
Research Article
Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 37-42
DOI: 10.38016/jista.755419

* Corresponding Author. Recieved : 20 June 2020

E-mail: a.oezguer@jacobs-university.de Revision : 28 January 2021
Accepted : 08 February 2021

Classifier Selection in Resource Limited Hardware: Decision

Analysis and Resolution Approach

Atilla Özgür 1

1Jacobs University Logistics and Mathematics, Bremen/Germany

a.oezguer@jacobs-university.de

Abstract

Digitalization, Industry 4.0 and Internet of things (IoT) have become more popular in the recent years. Most of these systems depend
on micro-controllers and sensors. These micro-controllers and sensors are mostly cheap, low RAM and low CPU systems; thus, they
are resource constrained environments. In this study, a supervised learning classifier comparison technique suitable for resource
constrained environments is proposed. This technique, Decision Analysis and Resolution (DAR), is originated in the domain of
Software Engineering. First, DAR is explained using an example of car buying scenario. Then 11 off-the-shelf classifiers are compared
using DAR for low RAM and less powerful CPU environments in an intrusion detection scenario. This scenario simulated on well-
known KDD99 intrusion detection dataset. All the experiments are realized using python scikit-learn package. According to the
experiments, Decision Tree classifier is the most suitable to implement for resource constrained environments with a small lead. Results
for the other three classifiers (Bagging, Multi Layer Perceptron, Random Forest) are also very similar. To aid the reproducibility of the

experiments, the whole source code of the study is provided in the popular open source repository https://github.com/ati-
ozgur/classifier-comparison-using-DAR.

Keywords: Classifier selection, Decision analysis and resolution, Machine learning, Performance metrics, Resource limited
environment

Kısıtlı Kaynaklı Donanımlarda Sınıflandırıcı Seçimi: Karar Analizi ve Çözüm

Yaklaşımı

Öz
Dijitalleşme, Endüstri 4.0 ve Nesnelerin İnterneti (IoT) son yıllarda daha popüler hale gelmiştir. Bu sistemlerin çoğu mikro
denetleyicilere ve sensörlere bağlıdır. Bu mikro denetleyiciler ve sensörler çoğunlukla ucuz, düşük RAM ve düşük CPU sistemleridir;
bu nedenle, kaynak kısıtlı ortamlardır. Bu çalışmada, kaynak kısıtlı ortamlara uygun, denetimli bir öğrenme sınıflandırıcı karşılaştırma
tekniği önerilmiştir. Bu teknik, Karar Analizi ve Çözümü (DAR), Yazılım Mühendisliği alanında ortaya çıkmıştır. İlk olarak DAR,

örnek bir araba satın alma senaryosu ile açıklanmıştır. Ardından, 11 hazır sınıflandırıcı, bir saldırı tespit senaryosunda düşük RAM ve
düşük CPU ortamları için DAR kullanılarak karşılaştırılmıştır. Bu senaryo, iyi bilinen KDD99 saldırı tespit veri setinde
gerçekleştirilmiştir. Tüm deneyler python scikit-learn paketi kullanılarak gerçekleştirilmiştir. Deneylere göre, Karar Ağacı
sınıflandırıcısı, diğer sınıflandırıcılara göre küçük bir fark ile kaynak kısıtlı ortamlara uygulanmak için en uygun sınıflandırıcıdır. Diğer
üç sınıflandırıcı (Boosting, Çok Katmanlı Algılayıcı, Rastgele Orman) sonuçları da çok benzerdir. Deneylerin tekrarlanabilirliğine
yardımcı olmak için, tüm kaynak kod popüler açık kaynak kod deposu https://github.com/ati-ozgur/classifier-comparison-using-
DAR'da verilmiştir.

Anahtar Kelimeler: Kaynak kısıtlı ortam sınıflandırıcı seçimi, Karar analizi ve çözümü, Makine öğrenmesi, Performans metrikleri

mailto:a.oezguer@jacobs-university.de
https://orcid.org/0000-0002-9237-8347

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 37-42 38

1. Introduction

Industry 4.0 is first termed by Germany Government

to increase digitalization and automation in

manufacturing sector (Lasi et al. 2014, Uygun & Ilie

2018). Internet of things (IoT), sensors and mobile
systems are very important topics in Industry 4.0 and

digitalization (Ileri & Furat 2020). These systems are

depended on computers. Even though some computers

they work on are powerful, most of the computers they

work on are resource constrained environments such as

micro-controllers and sensors (Karahan & Hökelek

2020). This can be seen from increasing market size of

micro controllers (Research 2019), which was 18.6

billion USD in 2018. Most of the market still belongs to

8- and 16-bit micro-controllers (Research 2019). Most

prevalent reasons for this phenomenon are cost and size.
Resource-limited hardware products, for example 8-16-

bit micro-controllers, are cheaper and smaller.

