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Abstract

In this paper, we study Einstein warped product space with respect to semi symmetric
metric connection. During this study we establish some results on curvature, Ricci and
scalar tensors with respect to semi symmetric metric connection and second order semi
symmetric metric connection. In the last section, we investigate under what conditions, if
M is an Einstein warped space with nonpositive scalar curvature and compact base with
respect to semi symmetric metric connection then M is simply a Riemannian product
space.
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1. Introduction

Let (B, gp) and (F,gr) be two Riemannian manifolds with a positive smooth function
f on B. The metric on the product space B x F' is given by

9="7"(g5) + (f o m)*0*(gr), (1.1)
where m : B X ' — B and 0 : B X F' — F are the projections on the manifolds B and
F respectively and * denotes pull-back operator on tensors. The product space B x F
equipped with metric tensor g is called warped product space, was first introduced by R.
Bishop and B. O’Neil [2]. It is denoted by M = B x; F. The function f is called warping
function of the warped product. B and F' are called the base and fiber of M respectively.
When the warping function f is constant then the warped product B x; F'is simply a
Riemannian product space. After that B. O’Nill [13], studied the geometric properties of
warped product in detail.

A Riemannian manifold (M",g), (n > 2) is said to be an Einstein manifold if the
condition S(X,Y) = Zg(X,Y) holds on M, where S and r denote the Ricci tensor and
the scalar curvature of (M", g) respectively. According to [3] the above equation is called
the Einstein metric condition.

In 2002, D. S. Kim [10] and in 2003, Kim and Kim [11] discussed the results about
compact Einstein warped product space. After that in 2005, Mustafa [12] extended the
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theorem of Kim and Kim. Then in [5], D. Dumitru studied the existence of compact
Einstein warped products. In 2017, F. E. S. Feitosa, A. A. F. Filho and J. N. V. Gomes [7]
proved that if warping function on gradient Ricci soliton warped product attains maximum
and minimun then it must be Riemannian product.

The concept of a semi-symmetric linear connection on a differential manifold was intro-
duced by Friedmann and Schouten [6]. After that in 1932, Hayden [9] and in 1970, K.Yano
[16] discussed some properties of semi-symmetric metric connection. K.Yano established
that a Riemannian manifold is of constant curvature iff it considers a semi-symmetric met-
ric connection for which the manifold becomes a group manifold. In 1992, N. S. Agashe
and M. R. Chafle [1], studied properties of semi-symmetric non-metric connection on Rie-
mannian manifold and in 2017 S. Pahan, B. Pal, A. Bhattacharyya [14] studied multiply
warped product on quasi-Einstein manifold with respect to semi-symmetric metric con-
nection.

2. Preliminaries

A linear connection V on a Riemannian manifold (M", g) is called metric connection if
Vg = 0, otherwise, it is called non-metric connection. A linear connection is symmetric
metric connection iff it is Levi-Civita connection. A linear connection V on (M, g) is said
to be semi-symmetric connection if its torsion tensor T is of the form

T(X,Y)=r(Y)X — n(X)Y,

where 7 is a 1-form with the allied vector field P defined by 7(X) = ¢g(X, P), for any
vector field X on M.

The relation between semi-symmetric metric connection V and the Levi-Civita connection
V on M is given by

VxY =VxY +7(Y)X — g(X,Y)P, (2.1)
for each smooth vector fields X and Y on M. Further, a relation between the curvature
tensors R and R of type (1,3) of the connections V and V respectively is given by

R(X,Y)Z =R(X,Y)Z + g(Z,VxP)Y — g(Z,VyP)X

+9(X, 2)[Vy P+ 7(P)Y —n(Y)P]
—g(Y,2)[VxP +n(P)X —n(X)P]
+m(2)[x(Y)X - m(X)Y], (2.2)

for each smooth vector fields X,Y and Z on M.

Also the Ricci tensor and scalar tensor with respect to the semi-symmetric metric connec-
tion V are, respectively, as follows:

Ric(X,Y) =) g(R(E;, X)Y, Ej), (2.3)
=1
and
= Z c(E;, F;) (2.4)
where {E1, ..., B, } is a frame field on M.

