf)(Xf) + f{a2d(Pf)(X) + a3df(∇XP )
+ a4π(P )Xf + 2∆fπ(X)} + f2{a5d(divP )(X)

+ a6d(π(P ))(X) + a7g
(
X,

n1∑
i=1

∇2
Ei,Ei

P
)

+ a8divPπ(X)} = 0, (6.6)

for every smooth vector field X on B and

a1 = (n2 − n1), a2 = −(n + 2n1 − 2), a3 = 2(n − 2), a4 = −2n,

a5 = 2(2 − n)
n2

, a6 = −(n − 2)2

n2
, a7 = a3

n2
, a8 = 2(2 − n)

n2
.

Moreover, we can construct a compact Einstein warped product space M = B ×f F with
Ric = λg for a compact Einstein space (F, gF ) of dimension n2 with RicF = λ′gF .

Proof. On contracting both sides of (2.2.1), we have

SB = n1
{

λ + n2
Pf

f
+ n2π(P )

}
+ n2

{∆f

f
+ divP − π(P )

}
.

The above equation implies that

dSB(X) = n2
{

(n1 − 1)d(π(P ))(X) + d(divP )(X) + 1
f

d(∆f)(X)

+n1
f

d(Pf)(X) − [n1(Pf) + ∆f ]
f2 df(X)

}
. (6.7)

From equation (3.3.2), we have

dSB(X) = 2div(RicB)(X) + (n1 − 1)[(2 − n1)d(π(P ))(X)
−2d(divP )(X)]. (6.8)
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From equation (6.7) and (6.8), we have

2div(RicB)(X) = n2
f

d(∆f)(X) + n1n2
f

d(Pf)(X) − n2
f2 ∆fdf(X)

− n1n2
f2 Pfdf(X) + [(n + n1 − 2)λ2)]d(divP )(X)

+ (2 − n)(1 − n1)d(π(P ))(X). (6.9)

The equation (2.2.1) can be written as

RicB(X, Y ) = [λ + n2π(P )]gB(X, Y ) + n2g(Y, ∇XP )

− n2π(X)π(Y ) + n2
f

π(Y )df(X) + n2
f

H
f (X, Y ). (6.10)

Taking divergence on both sides of (6.10) and using (3.2), we get

div(RicB)(X) = n2div( 1
f

H
f )(X) + n2g

(
X,

n1∑
i=1

∇2
Ei,Ei

P
)

− n2divPπ(X)

+ n2
2

d(π(P ))(X) + n2
f

(∇∇f π)(X)

+ n2
f

∆fπ(X) − n2
f2 |∇f |2π(X). (6.11)

Using (3.4.2) and (5.5.4) in (6.11), we have

div(RicB)(X) − n2div( 1
f

Hf )(X) − d(divP )(X) + (n − 2)div(P )π(X)

+ (2 − n)gB

(
X,

n1∑
i=1

∇2
Ei,Ei

P
)

+ (2 − n)
2

d(π(P ))(X)

− n2
f

d(Pf)(X) + n2
f2 Pfdf(X) = 0. (6.12)

Multiplying both sides of the above equation by −2f2

n2
we have

2f2div( 1
f

Hf )(X) − 2
n2

f2div(RicB)(X) + 2
n2

f2d(divP )(X) + 2fd(Pf)(X)

− 2(Pf)df(X) + (n − 2)f2

n2

{
2
(
X,

n1∑
i=1

∇2
Ei,Ei

P
)

+ d(π(P ))(X) − 2div(P )π(X)
}

= 0. (6.13)

From equations (2.2.1) and (3.3.1), we have

RicB(X, Y ) =
[
λ + divP + n2

f
Pf + (n − 2)π(P )

]
gB(X, Y ) + n2

f
Hf (X, Y )

+ (n − 2)gB(Y, ∇XP ) + (2 − n)π(X)π(Y ). (6.14)

Also, we know that

div( 1
f

Hf )(X) = − 1
2f2 d(|∇Bf |2B) + 1

f
div(Hf )(X).