Algorithms and systems that work on in these resource

constrained environments are becoming more valuable.

Supervised learning also known as classification is a

widely used technique for variety of problems, such as

face recognition (Yavuz et al. 2016), bioinformatics

(Yılmaz 2020), medical (Saleh & Hussein 2019), and

intrusion detection (Özgür & Erdem 2012). Widely

different classification algorithms are proposed in the

literature (Taşcı 2019, Özgür et al. 2018, Özgür &

Erdem 2018). Proposed algorithms mostly assume that
necessary computing capabilities exist for algorithms to

work and rarely address low computing requirements.

But computing capabilities of micro-controllers are

lower than general-purpose computers. Even though

some algorithms are suitable for working with limited

resources, how to choose among such algorithms in a

limited hardware situation is rarely addressed.

In contrast, choosing between alternative solutions is

a widely researched topic in other domains. For

example, Basheleı̇shvı̇lı̇ et al. (Basheleishvili et al.

2019) proposed fuzzy-logic based model for selection of
university staff. Similarly, Çınar and Uygun (Çınar &

Özer Uygun 2019) proposed another fuzzy based model

for supplier selection. On the other hand, Faydalı and

Erkan (Faydalı & Erkan 2020) proposed VIKOR model

for selection of factory machines.

This article proposes a decision theoretic approach

for a practitioner to make an informed decision between

classification algorithms in resource-limited hardware,

such as a micro-controller with low RAM and low CPU

power. This approach, called Decision Analysis and

Resolution (DAR) (Team 2006), is originated in the

domain of software engineering.
Remainder of the paper is as follows. Section 2

introduces different classifier comparison metrics and

explains why using only accuracy is not a good choice.

Section 3 gives basic introduction to DAR with car

example. Section 4 introduces a classification example

using a micro-controller in the intrusion detection

domain with a well-known dataset. Finally, section 6

concludes the paper.

2. Classifier Comparison Metrics

Most of the time, classifier evaluation is made with
single metric: accuracy. For example, Özgür and Erdem

reviewed 149 articles in intrusion detection domain that

was published in SCI-index journals (Özgür & Erdem

2016). Among these reviewed articles, accuracy was

used by 130 articles, making the accuracy metric the

most used metric. On the other hand, second most used

metric, False positive (False alarm) was used only 70

times. But using only accuracy to compare classifiers is

simplistic at best and may be plain wrong in some cases.

Netflix (Amatriain & Basilico 2012) did not use their

competition winner algorithm that increased their
previous accuracy more than 10%. They had considered

engineering efforts vs improved accuracy and had

chosen another algorithm for their systems. Engineering

effort is one example about considering other metrics for

classifier evaluation among many others.

According to different domains and purposes,

different base metrics may be more important. For

example, according to Axelsson’s seminal paper

(Axelsson 1999), one of the most important

performance metric for an intrusion detection system is

false positive rate (false alarm rate). Axelsson proposed

that all alarms should be investigated, and this
investigation is a costly endeavor.

For screening diseases, ideally a classifier should be

highly sensitive (high true positive rate) and should miss

very few persons with the disease (Wilson & Jungner

1968). Missing a sick person will be more costly for the

society in most situations. If disease is a contagious one,

missing one could lead to more patients. If disease is

expensive to treat in further levels, such as cancer, it is

again helpful to detect it very early. For the wrong

results (false positive), more qualified doctors or more

expensive tests could check the results again; therefore,
false positive results will be corrected in the second

checks.

For low resource-environments, computer resource

related metrics are more important. In such

environments, resources like RAM and CPU may

become more important parameters than accuracy.

Therefore, low model size for low RAM and low

training/testing time for better usage of CPU becomes

important.