Notation: Throught this paper, we will consider the followings:
(1) M =B xy F, dim(B) = n1, dim(F) = na, dim(M) = ny + no = 7.
(2) Ric denotes the Ricci curvature on M = B x; F.
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(3) RicP and Rict" denote the lifts to M of the Ricci curvature of B and F respectively,

and Ric> and Ric' denote the lifts to M of the Ricci curvature of B and F with
respect to the semi-symmetric metric connection V, respectively.

(4) Ricp and Ricp denotes the Ricci curvature of B and F respectively, Ricg and
Ricr denotes the Ricci curvature of B and F with respect to the semi-symmetric
metric connection V respectively.

(5) div, Ric and "’ represent divergence, Ricci and Hessian of f with respect to V
respectively.

6) [Vafls =9(VBf, VBI).

Now from Proposition 3.5 of [15], we have the following theorem.

Theorem 2.1. Let M = B x; F be a warped product, dim(B) = ny, dim(F) = na,
dim(M)=n1+ne=n. If X,)Y e (TB), VW € I'(TF) and P € I'(T'B), then

HJQ(;QY) + {]}f +7(P)}g(X,Y)

+9(Y,VxP) = 7(X)m(Y)],
(2.1.2) Ric(X,V) = Ric(V,X) =0,

(2.1.1) Rie(X,Y) = Ric” (X,Y) = na |

2
A?f +(n2 — 1) |V?§|B
. _ Pf
+ divgP + (n+n2 - 2) [ }g(V7 W)’

(2.1.3) Rie(V,W) = Ric" (v,w) - { + (7 — 2)7(P)

n1

where div(P) = Z (VE,P, Ey), and E;, 1 < k < ny is an orthonormal basis of B.
k=1

From the above theorem, we get the necessary and sufficient condition for warped
product M = B Xy F to be an Einstein manifold with respect to semi-symmetric metric
connection V.

Corollary 2.2. The warped product M = B x; F' with Ric = \g is Einstein if and only
if the following conditions hold:

(2.2.1) Ricp(X,Y) = [A+ noL + non(P)]gp(X,Y)

!
HL(X,Y
12 [B(f) +9(Y,VxP) —n(X)n(Y)].
(2.2.2) (F,gF) is Einstein with Ricp(X,Y) = Ngp(X,Y), for every X,Y € T'(TB) and
V,\W e I'(TF).

(2.2.3) N = A2+ fARf+(ne—1)|Vef?+(m—2)f?m(P)+ f2divg P+ (R +ng — 2) f Pf.

3. Curvature, Ricci and scalar tensor with respect to the semi-symmetric
metric connection

In (2.2), (2.3) and (2.4), we have seen the expression for the curvature, Ricci and scalar
tensor with respect to the semi-symmetric metric connection respectively.
We know that, if (M, g) is a Riemannian manifold with Levi-civita connection V and Z
is a gradient vector field on M, then

9(X,VyZ) = g(Y,VxZ), (3.1)

for every smooth vector fields X and Y on M.
Now using this result, we prove the following lemma.
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Lemma 3.1. Let (M,g) be a Riemannian manifold with Levi-civita connction V and P
is a gradient vector field on (M, g), then

9(X,VpP) = (Vpm)(X) = 5d(x(P))(X), (32)
for every smooth vector field X on M.
Proof. Since V is Levi-Civita connection therefore
0= (Vpg)(X,P)
= (Vpm)(X) —g(X,VpP),
and
0= (Vxg)(P,P)
= Vxm(P) —29(P,VxP).
As P is a gradient vector field thus the result follows. O
Using g(R(X,Y)Z,W) = R(X,Y, Z,W), we prove the following propositions.

Proposition 3.2. Let (M, g) be a Riemannian manifold with semi-symmetric metric con-
nection V, then

(3.2.1) R(X,Y)Z = -R(Y,X)Z.

