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Abstract

The paper considers a linear Diophantine equation. A method (algorithm) for finding a
general class of solutions of equation is proposed. The proposed algorithm is explained by
examples of equations with two and three variables, trying to direct the reader to a general
idea that describes the essence of the method used.

1. Introduction

A Diophantine equation is an equation in several variables in which only integer solutions are allowed. One of its special cases is the linear
Diophantine equation in n ∈ N variables (where N := {1,2, . . .}), which is of the following general form

A1x1 +A2x2 + · · · +Anxn = B, (1.1)

whose solutions are required to be integers, where {Ai,B} ⊂ Z, n≥ 2 and i = 1,2, . . . ,n, where Z is the set of all integers. Equation (1.1) is
named in honor of the Greek mathematician Diophantus of Alexandria (circa 300 c.e.).
A large number of works on the solution of Linear Diophantine equations are devoted. In these works, various methods and algorithms for
solving equations are proposed and developed. For instance in [4], methods based on arguments of Euclidean algorithm are proposed. In this
regard, we refer the reader, also to [1], [2], [3], [5], [6].
The aim of the paper is to attempt to give a general algorithm for finding the class of all solutions of equation (1.1), which, unlike the
mentioned methods, would simplify the process of finding solutions.
In the second section, we give an algorithm for the method of finding the class of all solutions of an equation with two variables. Moreover,
we will explain this algorithm using a typical example, trying to direct the reader to a general idea that describes the essence of the proposed
method. In fact, the algorithm we proposed in this case, is based on arguments that differ significantly from the Euclidean algorithm. The
latter is known as the algorithm for finding the greatest common divisor of integers.
In the Third and Fourth sections, the developed algorithm for an equation with two variables extends to cases of an equation with three and
more variables.

2. Equation with two variables

Let n = 2 in equation (1.1). Then we consider the following equation with two variables x and y:

Ax+By =C, (2.1)

where {A,B,C} ⊂ Z are the given numbers. The greatest common divisor of numbers |A| and |B| is denote by gcd(|A|, |B|). There are many
sources devoted to finding solutions to equations (2.1). It is known that if the number |C| is not divisible by gcd(|A|, |B|), then equation (2.1)
has no solutions; see [4].
Now consider the case that the number C is divisible by gcd(|A|, |B|). Let’s divide numbers A, B, and C by gcd(|A|, |B|). Then equation (2.1)
be transformed to the following form:

ax+by = c, (2.2)
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where the numbers a, b, and c don’t have a common divisor, that is gcd(a,b,c) = 1. Integers with this property are hereinafter referred to as
prime numbers in common.
It is known that to construct all the solutions of equation (2.2), one partial solution is needed.

2.1. General Algorithm for finding a partial solution.

As this is often done in order to find all solutions of equation (2.2), it is first necessary to somehow establish one partial solution. Typically,
such a solution can be found primitively, using intuitive consideration. Then, using this solution, it is easy to construct the class of all
solutions. In this case, a specific analytical method for finding a partial solution is not used. In this section, we put forward one algorithm for
the method of finding a partial solution, based in fact, on the arguments essentially differing from Euclidian algorithm. Namely our algorithm
is based on a very simple but a very important for our aim idea: searching for a linear representation of the unit using a finite number of
so-called superpositions of the coefficients of the equation in question. And also, as will be shown below, this algorithm is applicable for
cases of equations with an arbitrary number of variables.

Definition 2.1. The number obtained as a result of eventual operations, which consist of the algebraic actions of addition and subtraction
between several prime numbers in common, we call the Superposition of these numbers.

Let

D := {a1,a2, . . . ,ak} ⊂ Z, k ∈ N.

Henceforth we denote

Spos(D) or Spos
(
ai1 ,ai2 , . . . ,ai j

)
, j ≤ k,

any superposition of numbers from the set D, where aim ∈ D, im ∈ N and m = 1,2, . . . , j.
The essence of the proposed algorithm will be based on the following simple axiom that describes the elementary properties of integers.

Main Axiom 2.1. Using repeatedly superposition of two mutually prime numbers, one can construct any integer.

First, we give an example.

Exercise 2.2. Find a partial solution of the equation

127x+36y = 79. (2.3)

Solution. The coefficients of the equation a = 127, b = 36, as seen, are mutual prime numbers. According to the Main axiom, using a
superposition of the same numbers we find, for example, the following number:

1) Spos(a,b) = a− (b+b+b) = a−3b = 127−3×36 = 19 =: a1.

Let continue to construct superpositions using the coefficients a, b and a1:

2) Spos(a,a1) = a−5a1 =−4a+15b = 32 =: a2;
3) Spos(a1,a2) = a2−a1 =−5a+18b = 13 =: a3;
4) Spos(a1,a3) = a1−a3 = 6a−21b = 6 =: a4;
5) Spos(a3,a4) = a3−2a4 =−17a+60b = 1.

In the last step, we built the number 1 as follows:

−17a+60b = 1. (2.4)

Multiplying both sides of equality (2.4) by 79, we can easily get one solution to the equation (2.3). In fact, this follows from (2.4) that

−1343a+4740b = 79,

so that (x0 =−1343;y0 = 4740) is the partial solution of equation (2.3).

