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Abstract: In this paper, we give characterizations of dual timelike normal and dual 
timelike spherical curves in the dual Minkowski 3-space 3

1D  and we show that every 
dual timelike normal curve is also a dual timelike spherical curve. 
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3
1D  DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL 

TIMELIKE KÜRESEL EĞRİLER 
 
 

Özet: Bu çalışmada, 3
1D  dual Minkowski 3-uzayında dual timelike normal ve dual 

timelike küresel eğrilerin karakterizasyonları verildi ve her dual timelike normal eğrinin 
aynı zamanda bir dual timelike küresel eğri olduğu gösterildi. 
 
Anahtar Kelimeler: Normal eğriler, Dual Minkowski 3-uzayı, Dual timelike eğriler. 

 
 
1. INTRODUCTION 
 
In the Euclidean space 3E , to each regular unit speed curve 3: IR Eα Ι ⊂ → , with at 
least four continuous derivatives, it is possible to associate three mutually orthogonal 
unit vector fields NT ,  and B , called respectively the tangent, the principal normal and 
the binormal vector fields. The planes spanned by { },, NT { }BT ,  and { }BN , are known 
as the osculating plane, the rectifying plane and the normal plane, respectively. The 
curves 3: IR Eα Ι ⊂ →  for which the position vectors α  always lie in their rectifying 
plane, are for simplicity called rectifying curves (EKMEKÇİ&İLARSLAN 1998). The 
characterizations of rectifying curves in Minkowski 3-space are given in (İLARSLAN 
v.d. 2003). Similarly, the curves for which the position vector α  always lies in their 
osculating plane are for simplicity called osculating curves; and finally, the curves for 
which the position vector α  always lies in their normal plane are for simplicity called 
normal curves. By definition, for a normal curve, the position vector α  satisfies   

)()()()()( sBssNss µλα +=  
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for some differentiable functions )(sλ  and )(sµ (İLARSLAN 2005). Spacelike normal 
curves are given in (İLARSLAN 2005). 
 
 In this study, we will give characterizations of dual timelike normal and dual timelike 
spherical curves in the dual Minkowski 3-space 3

1D . 
 
2. PRELIMINARIES 

 
Minkowski space-time 3

1E  is an Euclidean space 3E  provided with the standard flat 
metric given by 

2 2 2
1 2 3g dx dx dx= − + +  

where 1 2 3( , , )x x x  is a rectangular coordinate system in 3
1E . Since g  is an indefinite 

metric, recall that a vector 3
1v E∈  can have one of three causal characters; it can be 

spacelike if ( , ) 0g v v >  or 0v = , timelike if ( , ) 0g v v <  and null(lightlike) if 
( , ) 0g v v =  and 0v ≠ .  

 
Dual numbers had been introduced by W. K. Clifford (1845-1879). A dual number has 
the form *a a aε= +  where a  and  *a  are real numbers and ε  is dual unit with 2 0ε = . 
We denote the set of dual numbers by D: 

{ }* * 2: , , 0D a a a a a IRε ε= = + ∈ = . 
Now let f be a differentiable function. Then the Maclaurin series generated by f is given 
by 

* *( ) ( ) ( ) ( )f x f x x f x x f xε ε ′= + = + , 
where ( )f x′  is derivative of ( )f x . Then we have 

* *

* *

* *

* *

*
*

sin( ) sin( ) cos( ),
cos( ) cos( ) sin( ),
sinh( ) sinh( ) cosh( ),
cosh( ) cosh( ) sinh( ),

, ( 0).
2

x x x x x
x x x x x
x x x x x
x x x x x

xx x x x
x

ε ε

ε ε

ε ε

ε ε

ε ε

+ = +

+ = −

+ = +

+ = +

+ = + >

 

 
Let  3D  be the set of all triples of dual numbers, i.e., 

{ }3
1 2 3( , , ) : , 1, 2,3iD a a a a a D i= = ∈ =% . 

The elements of 3D  are called as dual vectors. A dual vector a%  may be expressed in the 
form *a a aε= +% , where a  and *a  are the vectors of  3IR . 
 
