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Abstract

Recently, many authors have focused on the studies related to sequence and series spaces. In the literature the simple and
fundamental method is to construct new sequence and series spaces by means of the matrix domain of triangular
matrices on the classical sequence spaces. Based on this approach, in this study, we introduce a new series space |¢,|, as

the set of all series summable by absolute summability method |®, z,|,, where @ = (¢, ) denotes Euler totient matrix,
z = (z,) Is asequence of non-negative terms and p = 1. Also, we show that the series space |, |, is linearly isomorphic
to the space of all p- absolutely summable sequences ¢, for p = 1. Moreover, we determine some topological properties
and a, B and y-duals of this space and give Schauder basis for the space |, |,. Finally, we characterize the classes of the
matrix operators from the space |¢,|,, to the classical spaces €., c, ¢y, 1 for 1 < p < o and vice versa.

Keywords: Absolute Series Spaces, Matrix Operators, BK Spaces.

MUTLAK EULER TOTIENT SERI UZAYI VE BAZI MATRiS DONUSUMLERI
UZERINE BIiR CALISMA

Ozet

Son zamanlarda bir¢ok yazar dizi ve seri uzaylari ile ilgili calismalara yogunlasmiglardir. Literatiirde basit ve temel
yaklasim klasik dizi uzaylari lizerinde iiggensel matrislerin matris etki alani yardimiyla yeni dizi ve seri uzaylart insa
etmektir. Bu calismada, bu yaklasimdan yola ¢ikarak |®, z, |, mutlak toplanabilme metodu ile toplanabilen tiim serilerin
uzay olan yeni bir |¢,|,, seri uzayr tanimlanmigstir, burada @ = (¢, ) Euler totient matrisini gésterir, z = (z,) terimleri
negatif olmayan bir dizidir ve p > 1 dir. |¢,|, seri uzaymn tiim mutlak p- toplanabilen dizilerin ¢,, p > 1, uzayna
izomorf oldugu gésterilmistir. Ayrica, bu uzayin bazi topolojik ézellikleri ile a, f and y- dualleri belirlenmistir ve |¢,|,,
uzayi icin Schauder bazi verilmistir. Son olarak, |¢Z|p uzayindan 4, c, ¢y, ¥1 klasik dizi uzaylarina ve 4, ¢, ¢y, 1 klasik
dizi uzaylarindan |¢,|, uzayina bazi matris operatérleri karakterize edilmistir.

Anahtar Kelimeler: Mutlak Seri Uzaylari, Matris Operatorleri, BK Uzaylar.
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1. Introduction

Let  be the space of all real valued sequences. Each SE:Y) ={u= () €wxu=(xuw) €Y (1)
linear subspace of w is called a sequence space. We forall x € X}.

write Y, £, ¢ and ¢, for the sequence spaces of all finite, With the notation in (1), @, 8 and y-duals of a sequence

bounded, convergent, null sequences and also by bs, cs space X, which are denoted by X% X* and X'
and ¢, (1<p<o), we denote the spaces of all respectively, are defined by X =S(X:£,), Xf =
bounded, convergent and p-absolutely convergent S(X : cs)and X¥ = S(X : bs).

series, respectively. Throughout the paper q denotes the

conjugate of p > 1, i.e, 1/p +1/q = 1, and 1/q = 0 for Let A = (a,;,) be an infinite matrix of real numbers and

X,Y be non-empty subsets of w. We say that A defines a

p=1 ) matrix mapping from X to Y, and we denote it by
For the sequence spaces X and Y, define the set S(X:Y) A:X oY, if for every sequence x = (x;)€X
by Ax = (An (x)), the A-transform of x, is in Y, where the
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series A,(x) = Y51 QX convergences for all n. By
(X,Y), we denote the class of all such matrices.