Using Lemma 6.1 and from equation (6.14) the last equation implies

div( 1
f

Hf )(X) = (n2 − 1)
2f2 d(|∇Bf |2B) + n2

f2 (Pf)df(X) + 1
f

{
d(∆f)(X)

+ λdf(X) + divPdf(X) + (n − 2)df(∇XP )
+ ∆fπ(X) − d(Pf)(X) − 2π(P )df(X)

}
. (6.15)
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Using the equations (6.15), (6.9) and condition (6.6) in (6.13), we get

d{λf2 + f∆f + (n2 − 1)d(|∇Bf |2B}(X) + (n − 2){2fπ(P )df(X)
+ f2d(π(P ))(X)} + 2fdivPdf(X) + f2d(div)(X)
+ (n + n2 − 2){(Pf)df(X) + fd(Pf)(X)} = 0.

This equation can be written as

d{λf2 + f∆Bf + (n2 − 1)|∇Bf |2 + (n − 2)f2π(P )
+ f2λ2divBP + (n + n2 − 2)f(Pf)} = 0

Hence the first part of the proposition is proved. The second part of the proposition holds
by using the sufficiencies of Corollary 2.2. �

Theorem 6.3. Let M = B×f F be an Einstein warped product space with semi-symmetric
metric connection ∇ and compact base B. If M has non-positive scalar curvature with
dim(F ) = n2 > 2 and warping function f satisfies

λ2
V (B)

∫
B

{f2divP − f(x)2divP (x)} + b1
V (B)

∫
B

{f2π(P ) − f(x)2π(P )(x)}

+ b2
V (B)

∫
B

f(Pf) = 0, (6.16)

where x may be minimum or maximum points of f on B and V (B) denotes the volume of
B, b1 = (n − 2), b2 = (n + n2 − 2), then M is simply a Riemannian product.

Proof. Since dim(F ) = n2 > 2 and RicF = λ′gFi where

λ′ = λf2 + f∆Bf + (n2 − 1)|∇Bf |2 + (n − 2)f2π(P ) + f2divBP + (n + n2 − 2)fPf

then by [4, Sec 3] λ′ is constant.
Equation (2.2.3) can be written as

λ′ = λf2 + div(f∇f) + (n2 − 2)|∇Bf |2 + [(n − 1)λ1λ2 − λ2
2]f2π(P )

+ λ2f2divBP + [(n)λ1 + (n2 − 1)λ2]fPf. (6.17)

By taking integration of (6.17) over B, we have

λ′ = λ

V (B)

∫
B

f2 + (n2 − 2)
V (B)

∫
B

|∇Bf |2 + λ2
V (B)

∫
B

f2divBP

+ b1
V (B)

∫
B

f2π(P ) + b2
V (B)

∫
B

f(Pf). (6.18)

Case 1. Let n2 ≥ 3 and l be the maximum point of f on B. Then we have
f(l) > 0, ∇f(l) = 0 and ∆f(l) ≤ 0. Therefore from (2.2.3) and (6.18), we have

0 ≥ f(l)∆f(l)
= λ′ − λf(l)2 − λ2f(l)2divP (l) − b1f(l)2π(P )(l)

= λ

V (B)

∫
B

{f2 − f(l)2} + (n2 − 2)
V (B)

∫
B

|∇Bf |2 + λ2
V (B)

∫
B

{f2divBP

− f(l)2divP (l)} + b1
V (B)

∫
B

{f2π(P ) − f(l)2π(P )(l)} + b2
V (B)

∫
B

f(Pf)

≥ 0.

The last inequality holds from the properties of λ and by the condition (6.16). Hence f is
constant.
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Case 2. Let n2 = 1, 2 and we consider m as a minimum point of f on B. Then we have
f(m) > 0, ∇f(m) = 0 and ∆f(m) ≥ 0. Therefore from (2.2.3) and (6.18), we have

0 ≤ f(m)∆f(m)
= λ′ − λf(l)2 − λ2f(m)2divP (m) − b1f(l)2π(P )(m)

= λ

V (B)

∫
B

{f2 − f(l)2} + (n2 − 2)
V (B)

∫
B

|∇Bf |2 + λ2
V (B)

∫
B

{f2divBP

− f(m)2divP (m)} + b1
V (B)

∫
B

{f2π(P ) − f(m)2π(P )(m)} + b2
V (B)

∫
B

f(Pf)

≤ 0.

Therefore from the properties of λ and condition (6.16), we can say that f is constant.
The result follows. �
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