The Lorentzian inner product of two dual vectors *a a aε= +%  and *b b bε= +%  is defined 
by 

( )* *( , ) ( , ) ( , ) ( , )g a b g a b g a b g a bε= + +%%  
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where ( , )g a b  is the Lorentzian inner product of the vectors a and b in the Minkowski 
3-space 3

1E . Thus, a dual vector v v vε ∗= +%  is called dual spacelike vector if ( , ) 0g v v >% %  
or 0v =% , dual timelike vector if ( , ) 0g v v <% %  and dual null(lightlike) vector if ( , ) 0g v v =% %  
and 0v ≠% .  
 
The set of dual timelike, spacelike and lightlike vectors is called dual Minkowski 3-
space and it is denoted by 3

1D , i.e.  

{ }3 * * 3
1 1: ,D a a a a a Eε= = + ∈% . 

 
An arbitrary curve ( )sα α=% %  in 3

1D  can locally be dual spacelike, dual timelike or dual 
null, if all of its velocity vectors ( )sα′%  are, respectively, dual spacelike, dual timelike or 
dual null. Also, recall that the norm of a dual vector v v vε ∗= +%  is given by 

( , )v g v v=% % %  where ( , ) ( , ) 2 ( , )g v v g v v g v vε ∗= +% % . Therefore, v%  is a dual unit vector if 

( , ) 1 0g v v ε= ± +% % . Next, vectors ,v w% %  in 3
1D  are said to be dual orthogonal if 

( , ) 0 0g v w ε= +% % . The velocity of the dual curve ( )sα%  is given by ( )sα′% . 
 
The dual Lorentzian space with center 3

1 2 3 1( , , )c c c c D= ∈%  and radius r D∈  in dual 
space-time 3

1D  is dual hyper-quadratic 

{ }2 3 2
1 1 2 3 1( ) ( , , ) : ( , )S r a a a a D g a c a c r= = ∈ − − =% % % % % % , 

with dimension 2 and index 1.  
 
Denote by { }( ), ( ), ( )T s N s B s% % %  the moving dual Frenet frame along the dual curve ( )sα%  

in the dual Minkowski space-time 3
1D . Then , ,T N B% % %  are the dual tangent, the dual 

principal normal and the dual binormal vector fields, respectively. Dual spacelike or 
dual timelike curve ( )sα%  is said to be parametrized by arclength function s , if ( )sα ′%  is 
dual spacelike or dual timelike. In particular, a dual null curve ( )sα%  is said to be 
parametrized by a pseudo-arclength function s , if ( )sα′′%  is unit. 
 
Let ( )sα%  be a dual timelike curve in the dual Minkowski space-time 3

1D  parametrized 
by arclength function s . Then for the curve α%  the Frenet formulae are given by 

1

1 2

2

0 0

0

0 0

kT T
N k k N
B Bk

    ′
    ′ =     
    ′ −     

%% %

% %% %

% %%

 (1) 

where ( , ) 1, ( , ) ( , ) 1, ( , ) ( , ) ( , ) 0g T T g N N g B B g T N g T B g N B= − = = = = =% % % % % % % % % % % %  and the 
functions *

1 1 1( ) ( ) ( )k s k s k sε= +%  and *
2 2 2( ) ( ) ( )k s k s k sε= +%  are called dual curvature and 

dual torsion of α%  respectively (YÜCESAN vd. 2002). 
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3. THE DUAL TIMELIKE NORMAL CURVES IN 3

1D  
 
In this section, we will give characterize dual timelike normal curves in dual Minkowski 
space 3

1D . Let now give the definition of dual timelike normal curve: 
 
Definition 3.1. Let ( )sα%  be a unit speed dual timelike curve in 3

1D . ( )sα%  is called dual 
timelike normal curve if the position vector ( )sα%  satisfies the following condition  

( ) ( ) ( ) ( ) ( )s s N s s B sα λ µ= +% % %% % , 
where ( )sλ%  and ( )sµ%  are dual differentiable functions of pseudo arclength parameter 
s . 
 
Theorem 3.1. Let ( )sα%  be a unit speed dual timelike normal curve in 3

1D  with 

curvatures 1 2( ) 0, ( ) 0k s k s> ≠% % . Then the following statements hold: 

i) The curvatures 1( )k s%  and 2( )k s%  satisfy the following equality 

( ) ( )1 2 2 2
1

1 cos ( ) sin ( )
( )

c k s ds c k s ds
k s

= +∫ ∫% %
%

 

 (ii) The principal normal and binormal components of the position vector of 
the curve are given respectively by  

( ) ( )
( ) ( )

1 2 2 2

1 2 2 2

( ( ), ) cos ( ) sin ( )

( ( ), ) sin ( ) cos ( ) ,

g s N c k s ds c k s ds

g s B c k s ds c k s ds

α

α

= +

= − +

∫ ∫
∫ ∫

% %%%

% %%%
 

where * * * *
1 1 1 2 2 2 1 1 2 2, and , , ,c c c c c c D c c c c IRε ε= + = + ∈ ∈ . 