For any subset X of w, the matrix domain X, is
introduced by

Xy={x€w:Ax € X}. (2)

A BK space X C w is a Banach space with continuous
coordinates B, : X — C, where B,(x) = x,, for all x € X,
n = 1 and C denotes the complex field. Also, a BK- space
X D is said to have AK if every sequence x € X has a
unique representation x = Y7, x,e®), where e®
denotes the sequence with e,Ek) =1 and ej(k) =0 for
j # k [1]. For example, the sequence spaces ¥, ¢ and ¢y
are BK-spaces with the norm given by |[[x|, =
supy|x,| and ¢, is a BK-space with the norm
lxlle, = iz |x,|P)/P, 1 <p < oo. Moreover, the
spaces ¢ and £}, (1 < p < o) have the property AK.
If A= (a,) is an infinite triangle matrix, i.e., a,, # 0,
and a,;, =0 for k > n, there exists its unique inverse
[2].
For a given m € N with m > 1, Euler totient function ¢
is defined as the number of positive integers less than m
that are coprime with m and ¢ (1) = 1.
If two numbers m and n are coprime, then @(mn) =
p(m)p(n) and alsom = ¥4, ¢(d) holds.
Consider the infinite matrix @ = (¢, ) such that
k
b= |5
0 , ifkin

Schoenberg [3] has proved that this matrix is regular

and defined that a sequence (x,) of real numbers is
@ —convergentto ¢ € Rif

1
lim— ) @(d)x; =¢.
n—-o N
dln
This regular matrix is called as Euler totient matrix
operator in [4] and some new sequence spaces have
been introduced by using this matrix.

For any given m € N with m > 1, Mdébius function y is
defined as

p(m)

-nr ifm = pyp,...p,, where py,p,, ..., p, are
= non equivalent prime numbers

0 if p?|m for some prime number p

and wu(l) =1. Also, if two numbers m and n are
coprime, then u(mn) = u(m)u(n) and Ygm, u(d) =0
holds except for m = 1.

Let ), x,, be infinite series with nth partial sum s, and
(z,) be a sequence of non-negative terms. The series
Y x, is said to be summable |A,zn|p, p = 1,if

[ee]

> AT A, G <o,

n=1
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where AA, (s) = A,(s) — 4,,_1(s), for n > 1 [5]. This
method includes the most of well known absolute
summability methods. For example, if we take A as
matrix of weighted mean (N, t,,) (resp. z, = T,/t,), then
summability |4,z,|, reduces to summability methods
W, tn,zn|p (resp. W, tn|p[6]) [7], where t, > 0 for all n
and T, = Y}_, t, = o asn — oo. Further, if A is matrix
of Norlund mean (N,t,), then summability |4, Zyl, is
same as the summability |N,t,|, given by Borwein and
Cass [8] with z, =n for n > 1, which also includes
absolute Cesaro summability |C, a|, of Flett [9], where
(t,) is a sequence of complex numbers with
T, =Ykt #0, ty #0, T_, = 0 forn = 1. In addition
to all these classical methods, if we take A as Euler
totient matrix @ = (¢,;), we obtain a new absolute
summability method |®, z,,|,,.

Many authors have constructed sequence spaces by
means of the matrix domain of triangles on the classical
sequence spaces. For some of the papers and
applications, we refer to [10-31] and references therein.
In this paper, we introduce a new series space by using
the Euler totient matrix and determine «, § and y-duals
of this space. Finally, we characterize the classes of
matrix operators between the classical spaces
%o, C, Cy, £1 and this new space.

2. The Series Space |¢,|,,

Now, we introduce the series space |¢,|, as the set of all

series summable by absolute summability method
|®, z,|,, as follows.

b1y = [x = () ew ) A7 ARG < oo],
n=1

where ((Dn (s)) Euler totient transform of the sequence
(Sn)) that is, (Dn (S) = ZI?:l ¢nk Sk

Note that since (s,) is the sequence of partial sum of
infinite series ) x,, we can write Euler totient
transform (&, (s)) of the sequence (s,) by

[°) n k
D, (s) = Z Onic Sk = Z Pk Z X;
k=1 k=1 =
n n
_ @ (k)
SRS
= ke
k|n

Thus, we obtain that
.1, = {x = (x,) € w:
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If we define the matrices E®) = (e,(l,z)), 1<p<ocoand
F = (fu) by

—z,ll/q, k=n-1
e =171/ k= n (3)
0, otherwise
and
n
=S p(1sks
— , < <n
oo =4n £ ? 4)

j=kjn

0,k>n,
then, we can write that (E® o F )n(x) =22/ (F,(x) —
Fo_1(x)) forn = 1, where F, (x) = X7, % Xk # and

kn
Fo(x) = 0.

