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limit when one of these parameters goes to 0, we get rational solutions as a quotient of a
polynomial of degree N(N + 1) — 2 in x and #, by a polynomial of degree N(N + 1) in x and
t for each positive integer N depending on 3N real parameters. We restrict ourself to give
the explicit expressions of these rational solutions for N = 1 until N = 3 to shortened the
paper.

We easily deduce the corresponding explicit rational solutions to the Kadomtsev Petviashvili
equation for the same orders from 1 to 3.

1. Introduction

The Boussinesq equation in the following normalization is considered

1
Ut — Uxx + (uz)xx + guxxxx =0. (1.1)

The subscripts x and ¢ denote as usual partial derivatives.

This equation (1.1) is an equation solvable [3,4] by inverse scattering. It was introduced for the first time by Boussinesq [1,2] in 1871.
This equation appears in a wide range of physical problems dealing with propagation of nonlinear waves; for example, in one-dimensional
nonlinear lattice-waves [5], vibrations in a nonlinear string [6], ion sound waves in a plasma [7]....

The first solutions were constructed by Hirota [8] in 1977 with Bécklund transformations. Non singular rational solutions were constructed by
Ablowitz and Satsuma by using the Hirota bilinear method [9] in 1978. Freemann and Nimmo [10] gave in 1983 wronskians representations
of the solutions. Other approaches were used; in particular, an algebro-geometrical method was given by Matveev et al. [11] in 1987;
Darboux transformations [12] was used by Matveev; the d dressing method [13] was considered by Bogdanov.

Clarkson obtained solutions in terms of particular polynomials in a series of papers [14,15] and recently, in 2017 gives new solutions [16] as
second derivatives of polynomials.

Solutions to the Boussinesq equation and the Kadomtsev Petviashvili equation are considered in this paper. We give solutions from
elementary exponential functions depending on several parameters. Then we construct rational solution in performing a passage to the limit
when one of these parameters goes to 0. We obtain rational solutions as a quotient of a polynomial of degree N(N+1) —2 inxand 7 by a
polynomial of degree N(N + 1) in x and ¢, depending on 2N parameters. We give explicit solutions in the simplest cases where N =1, 2, 3.
We deduce and give explicit expressions of rational solutions to the Kadomtsev-Petviashvili (KP) equation for the cases of orders from 1 to 3.
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2. Solutions to the Boussinesq equation

2.1. Solutions to the Boussinesq equation in terms of elementary exponentials
We consider the Boussinesq equation

1
Ur — Uxx + (uz)xx + guxxxx =0.

We define the following notations.
We consider e, aj, cj, dj, 1 < j <N, arbitrary real numbers, and o, B ; the numbers defined by

3 1
(X_,‘ziaje—kiq/l—?)a%ez 2.1
3 1
ﬁj:—iaje—o—iﬁ/l—Sa?ez. (2.2)

We consider the following elementary functions

fij(x,t) = Ocj-f1 exp(ojx — ajzt + CjeZNfl) — /3]’:71 exp(Bjx — ﬁjzt +dje2N71), (2.3)

and

for1 <i<N.
Then, we have the following statement:

Theorem 2.1. The function v defined by

v(x,t) = 207 In(det(fij) i jyepn]) (24

is a solution to the Boussinesq equation (1.1) with e, aj, cj and dj, 1 < j < N arbitrarily real parameters.

Proof. The corresponding Lax pair to the Boussinesq equation (1.1) is

3 3
{ Prxx + §M¢x—z¢x+u¢:l¢7 2.5)
O = —xx —ug.

The compatibility condition of the preceding system can be written as [12]

w 3 3
= Uy — U
X 4 XX 4 () (26)
w _l +§(u2) ,; +§
= 4uxxx 4 x 4”)( 4uxt~

The Boussinesq equation is obtained by excluding w from the above equations.
This system is covariant by the Darboux transformation. If ¢y,...,¢y are solutions of the system (2.6), then @[N] defined by @[N] =

Wid,....0n.9) is another solution of this system (2.6) where u is replaced by u[N] = u+2(InW (¢, ..., On)xx [12].