(3.2.2) R(X,Y,Z,W) = —R(YX Z,W).

(3.2.3) R(X,Y,Z,W)=—-R(X,Y,W, Z).

(3.2.4) If P is gradient vector field then

(i) R(X,Y)Z+R(Y,Z)X + R(Z,X)Y = 0.

(i) R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W) = 0.
(iii) R(X,Y,Z,W)=R(Z,W,X.,Y).

Proof. The proof of (3.2.1) is straightforward from the definition of curvature tensor in
(2.2) and the second part will follow immediate from the first part. After some manipu-
lation we can also prove (3.2.3). Next, we will prove the first part of (3.2.4)

R(X,Y)Z+R(Y,Z)X + R(Z,X)Y = R(X,Y)Z + R(Y,Z)X + R(Z,X)Y
+9(X,VyP)Z — g(X,VzP)Y + g(Y,VzP)X
—9(Y,VxP)Z +g(Z,VxP)Y — g(Z,VyP)X

From the Bianchi’s first identity and equation (3.1), we have R.H.S. of the above equation
will be zero. The second and third part of (3.2.4) follows from the first part of (3.2.4). O

Proposition 3.3. Let (B™,gp) be a Riemannian manifold and {Ex, ..., En, } is a frame
field on B, then

(3.3.1) Ricg(X,Y) = Ricp(X,Y) + (2 — n1)gn(Y, Vx P) + [~divP
+(2 —n)m(P)lga(X,Y) + (n1 — 2)n(X)n(Y),

for every smooth vector fields X and 'Y on B.
(3.3.2) Sp=Sgp+ (n1 — 1)[(2 — n1)7r(P) — QdivP}.

Proof. If X and Y are any smooth vector fields on B, then

Ricp(X,Y) ZgB (B, X)Y, E).
Using (2.2) in the above equation and some manipulations provide (3.3.1). Next,

Sp =Y Ricg(E;, E;).
i=1
Using (3.3.1) in the above equation provides (3.3.2). O
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Remark. Ricp is symmetric (0,2)-type tensor if and only if P is gradient vector field.

Proposition 3.4. Let (B™, gg) be a Riemannian manifold and Ricg is the symmetric
(0,2)—type tensor then for each smooth vector fields X on B

(3.4.1) div(Ricg)(X) = div(Ricg)(X) — Spm(X) — d(divP)(X) + ny Ricg(X, P)
B [(2 +2n1 —n7)]
(2 —n1)g(X, Z \%) 5 d(m(P))(X)
+2(2n; — 3)(dZUP) (X)+ (1 —n1)(2 —ny)m(P)r(X).
(3.4.2) div(Ricg)(X) = div(Ricg)(X) — d(divP)(X) + (ny — 2)(divP)m(X)

(2 = n1)g(X, ZVE“ L2 _in)d(w(P))(X).

Proof. Let {Ey,...,E,,} is a frame field on B. Ricp is symmetric (0,2)—type tensor
therefore

ni
div(Ricp)(X) =Y (Vg Ricg)(E;, X)
i=1
ni e - ni _ e ni _ e
=Y Vg (Ricg(E;, X)) = > Ricg(VE,Ei, X) = > Ricg(E;, Vi, X).
=1 =1 =1

Now, we calculate the value of all terms of the R.H.S. of the above equation

i% (Ricg(E;, X) = i Vg, (Ricg(E;, X)) — d(divP)(X)
=1 =1
—nq) ZVE (X,VEg,P))+ (2 —ny)n(P) — divP]
X Z Ve (9(Ei, X)) + (2 — ny)d(n(P))(X)

+ (n1 = 2){d(7(X))(P) + 7(X) i Vi, (n(E))} (3-3)

ni ni ni
Y Ricp(Ve,Ei, X) =Y Ricg(Vi,Ei, X) + (2= n1) Y 9(X, Vv 5,P)

=1 =1 =1
n1
+[(2 = n)n(P) — divP] Y (Vi B, X)
=1
ni
+ (n1 = 2)m(X) > (Vg Ei) + (1 — ny)[Ricg(X, P)
i=1