Table 1 shows other performance metrics that are

used in different situations. Using different performance

metrics may lead to choosing different classifiers.
Instead of trying to choose a classifier based on a single

metric, incorporating different criteria to decision

process would be more reliable. Here, we propose using

a decision technique from software engineering domain,

Decision Analysis and Resolution (Team 2006) for this

purpose.

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 37-42 39

Table 1. Classifier Performance Metrics

Metric

Detection Rate
False Negative
False Positive
Training Memory
Training Time
Testing Time

F-1 Measure
Model Size in RAM
Model Size in Storage
Others

3. Decision Analysis and Resolution (DAR)

Decision Analysis and Resolution (DAR) technique

is originated in software engineering domain (Team

2006). It is a technique to make more informed

decisions, for example buying versus building a new

tool, subcontracting versus building a new software in

house. An example helps to understand this technique

better: we start with a common example of buying a car.

Suppose that a company needs to buy a car and wants to

make an informed decision. There are a lot of metrics

which can influence the decision. Some of them are

provided below.

 Cost

 Secondhand Worth

 Fuel Consumption

 Baggage Capacity

More metrics can be added to this list but to make

the example simpler, count of metrics is intentionally

restricted.

A decision between two brands (Brand F and Brand

H) should be made. Table 2 shows DAR comparison

between these two brands. A DAR process starts with
100 points and distribute these points to metrics, (weight

column). In Table 2, Initial Cost is given 40 points;

Secondhand Worth is given 20 points; Fuel Usage is

given 30 points; and Baggage Capacity is given 10

points for a total of 100 points.

Initial Cost, Secondhand Worth, Fuel Usage and

Baggage Capacity could not be compared because to the

different range of values of these variables. Initial Cost

and Secondhand Worth has values in dollars, while Fuel

Usage has liters/100 km and Baggage capacity is 𝑐𝑚2.

To be able to use mathematical operations meaningfully

(multiplication and addition), we need to normalize

these values to same range. Min-max normalization,

Equation 1 and Equation 2 could be used for this

purpose. Equation 1 is used when higher values are

better, and Equation 2 is used when higher values are

worse. Since higher values for second hand worth and

baggage size are better, these features are normalized

using Equation 1. Similarly, since higher values for cost

and fuel consumption are worse, these features are

normalized using Equation 2.

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
 (1)

𝑥𝑛𝑜𝑟𝑚 = 1−
𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
 (2)

Summarized version of DAR car buying scenario can be

seen in Table 2. The Min-Max column values are found

using other brands. For example, 10 different cars from

similar segments are used to find minimum and

maximum values for these features. F and H columns are

real values for these cars, while normalized F and

normalized H values are min-max normalized (Equation

1 and Equation 2) values. Since we normalize values

using Equation 1 and Equation 2), total column shows

how good this car it is. Excel version of the Table 2 is
provided in the source code repository.

 After calculation, Brand H is found to be a better

choice according to given weights, even though initial

cost of Brand H is higher. Here, Brand H having better

values in the metrics of fuel consumption and baggage

capacity are deciding factors for this decision, even

though its initial cost is more expensive. DAR is a

valuable technique to use when making a decision which

has more than two criteria.

3.1. How to decide weights

Decision weights change from user to user and domain

to domain. Those who can decide these weights called

differently according to domain, for example users,

evaluators, stakeholders (Shukla & Auriol 2013),

decision makers (Faydalı & Erkan 2020) and experts

(Çınar & Özer Uygun 2019). Thus, weights chosen by

these experts are often very subjective (Phillips & Polen

2002). Even though, weights chosen by single user is
subjective, a number methods to find common ground

between different users are proposed such as Rank

ordinal method (Danielson & Ekenberg 2017) and

Utility Rank Order Weighting (UROW) (Shukla &

Auriol 2013).

Table 2. Decision Analysis and Resolution - Car Buying Scenario

Weights Min Max Brand

F

Brand

H

Normalized

F

Normalized

H

Weight*Normalized

F

Weight*Normalized

H

Initial Cost 60 75000 100000 80000 95000 0,6 0,2 24 8

2nd-Hand Worth 20 20000 40000 30000 37000 0,75 0,85 15 17

Fuel Usage 30 4 6 5 4,4 0,5 0,8 15 24

Baggage Capacity 10 350 500 400 500 0,34 1 3,34 10

Total 57,34 59

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 37-42 40

4. Decision Analysis and Resolution (DAR):

Intrusion Detection Domain

Intrusion detection is a widely researched subject in

literature (Özgür & Erdem 2012, Özgür et al. 2018,

Özgür & Erdem 2018, Sahingoz 2019). In our example

problem, an intrusion detection classifier should be

decided for a resource constrained environment, such as

a micro-controller with a low RAM and less powerful

CPU environment. An example for this situation is given

by Karahan & Kaya 2020. Different metrics can be used

for this purpose, see Table 1.

