DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE D_1^3

Mehmet ÖNDER

Celal Bayar Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, Muradiye Kampüsü, 45047 – Manisa, e-mail: mehmet.onder@bayar.edu.tr *Received: 12 September 2006, Accepted: 17 October 2006*

Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space D_1^3 and we show that every dual timelike normal curve is also a dual timelike spherical curve.

Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves.

Mathematics Subject Classifications (2000): 53C50, 53C40.

D³ DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER

Özet: Bu çalışmada, D_1^3 dual Minkowski 3-uzayında dual timelike normal ve dual timelike küresel eğrilerin karakterizasyonları verildi ve her dual timelike normal eğrinin aynı zamanda bir dual timelike küresel eğri olduğu gösterildi.

Anahtar Kelimeler: Normal eğriler, Dual Minkowski 3-uzayı, Dual timelike eğriler.

1. INTRODUCTION

In the Euclidean space E^3 , to each regular unit speed curve $\alpha: I \subset IR \to E^3$, with at least four continuous derivatives, it is possible to associate three mutually orthogonal unit vector fields T, N and B, called respectively the tangent, the principal normal and the binormal vector fields. The planes spanned by $\{T, N\}$, $\{T, B\}$ and $\{N, B\}$ are known as the osculating plane, the rectifying plane and the normal plane, respectively. The curves $\alpha: I \subset IR \to E^3$ for which the position vectors α always lie in their rectifying plane, are for simplicity called *rectifying curves* (EKMEKÇİ&İLARSLAN 1998). The characterizations of rectifying curves in Minkowski 3-space are given in (İLARSLAN v.d. 2003). Similarly, the curves for which the position vector α always lies in their osculating plane are for simplicity called *osculating curves*; and finally, the curves for which the position vector α always lies in their osculating plane are for simplicity called *osculating curves*; and finally, the curves for which the position vector α always lies in their normal plane are for simplicity called *normal curves*. By definition, for a normal curve, the position vector α satisfies $\alpha(\alpha) = \frac{1}{2} (\alpha) N(\alpha) + u(\alpha) P(\alpha)$

 $\alpha(s) = \lambda(s)N(s) + \mu(s)B(s)$

for some differentiable functions $\lambda(s)$ and $\mu(s)$ (İLARSLAN 2005). Spacelike normal curves are given in (İLARSLAN 2005).

In this study, we will give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space D_1^3 .

2. PRELIMINARIES

Minkowski space-time E_1^3 is an Euclidean space E^3 provided with the standard flat metric given by

$$g = -dx_1^2 + dx_2^2 + dx_3^2$$

where (x_1, x_2, x_3) is a rectangular coordinate system in E_1^3 . Since g is an indefinite metric, recall that a vector $v \in E_1^3$ can have one of three causal characters; it can be spacelike if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and null(lightlike) if g(v, v) = 0 and $v \neq 0$.

Dual numbers had been introduced by W. K. Clifford (1845-1879). A *dual number* has the form $\overline{a} = a + \varepsilon a^*$ where a and a^* are real numbers and ε is dual unit with $\varepsilon^2 = 0$. We denote the set of dual numbers by D:

$$D = \left\{ \overline{a} = a + \varepsilon a^* : a, a^* \in IR, \ \varepsilon^2 = 0 \right\}$$

Now let f be a differentiable function. Then the Maclaurin series generated by f is given by

$$f(\overline{x}) = f(x + \varepsilon x^{T}) = f(x) + \varepsilon x^{T} f'(x)$$

where
$$f'(x)$$
 is derivative of $f(x)$. Then we have
 $\sin(x + cx^*) - \sin(x) + cx^* \cos(x)$

$$\sin(x + \varepsilon x^*) = \sin(x) + \varepsilon x^* \cos(x),$$

$$\cos(x + \varepsilon x^*) = \cos(x) - \varepsilon x^* \sin(x),$$

$$\sinh(x + \varepsilon x^*) = \sinh(x) + \varepsilon x^* \cosh(x),$$

$$\cosh(x + \varepsilon x^*) = \cosh(x) + \varepsilon x^* \sinh(x),$$

$$\sqrt{x + \varepsilon x^*} = \sqrt{x} + \varepsilon \frac{x^*}{2\sqrt{x}}, \quad (x > 0).$$