W(9r,....¢n) , , .
We choose u = 0. Then the functions ¢; = fi; verify the following system
3 b — A
{ Prex — Z‘Px =19, 2.7
O = —Pxx.

Then the solution of (1.1) can be written as v(x,) = 2(InW (¢, . ., ¢ )y Which is nothing else that (2.4) v(x,t) = 292 In(det(fij) i, jyeq1.n)-

2.2. Rational solutions to the Boussinesq equation
To obtain rational solutions to the Boussinesq equation, we are going to perform a limit when the parameter e tends to 0.
2.2.1. Rational solutions as a limit case

We get the following result :
Theorem 2.2. The function v defined by
— T 2 -
V(X,t) 72%28)( ln(det(ﬁ])(,«7j>e[17N]) (28)
is a rational solution to the Boussinesq equation (1.1) depending on 3N parameters aj, ¢j and dj, 1 < j < N; the numerator is a polynomial

of degree N(N + 1) —2 in x and t, the denominator a polynomial of degree N(N + 1) in x and t.

Proof. Itis a consequence of the previous result. O
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2.2.2. Degenerate rational solutions

A more precise result can be formulated in the following way.
We consider e, aj, cj, dj, 1 < j <N, arbitrary real numbers, and ¥;, 5j the numbers defined by

|
k

3 1 N ?
oj = —3 (l;lak(je)Zk_]> + 3 1-3 (Z ak(je)2k1> (2.9)

k=1

™=

2
Y= ak(je)Zk_l> ,

N =

(o)

k=1

N W
Il

We consider the following elementary functions

. N ) N
gij(x,t,e) = yj.*l exp (nxylz»t+ Z ck(je)2k1> - 5}’1 exp (ij 5]2t+ Z dk(je)Zkl)) , (2.10)
k=1 k=1
g 0
¢ij(x,1) = % for 1 <i<N, 1<j<N. @.11)

Then get the following result :

Theorem 2.3. The function v defined by

v(x,1) =207 In(det(9ij) i j)e1 v (2.12)

is a rational solution to the Boussinesq equation (1.1) depending on 3N parameters aj, ¢j and d;, 1 < j < N; the numerator is a polynomial
of degree N(N + 1) — 2 in x and t, the denominator a polynomial of degree N(N + 1) in x and t.

Proof. In the coefficients a; and f3; defined in (2.1,2.2), we replace a; by Y&, ax(je)?*~!, and in the functions f;; defined in (2.3), ¢; by
ZkN:] ck(je)** ! and d; by Z;(V:l di(je)**~1; this gives functions g;; defined by (2.10). Then, it is sufficient to combine the columns of the
determinant obtained from this defined by (2.8) by replacing f;; by g;; and to take a passage to the limit when e tends to 0. So we get the
solution v given by (2.12). O

So we obtain an infinite hierarchy of rational solutions to the Boussinesq equation depending on the integer N.

In the following we give some examples of rational solutions.

These results are consequences of the previous result (2.12).

But, it is also to possible to prove it directly in replacing the expressions of each of the solutions given in the corresponding equation and
check that the relation is verified.

2.3. First order rational solutions

We have the following result at order N =1 :

Theorem 2.4. The function v defined by

—18a;2
1) = , 2.13
vexr) (=3ayx—cy+3tay +dp)? 2.13)
is a solution to the Boussinesq equation (1.1) with ay, cy, dy arbitrarily real parameters.
Remark 2.5. Ifa; =0, then the solution is the trivial solution 0.
Remark 2.6. The solution (2.13) can be simplified and be rewritten as a solution depending on one parameter C.
—18
)= . 2.14
D= o) @19
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Figure 2.1: Solution of order 1 to (1.1), on the left a; = 1013, ¢y = 1, ¢; = 0; on the right a; = 1, ¢; = 102, d; = 0.