 
Conversely, if ( )sα%  is a unit speed dual timelike curve in 3

1D  with the curvatures 

1 2( ) 0, ( ) 0k s k s> ≠% %  and one of the statements (i) and (ii) holds, then α%  is a normal 
curve or congruent to a normal curve. 
 
Proof: Assume that ( )sα%  is a unit speed dual timelike curve in 3

1D , where s  is pseudo 
arclength parameter. Then, by Definition 3.1, we have  

( ) ( ) ( ) ( ) ( )s s N s s B sα λ µ= +% % %% % , 
where ( ) and ( )s sλ µ% %  are dual differentiable functions of pseudo arclength parameter s . 
Differentiating this with respect to s  and by applying the Frenet equations (1), we 
obtain 

1 2 21, 0, 0k k kλ λ µ λ µ′ ′= − = + =% % %% % %% %   (2) 
                            

From the first and second equations in (2), we get 

1 2 1

1 1 1, .
k k k

λ µ
′

 
= =  

 
% %

% % %  (3) 
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Thus 

1 2 1

1 1 1( )s N B
k k k

α
′

 
= +  

 
% %%

% % %  (4) 

.                             
Further, from the third equation in (2) and using (3) we find the following differential 
equation 

2

2 1 1

1 1 0k
k k k

′′    + =    

%

% % %  (5) 

 

Putting 
1

1( )y s
k

=%
%  and 

2

1( )z s
k

=%
% , equation (5) can be written as  

( ) ( )( ) ( ) 0
( )

y sz s y s
z s

′′ + =
%

%%
%

. 

If we change variables in the above equation as 2
1 ( )
( )

t ds k s ds
z s

= =∫ ∫ %%
%

 then we get  

2

2 0d y y
dt

+ =
%

%
%

. 

The solution of this differential equation is 
1 2cos( ) sin( )y c t c t= +% %%  

where 1 2,c c D∈ . Therefore  

( ) ( )1 2 2 2
1

1 cos ( ) sin ( )
( )

c k s ds c k s ds
k s

= +∫ ∫% %
%

 (6) 

.                             
Thus the statement (i) is proved. Next, substituting (6) into (3) and (4) we get  

( ) ( )
( ) ( )

1 2 2 2

1 2 2 2

cos ( ) sin ( ) ,

sin ( ) cos ( )

c k s ds c k s ds

c k s ds c k s ds

λ

µ

= +

= − +

∫ ∫
∫ ∫

% %%

% %%
 (7) 

and 

( ) ( ) ( ) ( )1 2 2 2 1 2 2 2cos ( ) sin ( ) sin ( ) cos ( )c k s ds c k s ds N c k s ds c k s ds Bα    = + + − +   ∫ ∫ ∫ ∫% % % %% %% (8) 

From (8) we find 
2 2

1 2( , )g c cα α = +% % , 
( ) ( )1 2 2 2( , ) cos ( ) sin ( )g N c k s ds c k s dsα = +∫ ∫% %%% , 

( ) ( )1 2 2 2( , ) sin ( ) cos ( )g B c k s ds c k s dsα = − +∫ ∫% %%% . 

(9) 
(10) 
(11) 

 
Consequently, we have proved (ii). 
 
Conversely, suppose that statement (i) holds. Then we have  
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( ) ( )1 2 2 2 1 2
1

1 cos ( ) sin ( ) , ,
( )

c k s ds c k s ds c c D
k s

= + ∈∫ ∫% %
% . 

Differentiating this with respect to s  we get  

2

2 1 1

1 1 k
k k k

′′    = −    

%

% % % . 

By applying Frenet equations, we obtain 

1 2 1

1 1 1( ) 0.d s N B
ds k k k

α
′   − − =    

% %%
% % %  

 
Consequently, α%  is congruent to a normal curve. Next, assume that statement (ii) holds. 
Then (9) and (10) are satisfied. Differentiating (9) with respect to s  and using (10) we 
find ( , ) 0g Tα =%% , which means that α%  is normal curve, which proves the theorem. 
 