Let D^3 be the set of all triples of dual numbers, i.e.,

$$D^3 = \left\{ \tilde{a} = (\overline{a}_1, \overline{a}_2, \overline{a}_3) : \overline{a}_i \in D, i = 1, 2, 3 \right\}.$$

The elements of D^3 are called as *dual vectors*. A dual vector \tilde{a} may be expressed in the form $\tilde{a} = a + \varepsilon a^*$, where *a* and a^* are the vectors of IR^3 .

The Lorentzian inner product of two dual vectors $\tilde{a} = a + \varepsilon a^*$ and $\tilde{b} = b + \varepsilon b^*$ is defined by

$$g(\tilde{a},\tilde{b}) = g(a,b) + \varepsilon \left(g(a,b^*) + g(a^*,b)\right)$$

where g(a,b) is the Lorentzian inner product of the vectors *a* and *b* in the Minkowski 3-space E_1^3 . Thus, a dual vector $\tilde{v} = v + \varepsilon v^*$ is called *dual spacelike vector* if $g(\tilde{v}, \tilde{v}) > 0$ or $\tilde{v} = 0$, *dual timelike vector* if $g(\tilde{v}, \tilde{v}) < 0$ and *dual null(lightlike) vector* if $g(\tilde{v}, \tilde{v}) = 0$ and $\tilde{v} \neq 0$.

The set of dual timelike, spacelike and lightlike vectors is called *dual Minkowski 3-space* and it is denoted by D_1^3 , i.e.

$$D_1^3 = \left\{ \tilde{a} = a + \varepsilon a^* : a, a^* \in E_1^3 \right\}.$$

An arbitrary curve $\tilde{\alpha} = \tilde{\alpha}(s)$ in D_1^3 can locally be dual spacelike, dual timelike or dual null, if all of its velocity vectors $\tilde{\alpha}'(s)$ are, respectively, dual spacelike, dual timelike or dual null. Also, recall that the norm of a dual vector $\tilde{v} = v + \varepsilon v^*$ is given by $\|\tilde{v}\| = \sqrt{|g(\tilde{v}, \tilde{v})|}$ where $g(\tilde{v}, \tilde{v}) = g(v, v) + 2\varepsilon g(v, v^*)$. Therefore, \tilde{v} is a dual unit vector if $g(\tilde{v}, \tilde{v}) = \pm 1 + \varepsilon 0$. Next, vectors \tilde{v}, \tilde{w} in D_1^3 are said to be dual orthogonal if $g(\tilde{v}, \tilde{w}) = 0 + \varepsilon 0$. The velocity of the dual curve $\tilde{\alpha}(s)$ is given by $\|\tilde{\alpha}'(s)\|$.

The dual Lorentzian space with center $\tilde{c} = (c_1, c_2, c_3) \in D_1^3$ and radius $\overline{r} \in D$ in dual space-time D_1^3 is dual hyper-quadratic

$$\tilde{S}_1^2(\overline{r}) = \left\{ \tilde{a} = (a_1, a_2, a_3) \in D_1^3 : g(\tilde{a} - \tilde{c}, \tilde{a} - \tilde{c}) = \overline{r}^2 \right\},\$$

with dimension 2 and index 1.