Remark 2.7. The case where a; = 1, ¢; =0, d; = 102 gives the same figure as the case ay = 1, c; = 102, d, = 0.
The roles played by the parameters ¢ and d being the same, we only give the figures with parameters d equal to 0.

2.4. Second order rational solutions

Theorem 2.8. The function v defined by

v(x,t)=-2 M (2.15)

with

n(x,t) =9a1a2(27ar’ ay +243ax’ay — 162ax3ar)x* +9aya(—972ax’ta; — 324 ax°a; +216a3a;3 + 648 ar3ar3t —36a17ar — 108 a1 tay)x’
+9a1a2(972az°tay — 648 ax3ar3t — 108 az’ar® —972ax3 a3 1> +162a1°1%ar + 162ax%a; + 18 a1’ ay + 108 ar tay + 1458 a’2ay )x* +9ajar (— 108 a > Pas +
216ar%coa1 +72dra 3 —432a23a3t 4+ 648 ar3 a3 —24a,2d ar +648 a2 a1 312 + 648 ax tay — T2 a3 ca +72dvar® +24 a2 crar — 972 axd a1 > — 12 ax3 ¢y —
972ay°1?ay +72a,°tay — 216 ay’dray — 108 a;>12ar )x+9ajar (24 a3 ey +24 a3 ¢y + 324 ay’ a1 4540 ax a 31% + 216 ax’ar *t — 216 ax3ay >3 + 8 ay 2dyay —
90a;’t?ay —36a1°tar +36a> P ay +243t* ax’ a; — 1621 ax3ar® +27a’t* ay + 712 ardra) — 810ay°t*ay — 324 ax’tay —12tay’dy — T2a13tdy +216tar*dray +
24a,%tdyay —2161ar%cray — 24a,%tcray — 24dray —24d ar® — 8ayciar + T2tax ey +72a13tcr — T2 ax’cray ),

and

d(x,t) = (=9a3ar +27a1a2°)x® + (27ta13ar — 81tajar® +9a’ay — 27a1a2°)x* + (=271%a3ar + 8112a1ax® — 18tar3ay + 54tayar’®)x + 93a > ay —
278a1a23 +91%aray — 271%a1ax> + 18ta3ay — S4taray® — 12aic2 + 12a1dy +dazey — dard,

is a rational solution to the Boussinesq equation (1.1), quotient of two polynomials with numerator of order 4 in x and t, denominator of
degree 6 in x and t.

Figure 2.2: Solution of order 2 to (1.1); on the left, a; = 107, ap=1,¢; =1,¢o=1,d; =0, d» = 0; on the right,a; =1, ay = 107, c;=1,c0=1,d, =0,
dy =0.
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Figure 2.3: Solution of order 2 to (1.1); on the left,a; = 1,ay =1, ¢; = 107, ¢, =0,d; =1,d, = 1; on the right,a; =1l,a=1,¢1 =0, = 107,d; =0,
dr, =0.

2.5. Rational solutions of order three

We get the following rational solutions given by :
Theorem 2.9. The function v defined by

n(x,t)
v(x,t) = -2 —, 2.16
(1) d(x,1)? (2.16)
is a rational solution to the Boussinesq equation (1.1), quotient of two polynomials with numerator of order 10 in x and t, denominator of
degree 12 in x and t.

Because of the length of the solution, we give it only in the appendix.

Remark 2.10. Ifc; = ¢y = c3 =d| =dy =d3 =0, then the determinant in the formula (2.12) can be simplified by Ug#alazag(—SOag +