+ divPr(X)] + (2 — 3ny + nd)g(X,VpP), (3.4)
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ni ni

Z%B(‘E’HVEZX) = ZRZCB(EZ,VEZX) + SBT['(X) - RiCB(X, P)
=1 =1

+ (2 — nl) ig(inX, VELP) + [(2 — n1)7r(P) — d’iUP]
=1

3

1

9(Ei, Vg, X) + (3 —2n1)divPr(X) + (n1 — 2)

i=1
X [F(VpX) + 7(VxP)] + (n1 — (2 = m)n(P)e(X).  (3.5)

Now, after substituting the value of (3.3), (3.4), and (3.5) in the expression of div(Ricg)(X)
and using (3.2) we get the first part. Proof of the second part is same as above. O

4. Second order semi-symmetric metric connection

Let (M, g) be a Riemanniam manifold with semi-symmetric metric connection V. Let
T be a (r,s) — type tensor field. The second order semi-symmetric metric connection

derivative of T" denoted by VT is a (r,s + 2) — type tensor field and

(Viy D)0, 07, 21,y Z5) = (Vx (VD) (Y, 0,07, 21, oy Z)
Vx(TyT)(OY,....07, 24, ... Zy)

_(vﬁxy )(917"'7QT7Z1,-~'7Z3)- (41)

From the above, we have the followings:

(i) If f: M — R is a smooth function then the second order semi-symmetric metric
tensor derivative of f with respect to X and Y is

Vivf = (VxVAY)
= (Vxdf)(Y)
= Viyf-n(Y)X[+g(X,Y)P], (4.2)

where we use the fact that Vf = df in the second line.
(ii) If X, Y and Z are smooth vector fields on (M, g) then second order semi-symmetric
metric tensor derivative of Z with respect to X and Y is

VivZ = VxVwZ-Ve 72
= VX vZ+ (Vxm(2)Y +n(VyZ2)X —7n(Y)VxZ
+9(X,Y)[VpZ —n(Z)P] + g(Y, Z2)[-Vx P — n(P)X + n(X)P]
+9(X, 2)n(Y)P — [9(X,Vy Z) — g(Y,VxZ)|P. (4.3)

(iii)

ViyZ = VyxZ=R(X,Y)Z + g(Z,VxP)Y — g(Z,VyP)X + n(X)VyZ
—m(Y)VxZ+ g(X,Z)[VyP + n(P)Y]
-9, Z)[VxP + m(P)X].
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Lemma 4.1. Let X and Y be smooth vector fields on Riemannian manifold M. If w is
a first form and V is a semi-symmetric metric connection on M then

(4.1.1) (Vxw)” = Vxw® — w(X)P + w(P)X,

(4.1.2) (Vyyw)# = Viyw? — Vx(w(Y)P) = (Vyw)(X))P - 7(Y)V xw?
+w(VxY)P+ Vx(w(P)Y) + (Vyw)(P)X + g(X,Y)[Vpw# — w(P)P]
—w(P)VxY +w)[r(X)P —7n(P)X] + n(Y)[w(X)P — w(P)X],

(4.1.3) (Viyw)(Z) = (Vi yw)(Z) — m(2)(Vxw)(Y) — w(Y)(Vx7)(Z)
—1(Z)(Vyw)(X) —n(Y)(Vxw)(Z) + g(X,Y)[(Vpw)(Z)

—m(Z)w(P)] + 9(X, Z2)[(Vyw)(P) — m(P)w(Y)]
+9(Y, Z)(Vxw(P))] + [#(X)w(Y) + 7 (Y)w(X)]7(Z),

(4.1.4) (Viyw)(2) — (Vyxw)(2) = —w(R(X,Y)Z) + m(X)(Vyw)(Z)
—7(Y)(Vxw)(Z) + w(X)(Vym)(Z) —w(Y)(VxT)(Z)
—9(X, Z)[w(VyP) + n(P)w(Y)] + g(Y, Z)[w(Vx P) + m(P)w(X)],

Y)
Y)

, . =2 s s .
where # is musically operator and Vx y = VxVy — V@Y denote the second order semi-
symmetric metric connection on M.