Denote by $\{\tilde{T}(s), \tilde{N}(s), \tilde{B}(s)\}$ the moving dual Frenet frame along the dual curve $\tilde{\alpha}(s)$ in the dual Minkowski space-time D_1^3 . Then $\tilde{T}, \tilde{N}, \tilde{B}$ are the dual tangent, the dual principal normal and the dual binormal vector fields, respectively. Dual spacelike or dual timelike curve $\tilde{\alpha}(s)$ is said to be parametrized by arclength function s, if $\tilde{\alpha}'(s)$ is dual spacelike or dual timelike. In particular, a dual null curve $\tilde{\alpha}(s)$ is said to be parametrized by a pseudo-arclength function s, if $\tilde{\alpha}''(s)$ is unit.

Let $\tilde{\alpha}(s)$ be a dual timelike curve in the dual Minkowski space-time D_1^3 parametrized by arclength function *s*. Then for the curve $\tilde{\alpha}$ the Frenet formulae are given by

$$\begin{bmatrix} \tilde{T}'\\ \tilde{N}'\\ \tilde{B}' \end{bmatrix} = \begin{bmatrix} 0 & k_1 & 0\\ \tilde{k}_1 & 0 & \tilde{k}_2\\ 0 & -\tilde{k}_2 & 0 \end{bmatrix} \begin{bmatrix} \tilde{T}\\ \tilde{N}\\ \tilde{B} \end{bmatrix}$$
(1)

where $g(\tilde{T},\tilde{T}) = -1$, $g(\tilde{N},\tilde{N}) = g(\tilde{B},\tilde{B}) = 1$, $g(\tilde{T},\tilde{N}) = g(\tilde{T},\tilde{B}) = g(\tilde{N},\tilde{B}) = 0$ and the functions $\tilde{k}_1(s) = k_1(s) + \varepsilon k_1^*(s)$ and $\tilde{k}_2(s) = k_2(s) + \varepsilon k_2^*(s)$ are called dual curvature and dual torsion of $\tilde{\alpha}$ respectively (YÜCESAN vd. 2002).

3. THE DUAL TIMELIKE NORMAL CURVES IN D_1^3

In this section, we will give characterize dual timelike normal curves in dual Minkowski space D_1^3 . Let now give the definition of dual timelike normal curve:

Definition 3.1. Let $\tilde{\alpha}(s)$ be a unit speed dual timelike curve in D_1^3 . $\tilde{\alpha}(s)$ is called dual timelike normal curve if the position vector $\tilde{\alpha}(s)$ satisfies the following condition

$$\tilde{\alpha}(s) = \tilde{\lambda}(s)\tilde{N}(s) + \tilde{\mu}(s)\tilde{B}(s)$$

where $\tilde{\lambda}(s)$ and $\tilde{\mu}(s)$ are dual differentiable functions of pseudo arclength parameter *s*.

Theorem 3.1. Let $\tilde{\alpha}(s)$ be a unit speed dual timelike normal curve in D_1^3 with curvatures $\tilde{k}_1(s) > 0$, $\tilde{k}_2(s) \neq 0$. Then the following statements hold:

i) The curvatures $\tilde{k}_1(s)$ and $\tilde{k}_2(s)$ satisfy the following equality

$$\frac{1}{\tilde{k}_1(s)} = \overline{c}_1 \cos\left(\int \tilde{k}_2(s) ds\right) + \overline{c}_2 \sin\left(\int \tilde{k}_2(s) ds\right)$$

(ii) The principal normal and binormal components of the position vector of the curve are given respectively by

$$g(\tilde{\alpha}(s), \tilde{N}) = \overline{c_1} \cos\left(\int \tilde{k_2}(s) ds\right) + \overline{c_2} \sin\left(\int \tilde{k_2}(s) ds\right)$$
$$g(\tilde{\alpha}(s), \tilde{B}) = -\overline{c_1} \sin\left(\int \tilde{k_2}(s) ds\right) + \overline{c_2} \cos\left(\int \tilde{k_2}(s) ds\right),$$
where $\overline{c_1} = c_1 + \varepsilon c_1^*$, $\overline{c_2} = c_2 + \varepsilon c_2^* \in D$ and $c_1, c_1^*, c_2, c_2^* \in IR$.