So we may restate |¢,|, = ({JP)E@)OF according to the
notation of matrix domain (2).

Also, since the matrices E® and F are triangles, they
have the unique inverses and we denote these inverses

by (E(7"))_1 = E® and F~! = F for brevity. Further, we
can calculate these matrices E®) = (ég)) and F = (f)

by

o _[zY1<k<n
and
Q-
pmn) ’
n—1

- u()k

fak = —m,’dn—l (6)
) po-1
p(n) en-1)

0, otherwise.

Theorem 2.1 Let 1 < p < o and the matrices E®) and
F be defined by (3) and (4), respectively. Then, the
space |¢, |, is a BK space with respect to the norm

Il = E® < FGOIl,

and norm isomorphic to the space ¢, thatis, |¢,|, = £,.
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Proof. Since €, is a BK space and E®) o F is a triangle
matrix and |¢,|, = ({’p)E(p)oF, the space |¢,|, is a BK
space by Theorem 4.3.2 in [2].

Further, consider the transformations F :|¢,|, —
(fp)E(p) and E® : (fp)E(p) - £,. Since F and E® are
linear bijections, then, it is clear that composite function
E®oF is a linear bijective operator. In fact, if
(E(p) o F)(x) =0, then x=6, so E®oF is injective.
Also, let u=(w)€?, be given. Then, since

y=0n) = (Shar 2, w) € (€)) ) We get

n(Q)k n()k

x = (x,) = ,Z,n: —go(n) Vi — k;1 o(n— 1)}’k
€ [¢.lp.

This gives that u = (E(p) oF)(x) € ¢,, so E®oF is
surjective. Furthermore, E® o F preserves the norm
since

[« FGoll, = el

Note that the collection of all finite subsets of N is

denoted by V.

Lemma 2.2 [32]

a)T = (t,) € (£1,c) ifand only if
ligntnk exists foreach k > 1

(7)
and

sup|tp| < co.
n,k

(8)
b) T = (t,x) € (¥1, %) if and only if (8) holds.

c) Let 1 <p <oo. T =(ty) € (¥,,c) if and only if (7)
holds and

sup )" It |7 < o. ©)
=i

d) Let 1 <p <oo. T = (ty) € (£p, ) if and only if (9)
holds.
e)letl <p<oo.T={(ty)€E ({’p,{’l) if and only if

q
2,

neN

sup < oo,

New £
Lemma 2.3 [33] Let 1 <p < oo. T = (t) € (£1,%,) if

and only if

upY el <o
k n=1

Using following notations and Lemmas 2.2-2.3, we state
following theorem related to a,f and y-duals of the

series space |¢,|,.
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m
1, = a=(aj)E(u:su ZZ -;-k ,
mr =r k=r

m

r=1 j=r k=r
< oo],

7 —1/q
anfnkzr

< o0},

anfnk

2, —{a— (aj) € w: supz
n=r

k=

q
025 =f{a=(q) Ew:supz
NeN "

< oo}

>

Theorem 2.4 Let F = (f,;) be defined by (6). Then, we
have:

B
a) (I¢.1,) =02,n0; for 1<p <o and ($,))f =
2,00,

b) (I¢,1,)" =23 for 1 < p < coand (I¢,1,)" = 02,
) (I¢,1,)" = Qs for 1 < p < oo and (|¢,];)% = 2

Proof. a) Let 1<p<oo. a € (|¢Z|p)ﬁ if and only if
ax € cs for every x € |¢,|,. Let y = F(x). Then, u € ¢,

k=r

where u, = z-/(y, — yn_1) forn > 1, y, = 0, and also

~/93,. Since we have

1
we havey, = Y}_; z,

R0k AGwL
x"_kzln: wgn) ’“_k;lmy"
- fnkykv

where the matrix D = (d,,, ) is given by
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m
j=r k=r (10)

( m

z M ZZa-f- 1<r<
dm‘r:ir Jhk Jr - =1 =

0

, r>m.