Proof. Let w stands for the dual 1-form associated to w? that is, we know that if w is a
first form then w? is a vector field corresponding to w and we can define

w(X) = g(w?, X), (4.4)

for any smooth vector fields X on B.
From (4.4), we deduce the following results

(Vxw)¥ = Vxuw®, (4.5)
9(Vxuw?,Y) = (Vxw)(Z) (4.6)
and
(Viyw)® = Vi yu'. (4.7)
Recall that
(Vxm)(Z) = g9(Vx P, 2Z). (4.8)

The proof of (4.1.1) goes as follows:
(Vxw)(Y)=Vxw(Y)—w(VxY)
= (Vxw)(Y) = m(Y)w(X) + g(X,Y)w(P)
= g(Vxuw™Y) = g(w(X)PY) + g(w(P)X,Y)
= g(Vxw? —w(X)P+w(P)X,Y),

where we have used (4.6) in the third line. Therefore from (4.5) the last equation implies
that

(Vxw)® = Vxw? —w(X)P + w(P)X.

Hence (4.1.1) is proved.
Now, we prove the second part of the lemma. Since # is a linear operator we have

(Viyw)® = (Vx(Vyw)* - (Vo _yw), (4.9)
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Applying (4.1.1) to both terms of the right hand side of (4.9), we have
(Vx(Vyw))# = Vx(Vyuw#) = Vx(w(Y)P) = (Vyw)(X))P
+ Vx(w(P)Y) + (Vyw)(P))X + w(P)[x(Y)X
— g(X,Y)P] + w(Y)[x(X)P — 7(P)X] (4.10)
and
(Vo yw)* = Vyyyuw® + 7(Y)Vxw# —w(VxY)P+w(P)VxY
— (X, Y)Vpw® + 7(Y)[w(P)X — w(X)P)]. (4.11)

After putting (4.10) and (4.11) in (4.9) we get the result (4.1.2).
Next, we prove the third part of the lemma. We can write

(Viyw)(2) = o(Viyw)#, 7).

After using the value of (ﬁ?}(,y’w)# from (4.1.2), and applying (4.6) and (4.8) to the last
equation we get the result (4.1.3). Hence third part of lemma is proved. The proof of the
last part of the lemma follows immediately from (4.1.3). O

Remark. The result (4.1.4) of Lemma 4.1 is the expression of Ricci identity [8, p. 159]
with respect to the semi-symmetric metric connection.
5. Hessian of f with respect to semi-symmetric metric connection

Definition 5.1. Let (M, g) be Riemannian manifold of dim n. Then, Hessian of a smooth
function f : M — R with respect to the semi-symmetric metric connection V is denoted

by A’ and defined by "= V(Vf)

Lemma 5.2. The Hessian H' of f is a (0,2)-type tensor such that

H (X,Y) = HI(X,Y) = n(Y)X f + g(X,Y)PF, (5.1)
for every smooth vector fields X andY on M.
Proof. Since Vf = df we have
H (X,Y) = V(df)(X,Y) = (Vxdf)(Y).
Then the proof follows from (4.2). O

Remark. The Hessian 7’ is a symmetric (0,2)-type tensor if and only if
(V)X [ = ()Y, (5:2)
for any smooth vector fields X and Y on M.

Lemma 5.3. If " isa symmetric (0,2)-type tensor then
m(X)|Vf? = df (P)df (X), (5.3)
for any smooth vector field X on M.
Proof. Let X be a smooth vector field on M. Then
T(X)IVfPP =7(X)g(Vf. V)
= m(X)df (V[)

C2 (v F)df(x)

— df(P)df(X).
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Lemma 5.4. Let (M, g) be a Riemannian manifold and f : M — R be a smooth function.
If " s symmetric then

(5.4.1) (Z{df)(Y) = (Vglf)(X),
(5.4.2) (Vxydf)(Z) = (Vi zdf)(Y),

for every smooth vector fields X,Y and Z on M.