Corollary 3.1. The real and dual parts of the equation (6) are, respectively, given by 

( ) ( )1 2 2 2 1 2
1

1 cos ( ) sin ( ) , , ,
( )

c k s ds c k s ds c c IR
k s

= + ∈∫ ∫  

and  

( ) ( )( )
( ) ( )

*
*1
2 1 2 2 22

1

* *
1 2 2 2

( ) ( ) sin ( ) cos ( )
( )

cos ( ) sin ( ) .

k s k s ds c k s ds c k s ds
k s

c k s ds c k s ds

− = − +

+ +

∫ ∫ ∫

∫ ∫
 

Similarly, the real and dual parts of the equations (10) and (11) are, respectively, given 
by 

( ) ( )1 2 2 2( , ) cos ( ) sin ( )g N c k s ds c k s dsα = +∫ ∫  

( ) ( )( )
( ) ( )

* * *
2 1 2 2 2

* *
1 2 2 2

( , ) ( , ) ( ) sin ( ) cos ( )

cos ( ) sin ( )

g N g N k s ds c k s ds c k s ds

c k s ds c k s ds

α α+ = − +

+ +

∫ ∫ ∫
∫ ∫

 

and  

( ) ( )1 2 2 2( , ) sin ( ) cos ( )g B c k s ds c k s dsα = − +∫ ∫  

( ) ( )( )
( ) ( )

* * *
2 1 2 2 2

* *
1 2 2 2

( , ) ( , ) ( ) cos ( ) sin ( )

sin ( ) cos ( )

g B g B k s ds c k s ds c k s ds

c k s ds c k s ds

α α+ = − +

− +

∫ ∫ ∫
∫ ∫

 

where , ,N Bα  and * * *, ,N Bα  are reel and dual parts of  , Nα %%  and B%  respectively. 
Here, real parts of (6), (10) and (11) are the conditions for a unit speed timelike curve 

( )sα α=  with Frenet frame { }, ,T N B and curvatures  1k  and 2k  to be a timelike 

normal curve in Minkowski space-time 3
1E .  
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Also, we see that 
*

* * 1
2

1

( , ) ( , ) kg N g N
k

α α+ = − , i.e., dual part of  equation (6) is equal to 

dual part of equation (10). So, we can give the following corollary: 
 
Corollary 3.2. Let ( )sα%  be a unit speed dual timelike curve in 3

1D  with curvatures 

1 2( ) 0, ( ) 0k s k s> ≠% % . Then ( )sα%  is a dual timelike normal curve if and only if 

( )*

11

1 1 ( ( ), ( )) ( ( ), ( ))
( )( )

g s N s g s N s
k sk s

ε α α∗= + +% . 

 
Theorem 3.2. Let ( )sα α=% %  be a unit speed dual timelike normal curve in 3

1D  with 

curvatures 1 2( ) 0, ( ) 0k s k s> ≠% % . Then there holds  

( ) ( )2 2
2 2 2 2

1

1 cos ( ) sin ( )
( )

r c k s ds c k s ds
k s

= ± − +∫ ∫% %
%

 (12) 

 
Proof: Since ( )sα%  is a dual timelike normal curve the position vector α%  is spacelike. 

Then 2( , ) ,g r r Dα α = ∈% % . Substituting this into (9), we get 2 2
1 2c r c= ± − . By using 

this last equation and (6) we obtain that (12) holds. 
 
4. DUAL TIMELIKE SPHERICAL CURVES 
 
In this section, we characterize dual timelike curves which lie on dual Lorentzian sphere 

2
1 ( )S r%  with radius r D∈ . 

 
Theorem 4.1. Let ( )sα%  be a unit speed dual timelike curve. Then α%  lies on 2

1 ( )S r%  if 
and only if  

2
2

2

1 1 2

1 1 1r
k k k

 ′    = +        
% % %

. (13) 

 
 

Proof: Assume that α%  lies on 2
1 ( )S r%  which we may assume to have centre at the origin 

0. Then  
2( , )g rα α =% % . 

Differentiations of this give first 
( , ) 0g Tα =%% , (14) 

and then 

1

1( , )g N
k

α =%%
% . (15) 

and the derivation of the last equality gives us 
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1 2

1 1( , )g B
k k

α
′ 

=  
 

%%
% %  (16) 

Then, from (15) and (16) we can write 

1 1 2

1 1 1N B
k k k

α
′ 

= +  
 

% %%
% % % . (17) 

Since we have that the radius of the sphere is 0r α= −%  we obtain that 
2

2
2

1 1 2

1 1 1r
k k k

 ′    = +        
% % % , 

which completes the proof.  
 