So it is written by part c¢) of Lemma 2.2 that a € (Iq,’)z |p)ﬁ
iff De€e (fp,c), or equivalently, a € 0; N (23, which
completes the proof.

Since the proof for p = 1 is similar by using part a) of
Lemma 2.2, we omit the detail.

b) Let 1 <p < . Then, a € (|¢Z|p)y if and only if
ax € bs for every x € |¢,|,. Also, x € |¢,|, iff u€ £,
~Yn-1) , Yo=0 and y, =
T % Yk=j @far n = 1. Thus, since we have

kin
m m
z ar Xy = Z dmrurr
r=1 r=1

where D = (d,,,) is defined by (10), this implies that
a € (I¢,l,)" iff D € (¢,,¢.,). Hence, it follows from part
d) of Lemma 2.2 that a € 25 as asserted.

Since the proof for p = 1 is similar by using part b) of
Lemma 2.2, we omit the detail.

c) Let 1 <p < oo. Then, a€ (|¢Z|p)a
ax € ¢, for every x € |¢,|,. Then, we get

ly
where u, = z./(y,

if and only if

lp-

n n k
2 2 -1
anz fnkyk = anz fnk Z Zy /qur
k=1 k=1 r=1
n o n
2 -1
= Z Z anfnkzr /qur = 6n(u)'

r=1 k=r
where §,, = (6,,) is defined by

n

2 -1
Z anfnk Zy /q'

k=r
So, ax € ¢; for every x € |¢,

6nr =

|, if and only if §(u) € ¢4
for every u€ £, or equivalently, a€ (|¢Z|p)a iff
= ({’p,fl), which gives a € )5 from Lemma 2.2, as
desired.

Since the proof for p = 1 is similar by using Lemma 2.3,
we omit the detail.

Theorem 2.5 Let 1<p<ow , F=(f;) and
™ = (-r].(r)) be defined by (6) and
—1/q 5 £ i
‘r].(r) = {Zr Z_":r Jie:™ =J respectively. Then, the
0,7 >j.
sequence (‘[]-(r)) is a Schauder base of the space |¢,,,.

Proof. It is known that the sequence (e(")) is a Schauder
base for the space ¢,,, where e®™ is a sequence with 1 in
n-th place and zeros elsewhere. Because of the
transformation E®) o F defined in the proof of Theorem
2.1 is an isomorphism, the inverse image (E(p) ° F)_1 of

(e™) is a Schauder basis for |@,|,,. In fact, if x € |¢,

|p' |pl
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then there exists u € £, such that u = (E(p) o F)(x), o)
we can deduce from Theorem 2.1 that

m m
x—z x, 7™ = u—z u.eM|| -0
r=1 |¢Z|p r=1 el’
-1
as m - oo, where (E(p) o F) (e(r)) =70 r>1.
Furthermore, every x€|¢,|, has a unique

representation of the form x = ¥, x, 7.

3. Some Matrix Operators
In this section, we firstly characterize the matrix classes
from the space |¢,|, to the classical spaces ¢, ¢, ¢y, 41
forl1 <p < o,
Lemma 3.1 [32]
a) T = (t,) € (1, cp) if and only if (8) holds and
li]lntnk =0 foreachk > 1.

ly

(11)
b) Let 1 <p < oo. T = (ty) € (¥p,¢o) if and only if (9)
and (11) hold.

Theorem 3.2 Let define the matrix R! = (r;},) with a
matrix T = (t,;) as

foralln, k € N.
o T € (|¢,l1,£) if and only if

= (r,}) is well defined for alln,k € N (12)
m j
s Z tnlz fji| < oo foreachn € N (13)
=k 1=k
1
sgg)lrnkl < oo, (14)

e T € (|¢,|1,c) if and only if (12), (13) and (14) hold,
and

limr;), exists for each k € N.
n—oo

e T € (|¢,l1,¢co) if and only if (12), (13) and (14) hold,
and

limr], = 0foreachk € N.

n—-oo

o T € (|¢,]1,%1) if and only if (12) and (13) hold, and

sup E [Tk | < oo.
k
n

Proof. The proof is given only for the first case since
others can be proved similarly.

e T € (|¢,11, %) if and only if Tx € £, for all x € |¢,]|;.
Since the series Y7, tu.X; is convergent, we have that
(tw) € (J¢,11)? for each fixed n € N. By Theorem 2.4,
we obtain that
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mZZ b

j=k l=
exists for each n, k € N and

< oo foreach n € N.