Proof. From definition of Ff, we have
(Vxdf)(Y) =H (X, Y).

Hence, the symmetry of "’ proves the first part. Now, we prove the second part. Let us
write

LH.S =Vx(Vydf(2) — (Vydf)(VxZ) — (Vo ydf)(2).
After using (5.4.1) in this equation, we get
=Vx(Vzdf(Y)) = (Vg 2df)(Y) = (Vzdf)(VxY) = R.H.S.

O

Proposition 5.5. Let (B™, gg) be a Riemannian manifold. Ifﬁjc is a symmetric (0, 2)—type
tensor then for every smooth vector fields X on B:

(5.5.1) div(H')(X) = div(H)(X) — (Vg m)(X) + d(Pf)(X) - 28 fr(X)
+n1 HY (X, P) + (1 — ny)w(P)df (X).

(5.5.2) div(H')(X) = div(H))(X) + (Ven)(X) — Afr(X) + d(Pf)(X).

(5.5.3) div(3H')(X) = div(LHI)(X) + H{d(Pf)(X) = (Vg sm)(X) — 24 f7(X)

+n HY (X, P) + (1 —ny)w(P)df (X)}.

(5.5.4) div(VH')(X) = div(LH!)(f) + Hd(PF)(X) ~ Vin(X) — (Vesm)(X)}.

Proof. Let {E, ..., E,, } be a frame field on B. Since " s symmetric (0, 2)—type tensor,
we get

Fo(H)(X) = S (Vo B ) (B X)
=1

ni ni n1
=S Ve (@ (B, X)) - B (V5B X) =S H(E,VEX). (54)
i=1 i=1 i=1
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Now, we need to calculate the value of all terms of the R.H.S. of the above equation:

ZVE (B, X)) ZVE H(Ei, X)) = Vys(n(X)) + d(Pf)(X)

X)Zininf"" (Pf)> VEg(Ei, X), (5.5)
=1 =1
iﬁf(ﬁEiEi,X ZHf (Vi Ei, X) — Zva 5t
=1
+(Pf) ZgBWEiEi,X) +(1-m)H/ (X, P), (5.6)
=1

SO (B T X) = 32 B (B Vi X) + n(X)Af — (VX)) — H (X, P)
=1 =1

ny
+(Pf)> 98(E;, Vg, X) + (n1 — Dm(P)df (X). (5.7)
i=1
After introducing (5.5), (5.6) and (5.7) in (5.4) we get the result (5.5.1).
The proof of (5.5.2) is the same as the above. Next, we prove (5.5.3). We have

ni

div(}foX) S (Ve lm (LX)
=1

=S TuGH (B, X)) - }lewaiE@-,X LSBT, (59
=1 j
and
szx}Hf B, X)) sz HY (B, X)) + 3{ Vs (n(X)) + d(P)(X)
=1

ZVE Ve f+ (Pf) ZVE (E;, P))}. (5.9)

=1 =1

Therefore, substituting (5.9), (5.6) and (5.7) into (5.8) implies the result (5.5.3). The proof
of (5.5.4). is similar to the above. O

6. Einstein warped product space with non positive scalar curvature with
respect to semi-symmetric metric connection

Lemma 6.1. Let (B™,gg) be a Riemannian manifold with semi-symmetric metric con-

nection V and f be a smooth function on B. If " s symmetric then for any smooth
vector field X on B the following holds:

div(H")(X) = d(Af)(X) + Ric(Vf, X)
+ (Af)m(X) — d(Pf)(X). (6.1)
Proof. Substituting w = df in (4.1.4) and using the result (5.4.2), we get