Conversely assume that the regular 4C -curve ( )sα%  satisfies the conditions (i) and (ii) 
of the theorem. Let us consider the parametrized curve ( )c sα =% %  defined by 

1 1 2

1 1 1( ) ( )( )c s N B s
k k k

α
′ 

= − −  
 

% %%%
% % % , (18) 

and the function ( )r s%  defined by 

[ ] [ ]
2

2
2 2

1 1 2

1 1 1r c
k k k

α
 ′    ≡ − = +        

%% %
% % %

. (19) 

If we differentiate (18) and (19) and make use of Frenet formulae, the result is 
0, 0c r′ ′= =% % . Therefore, the parametrized curve ( )c sα =% %  reduces to a point c%  and the 

function ( )r s%  is a constant r . Hence by (19), ( )sα%  lies on 2
1 ( )S r%  with center c%  and 

radius r . 
 
Corollary 4.1. The reel and dual parts of (13) are given by 
 

2
2

2

1 1 2

1 1 1r
k k k

 ′    = +        

 

and  
2

* * *
* 1 2 1

3 3 2 2
1 1 2 1 1 2

1 1 1k k krr
k k k k k k

 ′ ′ ′      = − − +            

, 

respectively. Here, 2r  which is the reel part of (13), characterizes a unit speed timelike 
curve ( )sα α=  with Frenet frame { }, ,T N B and curvatures  1k  and 2k  which lies on 

Lorentzian sphere 2
1 ( )S r  with radius r  in Minkowski space-time 3

1E . 
 
Equation (17) shows that ( )sα%  is a dual timelike normal curve. So, we can give the 
following corollary: 
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Corollary 4.2. Let ( )sα%  be a unit speed dual timelike curve. Then ( )sα%  lies on 2

1 ( )S r%  if 
and only if ( )sα%  is a dual timelike normal curve. 
 
Also, by Theorem 3.1, Theorem 3.2, Corollary 3.2 and Corollary 4.2 we have the 
following corollary: 
 
Corollary 4.3. Let ( )sα%  be a unit speed dual timelike curve. Then α%  lies on 2

1 ( )S r%  if 
and only if there are constants 1 2, ,c c r D∈  such that 

( ) ( )

( )

( ) ( )

1 2 2 2
1

*

1

2 2
2 2 2 2

1 cos ( ) sin ( )
( )

1 ( ( ), ( )) ( ( ), ( ))
( )

cos ( ) sin ( ) .

c k s ds c k s ds
k s

g s N s g s N s
k s

r c k s ds c k s ds

ε α α∗

= +

= + +

= ± − +

∫ ∫

∫ ∫

% %
%

% %

 (20) 

 
Reel part of (20) which is given in Corollary 3.1 by 

( ) ( )1 2 2 2 1 2
1

1 cos ( ) sin ( ) , , ,
( )

c k s ds c k s ds c c IR
k s

= + ∈∫ ∫  

characterizes a unit speed timelike curve ( )sα  with curvatures 1 2( ) 0, ( ) 0k s k s> ≠  
which lies on Lorentzian sphere 2

1 ( )S r  with radius r  in Minkowski space-time 3
1E . So 

we can give the following corollary: 
 
Corollary 4.4. Let ( )sα  be a unit speed timelike curve in 3

1E  with curvatures 

1 2( ) 0, ( ) 0k s k s> ≠ . Then α  lies on 2
1 ( )S r  if and only if there are constants 1 2,c c IR∈  

such that 

( ) ( )1 2 2 2
1

1 cos ( ) sin ( ) .
( )

c k s ds c k s ds
k s

= +∫ ∫  

 
5.   CONCLUSIONS 
 
In this study, the characterizations of dual timelike normal and dual timelike spherical 
curves have been given in dual Minkowski 3-space. Also, it was observed that every 
dual timelike normal curve is a dual timelike spherical curve. 
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