Conversely, if $\tilde{\alpha}(s)$ is a unit speed dual timelike curve in D_1^3 with the curvatures $\tilde{k}_1(s) > 0$, $\tilde{k}_2(s) \neq 0$ and one of the statements (i) and (ii) holds, then $\tilde{\alpha}$ is a normal curve or congruent to a normal curve.

Proof: Assume that $\tilde{\alpha}(s)$ is a unit speed dual timelike curve in D_1^3 , where *s* is pseudo arclength parameter. Then, by Definition 3.1, we have

$$\tilde{\alpha}(s) = \tilde{\lambda}(s)\tilde{N}(s) + \tilde{\mu}(s)\tilde{B}(s),$$

where $\tilde{\lambda}(s)$ and $\tilde{\mu}(s)$ are dual differentiable functions of pseudo arclength parameter s. Differentiating this with respect to s and by applying the Frenet equations (1), we obtain

$$\tilde{\lambda}\tilde{k}_1 = 1, \quad \tilde{\lambda}' - \tilde{\mu}\tilde{k}_2 = 0, \quad \tilde{\lambda}\tilde{k}_2 + \tilde{\mu}' = 0 \tag{2}$$

From the first and second equations in (2), we get

$$\tilde{\lambda} = \frac{1}{\tilde{k}_1}, \ \tilde{\mu} = \frac{1}{\tilde{k}_2} \left(\frac{1}{\tilde{k}_1} \right).$$
(3)

Thus

$$\tilde{\alpha}(s) = \frac{1}{\tilde{k}_1} \tilde{N} + \frac{1}{\tilde{k}_2} \left(\frac{1}{\tilde{k}_1} \right) \tilde{B}$$
(4)

Further, from the third equation in (2) and using (3) we find the following differential equation

$$\left[\frac{1}{\tilde{k}_2}\left(\frac{1}{\tilde{k}_1}\right)'\right] + \frac{\tilde{k}_2}{\tilde{k}_1} = 0$$
(5)

Putting $\tilde{y}(s) = \frac{1}{\tilde{k}_1}$ and $\tilde{z}(s) = \frac{1}{\tilde{k}_2}$, equation (5) can be written as

$$\left(\tilde{z}(s)\tilde{y}'(s)\right)' + \frac{\tilde{y}(s)}{\tilde{z}(s)} = 0$$

If we change variables in the above equation as $\tilde{t} = \int \frac{1}{\tilde{z}(s)} ds = \int \tilde{k}_2(s) ds$ then we get

$$\frac{d^2 \tilde{y}}{d\tilde{t}^2} + \tilde{y} = 0$$

The solution of this differential equation is

$$\tilde{y} = \overline{c_1} \cos(\tilde{t}) + \overline{c_2} \sin(\tilde{t})$$

where $\overline{c}_1, \overline{c}_2 \in D$. Therefore

$$\frac{1}{\tilde{k}_1(s)} = \overline{c}_1 \cos\left(\int \tilde{k}_2(s) ds\right) + \overline{c}_2 \sin\left(\int \tilde{k}_2(s) ds\right)$$
(6)

Thus the statement (i) is proved. Next, substituting (6) into (3) and (4) we get

$$\tilde{\lambda} = \overline{c_1} \cos\left(\int \tilde{k_2}(s) ds\right) + \overline{c_2} \sin\left(\int \tilde{k_2}(s) ds\right),$$

$$\tilde{\mu} = -\overline{c_1} \sin\left(\int \tilde{k_2}(s) ds\right) + \overline{c_2} \cos\left(\int \tilde{k_2}(s) ds\right)$$
(7)

and

$$\tilde{\alpha} = \left[\overline{c_1}\cos\left(\int \tilde{k_2}(s)ds\right) + \overline{c_2}\sin\left(\int \tilde{k_2}(s)ds\right)\right]\tilde{N} + \left[-\overline{c_1}\sin\left(\int \tilde{k_2}(s)ds\right) + \overline{c_2}\cos\left(\int \tilde{k_2}(s)ds\right)\right]\tilde{B} (8)$$