KDD99 is the most used data set in the intrusion

detection domain, see (Özgür & Erdem 2016).

According to Özgür and Erdem (Özgür & Erdem 2016),
KDD99 dataset is used by 149 articles indexed in SCI-

index between 2010-2015. KDD99 has 41 features to 23

classes. KDD99 is a suite of different datasets, one of

these datasets is 10% of KDD99. KDD99 10% is widely

used since training and testing time issues with full

dataset. In our experiments, KDD99 10% (494021

instances) have been used due to training and testing

time problems with full dataset. Table 3 shows the 10

fold cross validation results for different classifier

comparison metrics using KDD99 10% dataset. As can

be seen from Table 3, making a comparison between
different classifiers using all these metrics is not easy.

Table 3. All Metrics for KDD99 dataset
Classifier

name

Mean

training

time (sc)

Mean

testing

time(sc)

Mean

accuracy

score

Mean

precision

score

Mean

recall

score

Mean

F1

score

Mean

model size

(k bytes)

AdaBoost 52.4111 1.8633 0.7866 0.7866 0.7866 0.7866 63810

Bagging 15.0923 0.2439 0.9997 0.9997 0.9997 0.9997 1027874

Decision

Tree

(CART)

2.3330 0.0084 0.9995 0.9995 0.9995 0.9995 126409

K Neighbors 0.0486 441.6670 0.9986 0.9986 0.9986 0.9986 149392857

Logistic

Regression

154.8023 0.0195 0.9574 0.9574 0.9574 0.9574 8642

Multi Layer

Perceptron 298.5620

0.2062

0.9963 0.9963 0.9963

0.9963 214557

Naive Bayes

0.4724 0.3285 0.9484 0.9484 0.9484 0.9484

16251

One Rule 0.0269 0.0547 0.4098 0.4098 0.4098 0.4098 836

Random

Forest

19.5079 0.7065 0.9998 0.9998 0.9998 0.9998 17025372

Support

Vector

Machines

14453.56

21

1306.280

1

0.6352 0.6352 0.6352 0.6352 179564859

Zero Rule 0.0222 0.0004 0.5684 0.5684 0.5684 0.5684 839

Since our working environment is a resource
constrained environment, following metrics are chosen

for DAR comparison. These are model-size for low-

memory constraint, training and testing time for less

powerful CPU constraint and accuracy for overall

performance. For these metrics 100 points are

distributed. Accuracy is given 40 points, model size is

given 30 points, and training time is given 10 points, and

testing time is given 20 points. These metrics are chosen

by the authors subjectively according to their knowledge

in intrusion detection domain.

Using the same approach in section 3, Table 4 DAR

Results is obtained. All the results are obtained using 10-

fold cross validation. In 10-fold cross validation, dataset

divided into 10 folds. Among these 10 folds, 9 of them

are used for training, while remaining 1-fold is used for

testing, see Figure 1. This means that for every cross

validation 444619 instances are used for training and

49402 instances are used for testing. This procedure is

repeated 10 times and results are averaged. Full metric

results for every run can be seen in github repository.

Figure 1. Cross Validation 10-fold

Experiments are realized using python (3.8) and sci-

kit learn toolkit (0.23.2) (Pedregosa et al. 2011).
Experiment computer has an operating system of Linux

Mint 20 Ulyana with 32G of RAM. Its CPU is an

Intel(R) Core(TM) i77700K CPU @ 4.20GHz with 8

cores. All classifiers are used with default parameters.

Software code for the experiments is provided in

https://github.com/ati-ozgur/classifier-comparison-

using-DAR.

In the results, best possible total score is 100 points

of 100 points. Total column is found using the DAR

process outlined in the section 3. Here it is weighted

normalized summation of accuracy, model size, training

and testing time. Accuracy is normalized using Equation
1 since high values are good, while other three metrics

are normalized using Equation 2 since high values are

worse. Then normalized values of these metrics are

multiplied with weights and summed to get the total

column in Table 4.