That is, (12) and (13) hold. Now, we prove the necessity
and sufficiency of (14). Consider the linear operator
EMWoF :|¢p,l; — 4. Let y = Fx and
v=Ay = (E® o F)x for any x € |¢,|;. Then we have
Y, = Xk=1 Vi. Hence it follows that

m m k
Z Cok Xy = Lk ki Yj
k=1 k=1 j=1
m k j
DD
k=1 j=1 =1
m k k
-S>
k=1 j=1 1=j
m m k
SANESWAL
j=1 \k=j l=j
m
_ ~1
j=1
where
m k
Z tnkakl , 1<j<m
k=j I=j
0 , j>m

for each n € N. Also, it can be deduced by (12) and (13)
that R1 = (f5;) € (£1,¢). Then the series Rj,(v) =
Yila T
so we have limy, o, R}, (v) = X2 limy, o7y, v;. Thus,
we obtain that

mj Vj converges uniformly in m for all v € #; and

[oe]

7,00 = lim Rl (v) = Z (um)y,

j=1

= Z iV = Ry (V).

=
This yields that Tx € £, for x € |¢,|; if and only if
R'v € £, for v € £;. We conclude that T € (|¢, |1, £s) if
and only (12) and (13) hold and also R! € (#1,%)
which means (14).

Theorem 3.3 Let 1 <p <o and define the matrix

RP = (r}) withamatrix T = (tnk) as
m
p _ ~1/a;;
Tk = Zg ,gggo
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foralln, k € N.
*T € (|¢;1p,¥s) if and only if (12) holds and
q

m g om j
supz z,* tyy Z fi|] <o foreachneN, (15)
™ k=1 =k =k
q
Sl,fpz " < oo (16)

o T € (|¢,l,,c) if and only if (12), (15) and (16) hold,
and

limr}, exists for each k € N.

n-—-oo

* T € (|¢,1p, co) if and only if (12), (15) and (16) hold,
and

limr!, = 0foreachk € N.

n—-oo

o T € (|¢,lp,¢1) ifand only if (12) and (15) hold, and

P

nenN

q

sup < oo,

NeN

k
Proof. The proof is given only for the first case since
others can be proved similarly.
* T € (|¢,1p,?) if and only if Tx € £, for all x € |¢,|,.
Since the series Y-, ty, X) is convergent, we have that
(tw) € (|¢Z|p)ﬁ for each fixed n € N. From Theorem
2.4, we obtain that (12) holds and

m m J q

_1 A
swp ) [5) )ty
™ ok=1

j=k 1=k

< 0o,

for eachn € N.

Now, we prove the necessity and sufficiency of (16).
Consider the linear operator E® oF :|¢,|, >,

defined by (E® o F),(x) = 22/ (F,(x) = Fa_s (%),
n>1and Fy(x) = 0.Lety = Fx and v = (E® o F)x for
any x € |¢,|,. Then we have y, = ¥}, Zk_l/qvk. Hence
it follows that

m m k

Z bok X = Z Lok Z Akjy]

k=1 k=1 j=1

117

=D
where T

_ {Z]’_l/q it Xie fu o 1Sj<m
0 , J>m

for each n € N. Also, it can be deduced by (12) and (15)

that R? = (7;) € (£,,c). Then the series Ry (v)=

21 7 v; converges uniformly in m for all v € £, and

so we have lim, R, (v) = X%, limm_,ooﬁzjvj. Thus,
we obtain that

[oe]

P

j=1

T,(x) = limRP (v) = Z (Lim 7y =
m—oo e m—oo
j:
= R (v).

This yields that Tx € ¢, for x € |¢,|, if and only if
RPv € ¢,, for v € £,. We conclude that T € (|, |, ¥s) if
and only (12) and (15) hold and also RP € (fp,{’m)
which means (16).