360a%a% + a‘l‘ - 30a§a%) and the solution to the Boussinseq equation depends no longer on any parameter.
If one of the parameters ay, ay or a3 is equal to O then the solution of the Boussinesq equation is the trivial solution (equal to 0).
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Figure 2.4: Solution of order 3 to (1.1); on the left,a; = 1,a, =1,a3 =1,¢; =0, c; =0,c3 = 107, d; =0,d, =0, d3 = 0; in the center, a; = 1, ap = 1,
asz = 1,(21 :0,62: 107,(,‘3: 1,d1 :0,d2 :O,d3 :O;ontheright,al = 1,02: 1,a3 = 107,6‘1 = 1,6‘2: 1,L‘3 = 1,d1 :0,d2 :0,d3 =0.
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Figure 2.5: Solution of order 3 to (1.1)on the left, a; = 1, a» = 107, a3=1,c1=1,¢ca=1,c3=107,d; =0, d» =0, d3 = 0; in the center, a; = 107, ap = 1,
as=1,c1=1,c0=10"c3=1,d; =0,d, =0, d3 = 0; on the right, a; = 1, ax = 1, a3 = 10", ¢; = 10°, c = l,c3 =1, d; =0,dr =0, d3 = 0.
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3. Solutions to the Kadomtsev Petviashvili equation

We consider the Kadomtsev Petviashvili equation (KP) which can be written in the form
(4MT76uux+uxxx)X73uyy :07 (31)

where subscripts X, Y and T denote as usual partial derivatives.
From the previous study, we can deduce easily solutions to the KP equation. It is sufficient for this, to use the following transformations

T . . . . . .
x=1X+ R t =1Y from the solutions to the Boussinesq equation to obtain solutions to the KP equation.

3.1. Solutions to the KP equation
3.2. First order rational solutions
We have the following result at order N =1 :

Theorem 3.1. The function v defined by

—2884,2

X.Y,T)= ,
v ) (12ia1X +9iaT +4c| — 12iYa, —4d;)?

3.2)
is a solution to the KP equation (3.1).

—288

Remark 3.2. The solution (3.2) can be simplified and be rewritten as depending on one parameter v(X.Y,T) = (X 10T 1 4G, — 120 )2
i i 1 —12i

0.000016
1.000014
000012
00010

BT

oS
e

500 -500 -1500

1500

Figure 3.1: Solution of order 1 to (3.1), on the left T = 10, a; = 10%, ¢, = 1,d; = 1; on the right 7T =10,a; =1,¢; = 103,d; = 1.

Remark 3.3. The case where T =10, a; =1, ¢c; = 1, d; = 10° gives the same figure as the case T =10, a1 =1, ¢ = 103, d; = 1.
3.3. Second order rational solutions

We obtain the following solutions :
Theorem 3.4. The function v defined by

n(X.Y,T)

V(X.Y,T) = —2m,

3.3)

with

n(X.Y,T) = 144aya:(—41472a23a;> + 62208 ar’ ay +6912a17ax)X* + 144 ajay (—124416 a3 a1 3T — 27648 ar Yay + 165888 ax’a3Y +9216iar’as
—55296iar3a;® + 186624 ax ai T + 82944 iay> ay +20736ar> ar T — 248832a5°Yay ) X3 + 144 ajar (—248832ax3a; Y2 — 27648 ia1°Yay +23328a> a T? +
373248a23a13Y T+ 165888 iar3 a1 Y — 124416ia23 a3 T +41472a,°Y2ay — 62208 a7 Ya, T —559872a25Ya; T — 139968 ar3a 3 T? — 41472 a5 a; +27648 a2 a® +
209952ay%a; T? + 186624 iar a, T +373248 a2 Y 2a; —248832iax7Ya) +20736ia17ax T — 4608 a1 az)X? + 144 ayax (—419904 ax Ya, T? 4279936 a3a 3 Y T2 —
46656a1°Ya,T? + 62208 a1 Y2a,T + 559872 a2 Y2a T — 373248 ar3a 3Y2T — 373248ia,°Ya, T + 248832ia3a;3Y T — 41472ia,°Yar T — 18432iay3 ¢y +
41472a23a3T — 6912a1%a, T — 62208a2’ar T + 18432idrar® — 18432iar3cy + 18432id a3 + 139968 iay’ay T? — 93312iay3a3T? + 15552ia> ay T? +