Table 4. DAR Results for Intrusion Detection in KDD99
dataset time.

According to results, best classifier with very small

lead is the Decision Tree classifier. Other three

Classifier Name Accuracy

(%)

Model

Size(Mb)

Training

Time

(sec)

Testing

Time

(sec)

Total

Weights 40 30 10 20 100

Decision Tree

(CART)

99.95 123.51 3.21 0.01 99.97

Bagging 99.97 1008.04 10.53 0.20 99.89

Multi Layer

Perceptron

99.62 210.02 1054.49 0.46 99.42

Random Forest 99.98 16642.80 129.21 3.45 98.29

Logistic

Regression

95.98 8.54 504.06 0.03 97.14

Naive Bayes 94.84 15.91 0.21 0.17 96.52

AdaBoost 78.66 64.39 24.32 0.94 85.55

Zero Rule 56.84 0.88 0.01 0.01 70.79

One Rule 40.90 0.88 0.01 0.02 60.00

K Neighbors 99.86 302790.12 2858.42 1517.63 57.78

Support Vector

Machines

63.52 175356.42 34064.04 2686.32 27.94

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 37-42 41

classifiers —Bagging, Multi Layer Perceptron, Random

Forest — get very similar scores in DAR table. Firstly,

the DAR process effectively removes outliers from

consideration. Support Vector Machines and K

Neighbors classifiers are outliers in model size and

testing time categories and accordingly their total scores

becomes lower. Secondly, if we have used only accuracy

as metric, K Neighbors with accuracy of 99.86% will be

among the best classifiers. But its total score is below 60

points since its other 3 metrics are very bad compared to
other classifiers.

In short, DAR approach helps to choose among

different classifiers according to given constraints.

4. Discussion

Novelty of the proposed method is its simplicity.
Compared to previously proposed decision methods

(Basheleishvili et al. 2019), (Çınar & Özer Uygun

2019), (Faydalı & Erkan 2020), DAR is easier to

understand and implement. An example Excel file for

car example and python code for the IDS example is

provided in the software source code site. The main

model complexity is O(n) since only 1 loop exists in the

solution. All other calculations are simple arithmetic

operations, again showing simplicity of the method

compared to alternatives.

Even though, DAR is a simple method, it is helpful

to implement it for comparing alternatives. In the
machine learning domain using only accuracy to rank

classifiers is rampant. But, in real world

implementations, other considerations should be

considered.

Limitation of the current study is that weights are

subjective and taken from only one expert. In a real-

world scenario, other methods such as given in section

3.1 should be implemented to use information given by

multiple experts.

5. Conclusions

A method to choose among different classifiers

named Decision Analysis and Resolution (DAR) is

proposed. This method is originated in software

engineering domain. According to given constraints,

this method ranks the classifiers. A resource constrained

environment has been chosen for demonstration

purposes. For this environment, accuracy, model size,

training time and testing time have been chosen for
comparison metrics. Using scikit-learn toolbox, 11

supervised learning classifiers have been applied to

well-known intrusion detection dataset KDD99.

According to our results, Decision Tree is most suitable

classifier for this resource constrained environment,

even though Random Forest is the best accuracy

classifier.

A natural progression of this work is to test the

current code on real micro controllers like Raspberry Pi

or Arduino. Using different datasets on the resource

constrained environments may be another application.

For example, deep learning systems are very popular for

image processing tasks like face detection and car plate

detection. But these deep learning systems are also

resource hungry. Comparing them would be an

interesting application.

References

Amatriain, X. & Basilico, J. (2012), ‘Netflix
recommendations: Beyond the 5 stars (part 1)’,
https://netflixtechblog.com/ netflix-recommendations-
beyond-the-5-stars-part-1-55838468f429.

Axelsson, S. (1999), The base-rate fallacy and its implications
for the difficulty of intrusion detection, in ‘In Proceedings
of the 6th ACM Conference on Computer and
Communications Security’, pp. 1–7.

Basheleishvili, I., Bardavelı̇dze, A. & Tsiramua, S. (2019),
‘The development of a model for decision support system
of assessment and selection of university academic staff’,
Journal of Intelligent Systems: Theory and Applications
2(2), 18–23.

Çınar, A. & Özer Uygun (2019), ‘Selecting green supplier
using intuitionistic fuzzy AHP’, Journal of Intelligent
Systems: Theory and Applications 2(2), 24– 31.