(Vi.zd)(Y) — (V3 xdf)(Z) = —~df (R(X,Y)Z) + 7(X)(Vydf)(Z) — n(Y)(Vxdf)(Z)
+df(X)(Vym)(Z) — df (Y)(Vx)(Z)
— g(X, Z)[df (Vy P) + m(P)df (V)]
+ g(Y, Z)[df (V x P) + m(P)df (X)), (6.2)

for any smooth vector fields X,Y and Z on B.
For a fixed p € B, we can find a local orthonormal frame {Ej,...E,, } of the space B such
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that Vg, Ei(p) = 0. We can also choose Vg, Y (p) = Vg, P(p) = 0. Taking trace of (6.2)
with respect to X, Z and from the symmetry of ig , we have

SOVE nd)(Y) = S (Ve df)(E zdf (V) E)

=1 =1

+d(PFY )—(Af) ( )+ (1 = ny)m(P)df(Y). (6.3)

Since,
S (Vo df) (V) = div(HF)(Y) — 2(Af)m(Y)
=1
T (m 4+ DY) + (1 - n)r(P)dF(X) (6.4)
and
SOV df)(E) = d(AS)(Y) + (1 — Dd(PF)(X). (6.5)

i=1
Therefore after using (6.4), (6.5) in (6.3) we get the result (6.1). Hence proved the lemma.
]
Proposition 6.2. Let (B™, gg) be a compact Riemannian manifold with semi-symmetric

metric connection V of dimension ny > 2, and both of " and Ricg both be symmetric
tensors. Let f be a mon-constant smooth function on B satisfying (2.2.1) for a constant
A € R and a natural number ng € N. Then f satisfies (2.2.3) for a constant N if

a1 (PFIX ) + fad(P f)(X) + asdf (Vx P)

+ aym(P)X f + 20 f7(X)} + f2{asd(divP)(X)

+ agd(m(P))(X) + azg(X, i V3,5 P) + asdivPr(X)} =0, (6.6)
=1

for every smooth vector field X on B and

a; = (n2 — 7’L1), as = —(ﬁ-i- 2n1 — 2), az = Q(W— 2), a4 = —2ﬁ,
212 -7 n—2)? 212—-7m
=221 P27 e 22-1)
no no n2 n2

Moreover, we can construct a compact Einstein warped product space M = B X I with
Ric = \g for a compact Einstein space (F,gr) of dimension ny with Ricp = N gp.

Proof. On contracting both sides of (2.2.1), we have

§B = nl{)\—l—ngli;f +n27T(P)} +Tl2{Aj:f + divP — TF(P)}.

The above equation implies that

d55(X) = ma{(m = Dd(r(P))(X) + d(divP)(X) + £d(AF)(X)

[m(Pf) + Af]

+2La(PFy(X) - f2

f

From equation (3.3.2), we have

dSp(X) = 2div(Ricg)(X) + (m — 1[(2 — n1)d(n(P))(X)
—2d(divP)(X)]. (6.8)

df(X)}. (6.7)
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From equation (6.7) and (6.8), we have

2div(Ricg)(X) = %d(Af)(X) + "lfmd(Pf)( ) - FAfdf( )
- n}? Pfdf(X) + [(@+n — 2)A9)]d(divP)(X)

+ (2—=n)(1 — ny)d(x(P))(X). (6.9)
The equation (2.2.1) can be written as
Ricp(X,Y) = A+ nom(P)]gp(X,Y) + n2g(Y, Vx P)
~ nam(X)m(Y) + %w(Y)df(X) + %Ff (X,Y). (6.10)
Taking divergence on both sides of (6.10) and using (3.2), we get

_ 1 il
div(Ricg)(X) = ngdz’v(?Hf )(X) + n2g(X, S V% g P) — nadivPr(X)
=1

+ Zd(r(P)(X) + %wwwxm
+ %Afw(X) - %\WFW(X)- (6.11)

Using (3.4.2) and (5.5.4) in (6.11), we have

div(Ricg)(X) — ngdiv(;Hf)(X) —d(divP)(X) + (m — 2)div(P)m(X)

(2= mgn szEP + B im(p))(x)

—Td(Pf)( )+f2Pfdf( ) =0. (6.12)

Multiplying both sides of the above equation by —% we have

2 f2div(}Hf )(X) — 732 f2div(Ricg)(X) + 3 de(de)(X) +2fd(Pf)(X)

—apparx) + T2 XZVEEP

+d(7(P))(X) — 2div(P )W(X)} = 0. (6.13)
From equations (2.2.1) and (3.3.1), we have
Ricp(X,Y) = [\ + divP + %Pf + (7 — 2)n(P)]gs(X,Y) + %Hf(X, Y)
+ (71— 2)gp(Y, Vx P) + (2 — m)m(X)m(Y). (6.14)
Also, we know that

dz’v(}HO(X) - —zlfzdef%) + pdin(HT)(X).