From (8) we find

 $g(\tilde{\alpha}, \tilde{\alpha}) = \overline{c_1}^2 + \overline{c_2}^2, \qquad (9)$

$$g(\tilde{\alpha}, \tilde{N}) = \overline{c_1} \cos\left(\int \tilde{k_2}(s) ds\right) + \overline{c_2} \sin\left(\int \tilde{k_2}(s) ds\right), \tag{10}$$

$$g(\tilde{\alpha}, \tilde{B}) = -\overline{c_1} \sin\left(\int \tilde{k_2}(s) ds\right) + \overline{c_2} \cos\left(\int \tilde{k_2}(s) ds\right).$$
(11)

Consequently, we have proved (ii).

Conversely, suppose that statement (i) holds. Then we have

$$\frac{1}{\tilde{k}_1(s)} = \overline{c}_1 \cos\left(\int \tilde{k}_2(s) ds\right) + \overline{c}_2 \sin\left(\int \tilde{k}_2(s) ds\right), \qquad \overline{c}_1, \ \overline{c}_2 \in D.$$

Differentiating this with respect to s we get

$$\left[\frac{1}{\tilde{k}_2}\left(\frac{1}{\tilde{k}_1}\right)'\right]' = -\frac{\tilde{k}_2}{\tilde{k}_1}.$$

By applying Frenet equations, we obtain

$$\frac{d}{ds}\left[\tilde{\alpha}(s) - \frac{1}{\tilde{k}_1}\tilde{N} - \frac{1}{\tilde{k}_2}\left(\frac{1}{\tilde{k}_1}\right)'\tilde{B}\right] = 0.$$

Consequently, $\tilde{\alpha}$ is congruent to a normal curve. Next, assume that statement (ii) holds. Then (9) and (10) are satisfied. Differentiating (9) with respect to *s* and using (10) we find $g(\tilde{\alpha}, \tilde{T}) = 0$, which means that $\tilde{\alpha}$ is normal curve, which proves the theorem.

Corollary 3.1. The real and dual parts of the equation (6) are, respectively, given by

$$\frac{1}{k_1(s)} = c_1 \cos\left(\int k_2(s)ds\right) + c_2 \sin\left(\int k_2(s)ds\right), \qquad c_1, c_2 \in IR,$$

and

$$-\frac{k_1^*(s)}{k_1^2(s)} = \int k_2^*(s) ds \left(-c_1 \sin\left(\int k_2(s) ds\right) + c_2 \cos\left(\int k_2(s) ds\right)\right) + c_1^* \cos\left(\int k_2(s) ds\right) + c_2^* \sin\left(\int k_2(s) ds\right).$$

Similarly, the real and dual parts of the equations (10) and (11) are, respectively, given by

$$g(\alpha, N) = c_1 \cos(\int k_2(s)ds) + c_2 \sin(\int k_2(s)ds)$$
$$g(\alpha, N^*) + g(\alpha^*, N) = \int k_2^*(s)ds \left(-c_1 \sin(\int k_2(s)ds) + c_2 \cos(\int k_2(s)ds)\right)$$
$$+ c_1^* \cos(\int k_2(s)ds) + c_2^* \sin(\int k_2(s)ds)$$

and

$$g(\alpha, B) = -c_1 \sin\left(\int k_2(s)ds\right) + c_2 \cos\left(\int k_2(s)ds\right)$$
$$g(\alpha, B^*) + g(\alpha^*, B) = -\int k_2^*(s)ds\left(c_1 \cos\left(\int k_2(s)ds\right) + c_2 \sin\left(\int k_2(s)ds\right)\right)$$
$$-c_1^* \sin\left(\int k_2(s)ds\right) + c_2^* \cos\left(\int k_2(s)ds\right)$$