Danielson, M. & Ekenberg, L. (2017), Trade-offs for ordinal

ranking methods in multi-criteria decisions, in ‘Lecture
Notes in Business Information Processing’, Springer
International Publishing, pp. 16–27.

Faydalı, R. & Erkan, E. F. (2020), ‘A fuzzy VIKOR method

for machine selection’, Journal of Intelligent Systems:
Theory and Applications 3(1), 7–12.

Ileri, Y. & Furat, M. (2020), ‘A roadmap for digitalization of
industrial processes’, European Journal of Science and

Technology pp. 349 – 357.

Karahan, O. & Hökelek, H. (2020), ‘Mobile robot position
controlling system based on IoT through Raspberry Pi’,
Journal of Intelligent Systems: Theory and Applications 3,

25 – 30.

Karahan, O. & Kaya, B. (2020), ‘Raspberry Pi firewall and
intrusion detection system’, Journal of Intelligent Systems:
Theory and Applications 3, 21 – 24.

Lasi, H., Fettke, P., Kemper, H.-G., Feld, T. & Hoffmann, M.
(2014), ‘Industry 4.0’, Business & Information Systems
Engineering 6(4), 239–242.

Özgür, A. & Erdem, H. (2012), ‘Saldırı tespit sistemlerinde
kullanılan kolay erişilen makine öğrenme algoritmalarının
karşılaştırılması’, Bilişim Teknolojileri Dergisi 5, 41–48.

Özgür, A. & Erdem, H. (2016), ‘A review of KDD99 dataset
usage in intrusion detection and machine learning between
2010 and 2015’, PeerJ Preprints .

Özgür, A. & Erdem, H. (2018), ‘Feature selection and multiple
classifier fusion using genetic algorithms in intrusion
detection systems’, Journal of the Faculty of Engineering
and Architecture of Gazi University 33, 0 – 0.

Özgür, A., Nar, F. & Erdem, H. (2018), ‘Sparsity-driven
weighted ensemble classifier’, International Journal of
Computational Intelligence Systems 11, 962– 978.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 37-42 42

Cournapeau, D., Brucher, M., Perrot, M. & Édouard
Duchesnay (2011), ‘Scikit-learn: Machine learning in

python’, Journal of Machine Learning Research 12(85),
2825–2830.

Phillips, B. C. & Polen, S. M. (2002), ‘Add decision analysis
to your cots selection process’, Software Engineering

Technology .

Research, G. V. (2019), ‘Microcontroller market size, share &
trends analysis report’,
https://www.grandviewresearch.com/industry-analysis/

microcontroller-market. Last Accessed August 2019.

Sahingoz, O. K. (2019), ‘A clustering approach for intrusion
detection with big data processing on parallel computing
platform’, Balkan Journal of Electrical and Computer

Engineering 7, 286 – 293.

Saleh, N. & Hussein, N. (2019), ‘Artificial intelligence in
corneal topography’, Journal of Intelligent Systems:
Theory and Applications 2(1), 1–6.

Shukla, V. & Auriol, G. (2013), Methodology for determining
stakeholders’ criteria weights in systems engineering, in
‘Proceedings of the Posters Workshop at CSDM’.

Taşcı, E. (2019), ‘A meta-ensemble classifier approach:
Random rotation forest’, Balkan Journal of Electrical and
Computer Engineering 7, 182 – 187.

Team, C. P. (2006), Cmmi for development, version 1.2,
Technical report.

URL: http://btd.gazi.edu.tr/dergi/sayi/volume5-2-5.pdf

Uygun, Y. & Ilie, M. (2018), Autonomous Manufacturing-
related Procurement in the Era of Industry 4.0, Springer
Fachmedien Wiesbaden, pp. 81–97.

Wilson, J. & Jungner, G. (1968), Principles and practice of
screening for disease, Technical report, World Health
Organization.

Yavuz, H. S., Çevı̇kalp, H. & Edı̇zkan, R. (2016), ‘A
comprehensive comparison of features and embedding
methods for face recognition’, Turkish Journal of
Electrical Engineering and Computer Science 24, 313 –
340.

Yılmaz, A. (2020), ‘Assessment of mutation susceptibility in
DNA sequences with word vectors’, Journal of Intelligent
Systems: Theory and Applications 3(1), 1–6.