Using Lemma 6.1 and from equation (6.14) the last equation implies

ain(G ) (X) = 2D a(9a ) + 2P0 + HAANX)
+ Adf(X) + divPdf (X) + (7 — )df(VXP)

+ Afm(X) —d(Pf)(X) —2n(P)df (X)}. (6.15)
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Using the equations (6.15), (6.9) and condition (6.6) in (6.13), we get
A+ FAS + (n2 = DAV fEHX) + (7 = 2){2f7(P)df (X)
+ f2d(n(P))(X)} + 2fdivPdf (X) + fd(div)(X)
+ (M4 ng = 2){(P[f)df (X) + fd(Pf)(X)} = 0.
This equation can be written as
d{A? + [ABS + (n2 = 1)[VeS|* + (1 — 2)f*n(P)
+ P hodivgP + (W +ne — 2)f(Pf)} =

Hence the first part of the proposition is proved. The second part of the proposition holds
by using the sufficiencies of Corollary 2.2. O

Theorem 6.3. Let M = B x ¢ I be an Einstein warped product space with semi-symmetric
metric connection V and compact base B. If M has non-positive scalar curvature with
dim(F) = ng > 2 and warping function f satisfies

divP — (@) divP(@)} + s [ 1P7(P) = Fafr(P)(a)}

(6.16)

where x may be minimum or maximum points of f on B and V(B) denotes the volume of
B, by =(m—2), by = (n+ng —2), then M is simply a Riemannian product.

Proof. Since dim(F) = ng > 2 and Ricp = N gp, where
XN =Af?+ fAf + (ng = 1)|VfI> + (n —2) f*n(P) + f*divpP + (M +ng — 2) fPf

then by [4, Sec 3] X’ is constant.
Equation (2.2.3) can be written as

N = A2+ div(fV )+ (n2 = 2|V + (0 = DAide = M) f2m(P)
+ Ao f2divg P + [(M)A\1 + (ng — 1) X] fPF. (6.17)
By taking integration of (6.17) over B, we have

/ 24 n2 / |VBf!2 [
bl b2
75 2”“3) 7057 Ju TP (6.18)

Case 1. Let ng > 3 and [ be the maximum point of f on B. Then we have
f() >0, Vf(l) =0 and Af(l) <0. Therefore from (2.2.3) and (6.18), we have

0> F()AS(D)

= X = M) = o f (D)2divP (1) — b () (P)()

. L _ (TLQ — 2) )\2 i
—‘“B)Agf2 0%+ AJvBﬂ2+LqB>A;f% 5P

. bl bg
~ FUPdieP W)} + s [ (FRP) = 10 PO) + s [ FPS)
> 0.

d’iUBP

The last inequality holds from the properties of A and by the condition (6.16). Hence f is
constant.
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Case 2. Let no = 1,2 and we consider m as a minimum point of f on B. Then we have
f(m) >0, Vf(m) =0 and Af(m) > 0. Therefore from (2.2.3) and (6.18), we have

0< f(m)Af(m)
— N = A1) = Aof (m)*divP(m) — by f(1)*x(P)(m)

_ A (ng —2) Ao _
—V(B)/f3{f2_f(l)2}+1/(B)/B’VBf’2+V(B)/B{f2deP

) by by
~ fmPdivPm)} + g [ P(P) — fmPR(PYm) + s [ AP)

<0.

Therefore from the properties of A and condition (6.16), we can say that f is constant.
The result follows. U
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