27648 ia,°Y%ay +248832ia,°Y2a; — 165888 iar3 a3 Y2 — 55296 iar2dra) — 6144 iay2dyar +55296ia22cra) +6144iar2c1ar —69984 ax3 a3 T3+ 11664 a15a, T3 +
104976 a2’ a; T3 — 248832a°a1 Y3 + 110592 ax3a;3Y + 165888 az3a13Y3 — 18432a1°Yay — 27648a1°Y3ay — 165888ay°Yay )X + 144ajax(6144ar’cy +
6144a;3c) +41472iay*cra\ T + 4608 ia)>crar T — 104976 ay>Ya, T + 69984 ar3a3Y T3 — 11664 a,°Yar T? + 55296 iY ar*dyay + 6144 ia,>Y dyay

—55296iY ar2cra; —6144ia;2Y crar — 139968 iay° Ya T2 +93312iax3 a3 Y T? — 15552ia1°Yar T? +20736ia1°Y 2a, T + 186624 iay Y2 a; T — 124416 iay3a 3 Y2 T —
41472iar2dra T —4608ia12dias T — 13122 a23a13T* 419683 ax a; T* +2187 adar T* + 13824 idra 3T — 13824 ia 3 cr T+ 13824 id ax3 T — 23328 iar3a 3 T3 +
3888ia1°arT? — 82944 iar a Y3 455296 ia3a13Y 4+ 55296ia3a;3Y> —9216ia, Yay —9216ia1°Y3ay — 82944 iay°Ya, — 18432iY ay3dy — 18432ia13Y d» +
18432iYay®ci + 18432ia;3Y ¢ 434992 iay’ a\ T> — 13824 iar> ¢ T — 124416 ay>Ya, T + 82944 ar3a >Y T — 186624 ay’ a| Y3 T + 124416 ax3a 3Y3T — 138244, Ya, T
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—20736a,3Y3a,T + 209952 a,°Y2a, T? — 139968 a53a,3Y2T? + 23328a,°Y2a, T? + 62208 Y4ax5a; — 41472Y4ax3a)3 + 69124a,5Y*ay + 20484, 2d ar +
18432as2dra; — 6144 drai> — 6144 d1ar® + 15552a3a13T? — 2592a15a, T2 — 23328 ax°ay T? — 138240453 a;3Y? 4 207360a5°Y%a; + 23040a,°Y2a, —

2048 a;%cray — 18432ay%cray),

and

d(X.Y,T) = —1728ia1a2°X> + 576 ia;3a; X> + 1728 aja’ X — 576 a13ap X% — 3888 iayax X T + 5184 iYajax3X? — 1728 iY a3 ayX? + 1296 ia;3a, TX? +
7776iYa1a,>TX +972ia13arT?*X —2916ia1a>°XT? —5184iY2a1a>3X +1728iY2a3a: X —2592iY a3 arXT — 864 a3 ar TX — 3456 Yajar3 X +2592a,a,3TX +
1152Y a3 arX —768a; ¢y —256 ardy —3888iY2a1ar> T +2916iYaar> T? 4+ 1728 iY3ajax — 576iY3a 3 ay — 3456 iYa ar® + 1152iY a1 3a, —972i¥Y a3 a, T2 —
729ia1a23T3 +256 arci +243ia13a> T3 + 768 aydy + 1296 iY2a3ar T +972a1ar> T2 — 2592 Ya a3 T — 324 a3 a, T2 +864Y a3 ar T+ 1728 Y2a a2 — 576 Y2a 3 as,
is a rational solution to the KP equation (3.1), quotient of two polynomials with numerator of degree 4 in x, y and t and denominator of
degree 6 inx, y and't.

Figure 3.2: Solution of order 2 to (3.1); ontheleft 7 =0,1,a; =1, a2 =1,¢; =0,c2 =0,d; =0,dr =0; inthe center T = 0,1, a1 =1, a2 =1,¢; =0,
c;=10%,d, =0,d, =0; ontheright T=0,1,a; =1,a; =10°,¢c; =1,co =1,d; =0, d, = 0.

o
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Figure 3.3: Solution of order 2 to (3.1); on the left 7 =0,1, a; = 10% ay=1,¢;1=1,ca=1,d; =0, d» = 0; in the center T =0,l,a1=1l,ap=1,¢c1 = 100,
¢y =0,d1 =0,d, =0;ontheright T =10,a1 =1, a0 =1,c1 =1,c2 = 107,d1 =0,d, =0.