where α , N, B and α^* , N^{*}, B^{*} are reel and dual parts of $\tilde{\alpha}$, \tilde{N} and \tilde{B} respectively. Here, real parts of (6), (10) and (11) are the conditions for a unit speed timelike curve $\alpha = \alpha(s)$ with Frenet frame $\{T, N, B\}$ and curvatures k_1 and k_2 to be a timelike normal curve in Minkowski space-time E_1^3 . Also, we see that $g(\alpha, N^*) + g(\alpha^*, N) = -\frac{k_1^*}{k_1^2}$, i.e., dual part of equation (6) is equal to dual part of equation (10). So, we can give the following corollary:

Corollary 3.2. Let $\tilde{\alpha}(s)$ be a unit speed dual timelike curve in D_1^3 with curvatures $\tilde{k}_1(s) > 0$, $\tilde{k}_2(s) \neq 0$. Then $\tilde{\alpha}(s)$ is a dual timelike normal curve if and only if

$$\frac{1}{\tilde{k}_1(s)} = \frac{1}{k_1(s)} + \varepsilon \Big(g(\alpha(s), N^*(s)) + g(\alpha^*(s), N(s)) \Big).$$

Theorem 3.2. Let $\tilde{\alpha} = \tilde{\alpha}(s)$ be a unit speed dual timelike normal curve in D_1^3 with curvatures $\tilde{k}_1(s) > 0$, $\tilde{k}_2(s) \neq 0$. Then there holds

$$\frac{1}{\tilde{k}_1(s)} = \pm \sqrt{\overline{r}^2 - \overline{c}_2^2} \cos\left(\int \tilde{k}_2(s) ds\right) + \overline{c}_2 \sin\left(\int \tilde{k}_2(s) ds\right)$$
(12)

Proof: Since $\tilde{\alpha}(s)$ is a dual timelike normal curve the position vector $\tilde{\alpha}$ is spacelike. Then $g(\tilde{\alpha}, \tilde{\alpha}) = \overline{r}^2$, $\overline{r} \in D$. Substituting this into (9), we get $\overline{c_1} = \pm \sqrt{\overline{r}^2 - \overline{c_2}^2}$. By using this last equation and (6) we obtain that (12) holds.

4. DUAL TIMELIKE SPHERICAL CURVES

In this section, we characterize dual timelike curves which lie on dual Lorentzian sphere $\tilde{S}_1^2(\bar{r})$ with radius $\bar{r} \in D$.

Theorem 4.1. Let $\tilde{\alpha}(s)$ be a unit speed dual timelike curve. Then $\tilde{\alpha}$ lies on $\tilde{S}_1^2(\overline{r})$ if and only if

$$\overline{r}^{2} = \left(\frac{1}{\tilde{k}_{1}}\right)^{2} + \left[\left(\frac{1}{\tilde{k}_{1}}\right)'\frac{1}{\tilde{k}_{2}}\right]^{2}.$$
(13)

Proof: Assume that $\tilde{\alpha}$ lies on $\tilde{S}_1^2(\bar{r})$ which we may assume to have centre at the origin 0. Then

$$g(\tilde{\alpha}, \tilde{\alpha}) = \overline{r}^2$$

Differentiations of this give first

$$g(\tilde{\alpha},\tilde{T}) = 0, \qquad (14)$$

and then

$$g(\tilde{\alpha}, \tilde{N}) = \frac{1}{\tilde{k}_1}.$$
(15)

and the derivation of the last equality gives us

$$g(\tilde{\alpha}, \tilde{B}) = \left(\frac{1}{\tilde{k_1}}\right)' \frac{1}{\tilde{k_2}}$$
(16)

Then, from (15) and (16) we can write

$$\tilde{\alpha} = \frac{1}{\tilde{k}_1} \tilde{N} + \left(\frac{1}{\tilde{k}_1}\right)' \frac{1}{\tilde{k}_2} \tilde{B} .$$
(17)

Since we have that the radius of the sphere is $\overline{r} = \|\tilde{\alpha} - 0\|$ we obtain that

$$\overline{r}^{2} = \left(\frac{1}{\widetilde{k}_{1}}\right)^{2} + \left[\left(\frac{1}{\widetilde{k}_{1}}\right)'\frac{1}{\widetilde{k}_{2}}\right]^{2},$$

which completes the proof.