Now, we give the characterization of the matrix classes
from the classical spaces ¢, c, ¢y, ¥; to the space |¢,],

for 1 < p < . We need the following lemma to prove
our results.

Lemma 3.4 [32]
aA)T = (ty) € (£, t1) = (¢, 1) = (¢, £1) if and only if

[oe]
Ken

n=1 lkeK
b) Let p > L. T = (tw) € (P, ¥p) = (¢, €p) = (co, ¥p) if
and only if

sup < oo,

oo

p

sup < oo.

KeEN

tnk
keK

n=1
Theorem 3.5 Let T = (t,;; ) be an infinite matrix.
* T € (£e,19,11) = (¢, |®,11) = (o, |#,11) if and only if

n n n—1
DR IN DI
n n—1]7k

kek \j=1 \l=j,ln l=j,lln-1

< 0o,
T € (¥1,|¢9,]1) ifand only if

w0 3 5P
n=1 l

j=1 \!l=j,ln
< 0o,

Proof. The proof is given only for the matrix class

(o, | ]1) since the other cases can be proved similarly.

fee]

sup

Ke
Nn=1

n—1
o)
Z n—1 bk

=j,lln—-1

Consider the matrix S = (s}, ) defined as

n n (l) n—1 (l)
1% %
S}’k - Z n Z n—1 bjie < 0

=1 \Usjin I1=fIln—1

for all n,k €N. Let x =(x,) € ,. We obtain the
following equality:

k=1

1
Snk Xk
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oo n n n—1
_ 0] ()
- o n—1 ) |
k=1 \j=1 \I=jln I=j,lln—1
n [ee] n
O]
- W L, T
j=1 k=1 I=j,l|n
n—1 oo n—1
o)
- Gk X n_1
j=1 k=1 I=j,lln—1

Fn(Tx) — Fy1 (T).
This implies that S!(x) = (E® o F), (Tx) for all n € N.

Hence, it follows that Tx € |¢,|; for any x € ¢, if and
only if S'x € ¢, for any x € £,,. We conclude that

(o]

sup
KeN 721 liex =1 \usfiin
n—1 (l)
P
B Z n—1>tjk <@
1=jlln—1

since we have S! € (£, ;).

Theorem 3.6 Let T = (t,;) be an infinite matrix and
1<p<oo.

o T € (e |921p) = (¢, |®21p) = (o, ¢ 1) if and only if

o) n

n
l
sy YAy A Y L2
Ken 721 |iex 7=t 155 1|n
n—1 (l) p
P
- Z el L { It
I=fln—1

*T € (#1,|¢,l,) ifand only if
SEIN SO N0
1/q (p_ _ z @ .
S%pZ Z “n Z n n—1 bk
ne

j=1 1= ,In l=j,lln-1
< 00,

Proof. The proof is given only for the matrix class

(£1,1¢.1,) since the other cases can be proved similarly.

Let p > 1. Consider the matrix SP = (s}, ) defined as

p

n n (l) n—1 (l)
2 1 E @ E ¢
Srzljk = Zn/q T - n—1 tjk
= 157,1In 1=j,ln—1

for all n,k eN. Let x =(x,) € ¥;. We obtain the
following equality:

k=1
o n n
ADEEPI
= z,
n
k=1 \j=1 l=j,lln
n-1
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n oo
] 20)
2\ 2 2 e D, S
j=1 k=1 I=j,ln
n—1 oo n—1
o)
B Z bk Xi n—1
j=1 k=1 I=j,Iln—1

= 2,/ (F,(Tx) — F,_1 (Tx)).

This implies that S? (x) = (E® o F),,(Tx) for all n € N.
Hence, it follows that Tx € |¢,|, for any x € ¢; if and
only if SPx € ¢, for any x € ;. We conclude that

=) n n (l) n—1 (l) P
1/q LA Z ¢ t
wd S 300§ ),
n=

j=1 1=j,lin 1= lln—1
since we have S? € (£, ¢)).

< oo,

4. Conclusion
In this paper new series spaces are introduced by using
a new summability method derived by Euler totient
matrix. After determining dual spaces and some
topological properties of the resulting spaces,
characterization of certain matrix classes on these
spaces are obtained.
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