Figure 3.4: Solution of order 2 to (3.1); onthe left 7 =10, a; =1, a, = 10% ci=1,c=1,d; =0,d, =0;inthe center T = 10, a; =100, ap =1,¢; =1,
cp=1,d1=0,dy=0;0ontheright T =10,a1 =1, aa=1,c1 =1,c2 = 106,d1 =0,d, =0.
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3.4. Rational solutions of order 3

We get the non singular rational solutions given by :
Theorem 3.5. The function v defined by

n(X.Y,T)

VXY, T) = —2m,

34

is a rational solution to the KP equation (3.1), quotient of two polynomials with numerator of degree 10 in X, Y, T and denominator of
degree 12in X, Y and T.

Because of the length of the solution, we only give it in the appendix.

Figure 3.5: Solution of order 3 to (3.1); ontheleft T =0,1,a1 =1, aa=1,a3=1,¢1=0,¢c2 =0¢3 =0,d; =0, d» =0, d3 = 0; in the center T =0, 1,
aj :1,a2:1,a3:1,c1 :1,62:0,63:106,(11 :O,dZ:O,d3:O;ontherightT:O,l,al :l,azzl,a3:1,c1 :0,62:106,C3:1,d1 :0,
dr,=0,d3=0.

Figure 3.6: Solution of order 3 to (3.1);ontheleft7 =0,1,a; =1,a0 =1, a3 = 10, ci=1lLca=1c3=1,d,=0,d, =0,d3 =0; in the center T =0, 1,
ar=1l,a=10a3=1,c1=1,co=1,¢3=1,d1 =0,dr =0, d3 = 0; ontheright T =0,1,a; =10,a,=1,a3=1,c1 =1,¢,=10,c3=1,d; =0,
dy=0,d3=0.

Figure 3.7: Solution of order 3 to (3.1); ontheleft 7 =0,1,a; =1, ax =1, a3=1,¢; = 106, c=1c3=1,d1=0,d» =0,d3 =0;inthe center T =1,
a=la=1a=1c=0,c=0c:=0d =0,d,=0,d3 =0;ontheright T =1, a; =10%am=1,;3=1,c1=1,c=1,c3=1,d; =0,dr =0,
d3 =0.
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Figure 3.8: Solution of order 3 to (3.1); ontheleft 7 =1,a1 =1, ao =1, a3 =1,¢; = 100, co=1c3=1,d, =0,d, =0, d;3 =0; in the center T = 10,
a1:106,a2:1,a3:1,c1:l,cz:l,03:1,d1:O,dz:O,d3:0;ontherightT:10,a1:l,azzl,agzl,cl:1,02:1,C3:107,d1:0,d2:0,
d3 =0.

4. Conclusion

We have given three types of representations of solutions to the Boussinesq equation. First, solutions in terms of elementary exponential
functions have been constructed. In particular, performing a passage to the limit when one parameter goes to 0 we get rational solutions to
the Boussinesq equation. We give an other representation in terms of determinants without the presence of a limit. So we obtain an infinite
hierarchy of multiparametric families of rational solutions to the Boussinesq equation as a quotient of a polynomial of degree N(N + 1) — 2
in x, ¢ by a polynomial of degree N(N + 1) in x, ¢ depending on 3N real parameters.

As a byproduct, we get easily similar rational solutions to the Kadomtsev Petviashvili equation as the quotient of determinants of polynomials,
where the numerator is a polynomial of degree N(N+ 1) —2 in X, Y, T and the denominator is a polynomial of degree N(N+1) in X, Y, T.
In particular, we construct explicit rational solutions to the Boussinesq equation of order 1, 2, 3.

Unlike other equations such as NLS, there are no specific structures that emerge as a function of the parameters.
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