Conversely assume that the regular C^4 -curve $\tilde{\alpha}(s)$ satisfies the conditions *(i)* and *(ii)* of the theorem. Let us consider the parametrized curve $\tilde{\alpha} = \tilde{c}(s)$ defined by

$$\tilde{c}(s) = \left(\tilde{\alpha} - \frac{1}{\tilde{k}_1}\tilde{N} - \left(\frac{1}{\tilde{k}_1}\right)'\frac{1}{\tilde{k}_2}\tilde{B}\right)(s), \qquad (18)$$

and the function $\tilde{r}(s)$ defined by

$$\left[\tilde{r}\right]^{2} \equiv \left[\tilde{\alpha} - \tilde{c}\right]^{2} = \left(\frac{1}{\tilde{k}_{1}}\right)^{2} + \left[\left(\frac{1}{\tilde{k}_{1}}\right)'\frac{1}{\tilde{k}_{2}}\right]^{2}.$$
(19)

If we differentiate (18) and (19) and make use of Frenet formulae, the result is $\tilde{c}' = 0$, $\tilde{r}' = 0$. Therefore, the parametrized curve $\tilde{\alpha} = \tilde{c}(s)$ reduces to a point \tilde{c} and the function $\tilde{r}(s)$ is a constant \overline{r} . Hence by (19), $\tilde{\alpha}(s)$ lies on $\tilde{S}_1^2(\overline{r})$ with center \tilde{c} and radius \overline{r} .

Corollary 4.1. The reel and dual parts of (13) *are given by*

$$r^{2} = \left(\frac{1}{k_{1}}\right)^{2} + \left[\left(\frac{1}{k_{1}}\right)'\frac{1}{k_{2}}\right]^{2}$$

and

$$rr^{*} = -\frac{k_{1}^{*}}{k_{1}^{3}} - \left(\left(\frac{1}{k_{1}}\right)'\right)^{2} \frac{k_{2}^{*}}{k_{2}^{3}} + \left(\frac{1}{k_{1}}\right)' \left(\frac{k_{1}^{*}}{k_{1}^{2}}\right)' \frac{1}{k_{2}^{2}},$$

respectively. Here, r^2 which is the reel part of (13), characterizes a unit speed timelike curve $\alpha = \alpha(s)$ with Frenet frame $\{T, N, B\}$ and curvatures k_1 and k_2 which lies on Lorentzian sphere $S_1^2(r)$ with radius r in Minkowski space-time E_1^3 .

Equation (17) shows that $\tilde{\alpha}(s)$ is a dual timelike normal curve. So, we can give the following corollary:

Corollary 4.2. Let $\tilde{\alpha}(s)$ be a unit speed dual timelike curve. Then $\tilde{\alpha}(s)$ lies on $\tilde{S}_1^2(\overline{r})$ if and only if $\tilde{\alpha}(s)$ is a dual timelike normal curve.

Also, by Theorem 3.1, Theorem 3.2, Corollary 3.2 and Corollary 4.2 we have the following corollary:

Corollary 4.3. Let $\tilde{\alpha}(s)$ be a unit speed dual timelike curve. Then $\tilde{\alpha}$ lies on $\tilde{S}_1^2(\overline{r})$ if and only if there are constants $\overline{c_1}, \overline{c_2}, \overline{r} \in D$ such that

$$\frac{1}{\tilde{k}_{1}(s)} = \overline{c}_{1} \cos\left(\int \tilde{k}_{2}(s)ds\right) + \overline{c}_{2} \sin\left(\int \tilde{k}_{2}(s)ds\right)$$
$$= \frac{1}{k_{1}(s)} + \varepsilon\left(g(\alpha(s), N^{*}(s)) + g(\alpha^{*}(s), N(s))\right)$$
$$= \pm \sqrt{\overline{r^{2}} - \overline{c}_{2}^{2}} \cos\left(\int \tilde{k}_{2}(s)ds\right) + \overline{c}_{2} \sin\left(\int \tilde{k}_{2}(s)ds\right).$$
(20)

Reel part of (20) which is given in Corollary 3.1 by

$$\frac{1}{k_1(s)} = c_1 \cos\left(\int k_2(s) ds\right) + c_2 \sin\left(\int k_2(s) ds\right), \qquad c_1, c_2 \in IR,$$

characterizes a unit speed timelike curve $\alpha(s)$ with curvatures $k_1(s) > 0$, $k_2(s) \neq 0$ which lies on Lorentzian sphere $S_1^2(r)$ with radius r in Minkowski space-time E_1^3 . So we can give the following corollary:

Corollary 4.4. Let $\alpha(s)$ be a unit speed timelike curve in E_1^3 with curvatures $k_1(s) > 0$, $k_2(s) \neq 0$. Then α lies on $S_1^2(r)$ if and only if there are constants $c_1, c_2 \in IR$ such that

$$\frac{1}{k_1(s)} = c_1 \cos\left(\int k_2(s) ds\right) + c_2 \sin\left(\int k_2(s) ds\right).$$

5. CONCLUSIONS

In this study, the characterizations of dual timelike normal and dual timelike spherical curves have been given in dual Minkowski 3-space. Also, it was observed that every dual timelike normal curve is a dual timelike spherical curve.

REFERENCES

CAMCI, Ç., İLARSLAN, K. AND ŠUĆUROVIĆ, E., 2003: On pseudohyperbolic curves in Minkowski space-time, *Turkish Journal of Math.*, 27, 315-328.

CHEN, B. Y., 2003. When does the position vector of a space curve always lie in its rectifying plane?, *Amer. Math. Mountly*, 110, 147-152.

- EKMEKÇI, N. AND İLARSLAN, K., 1998. Higher Curvatures of a Regular Curve in Lorentzian Space, *Journal of Institute of Math. And Comp. Sci.*, Vol. 11, No 2, 97-102.
- ILARSLAN, K. 2005. Spacelike Normal Curves in Minkowski Space E_1^3 , *Turk Journal of Math.*, 29, 53-63.
- ILARSLAN, K., NEŠOVIĆ, E. AND PETROVIĆ-TURGAŠEV, M., 2003. Some Characterizations of Rectifying Curves in the Minkowski 3-space, *Novi Sad J. Math.* Vol. 33, No. 2, 23-32.
- PETROVIĆ-TURGAŠEV, M. AND ŠUĆUROVIĆ, E., 2000. Some characterizations of Lorentzian spherical spacelike curves with the timelike and null principal normal, *Mathematica Moravica*, 4, 83-92.
- PETROVIĆ-TURGAŠEV, M. AND ŠUĆUROVIĆ, E., 2000. Some characterizations of curves lying on the pseudohyperbolic space H_0^2 in the Minkowski space E_1^3 , *Kragujevac J. Math.*, 22, 71-82.
- WONG Y. C., 1963. A global formulation of condition for a curve to lie in a sphere, *Monatschefte fur Mathematik*, 67, 363-365.
- WONG Y. C., 1972. On an explicit characterization of spherical curves, *Proceedings of the American Math. Soc.*, 34, 239-242.
- YÜCESAN A., CÖKEN A. C., AYYILDIZ N., 2002. On the Dual Darboux Rotation Axis of the Timelike Dual Space Curve, *Balkan Journal of Geometry and Its Applications*, Vol. 7, No:2, 137-142.