Note that we built the superpositions so that the values of the sequence of {ak,k ∈ N} step by step approached unity, and continued the
process until they reached unity. It reached in step 5. In other words, we ”crushed” the right side of equation (2.3) and as a result we got
equality (2.4). Based on what has been done, we call the proposed method the Crushing method.
We also note two more moments. Firstly, the set of steps is not unique, because superpositions of two numbers can be constructed as many
time as desired, and the number of steps to the final equality of type (2.4) depends on the choice of these superpositions. Secondly, as a
consequence of the first moment, the partial solution (x = x0;y = y0) may be completely different.
The proposed Crushing method for finding one (partial) solution to equation (2.3) is universal in the sense that for any equation of type (3), a
finite number of superposition steps can be performed to crush up the right-hand side to unity and thereby obtain an equality of type (2.4). In
fact, for given coefficients {a,b,c} ⊂ Z, one can always find the minimum number of steps of such superpositions.
Now we give a general description of our algorithm. We follow the procedure from the solution of equation (2.3). Let it be required to
find one partial solution of equation (2.2) with the set of coefficients D1 := {a,b} ⊂ Z. The following sequence of superpositions will be
performed, until an appearance of the number 1:

Spos(D1) =: a1 and define D2 := {D1,a1} ;
Spos(D2) =: a2 and define D3 := {D2,a2} ;
· · · · · · · · · · · · · · · · · · · · · · · ·

Spos(Dk) = 1 f or some k ∈ N,
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where Dk := {Dk−1,ak−1}. From last equality we obtain

c ·Spos(Dk) = ax0 +by0 = c,

and needless to say we get (x0;y0) – the solution of equation (2.3).
Thus, the above algorithm (Crushing method) can be admitted as a General Algorithm for finding a partial solution to the equation with two
variables of the form (2.2).

2.2. General class of solutions.

Suppose that one pair of solutions (x0;y0) is known. As we proved in the previous subsection, for equations that have a solution, one can
always find one pair of solutions by using the Crushing method. Then it is obvious that equation (2.2) can be written as

ax+by = ax0 +by0. (2.5)

Hence

a(x− x0) = b(y0− y).

Since gcd(a,b) = 1, it is necessary to be x− x0 = bk, where k ∈ Z. Then the general solution of equation (2.2) will have the following form:{
x = x0 +bk,

y = y0−ak.
(2.6)

In view of the found general solution (2.6), we can write the equation (2.2) in the following equivalent form:

ax+by = a(x0 +bk)+b(y0−ak) , (2.7)

and therefore

a(x− x0)+b(y− y0)−abk+abk = 0. (2.8)

Relation (2.8) shows that equations (2.5) and (2.7) are the same. From here one can get a solution in the form of x = x0−bk and y = y0 +ak.
Therefore, the general solution is finally written in the following form:{

x = x0±bk,

y = y0∓ak,
(2.9)

where k is any number of Z. From the last reasoning, we can conclude that in order to obtain a general solution to equation (2.5), it is
sufficient to rewrite the equation (2.5) moving all expressions to the left-hand side and add zero in the form

−abk+abk.

In particular, according to (2.9), we obtain the general solution of equation (2.3) in the following form:{
x =−1343±36k,

y = 4740∓127k,

where k is any number of Z. Note that a particular solution can be minimized by choosing k. In this case, the general class of solutions of
equation (2.3) can be written more simply:{

x = 25±36k,

y =−86∓127k.

3. Equation with three variables

In this section, we demonstrate a solution to an equation with three unknowns. Without loss of generality, as in the case of two variables, we
consider the equation

ax+by+ cz = d, (3.1)

where {a,b,c,d} ⊂ Z and gcd(a,b,c) = 1.



Universal Journal of Mathematics and Applications 89

3.1. Crushing method for three variables.

The previous section describes a general algorithm for finding one partial solution to the equation with two variables using the so-called
Crushing method. Here we demonstrate the possibility of spreading this method to solve the equation (3.1). The concept of a superposition
of three or more prime numbers in common is defined similarly to the case with two numbers. Further, we use the following statement, the
proof of which follows from the Main Axiom.

Proposition 3.1. Using the repeat superposition of three or more prime numbers in common, one can construct any integer.

Exercise 3.2. Find a partial solution of the equation

30x+105y+56z = 13. (3.2)

Solution. The set coefficients of (3.2) is {a,b,c} = {30,105,56}. By virtue of Proposition above, using the superposition of these
coefficients, we make the following steps:

1) Spos(a,c) = 2a− c = 4 =: a1;
2) Spos(b,a1) = b−26a1 = b−52a+26c = 1.

We have constructed number 1 only in the second step:

−52a+b+26c = 1.

Multiplying both sides of the last equality by 13, we obtain

−676a+13b+338c = 13,

and thereby we found one (partial) solution of equation (3.2):

x0 =−676, y0 = 13, z0 = 338.

The general class of solutions will be constructed below.

As in the case of two variables, we note that there will be no obstacles to constructing the minimum number of steps of the corresponding
superpositions for any given set of coefficients {a,b,c,d} ⊂ Z in equation (3.1), as a result of which we achieve one partial solution.

3.2. General class of solutions.

As noted in the previous subsection, for equations that have solutions, one can always find one solution (x0;y0;z0) using the crushing method.
Now, using this solution, we intend to obtain a class of all solutions. For this, we extend the method from previous subsection to the case
under consideration. Similarly to equality (2.8), we write the equation (3.1) in the following form:

a(x− x0)+b(y− y0)+ c(z− z0)−abk1 +abk1−ack2 +ack2− cbk3 + cbk3 = 0. (3.3)

Therefore, we can present the general solution in the form
x = x0±bk1± ck2,

y = y0∓ak1± ck3,

z = z0∓ak2∓bk3,

(3.4)

where {k1,k2,k3} ⊂ Z.
The following matrix clearly indicates to the coefficients and their signs in each row of the system (3.4). Here, in front of the matrix, on the
column we put the partial solution by the corresponding variable, on the rows of the matrix are the coefficients in the order specified in the
equation (3.1).

x0←→
y0←→
z0←→

 0 ·a ±b ±c

∓a 0 ·b ±c

∓a ∓b 0 · c

 . (3.5)

In each row of the matrix, multiplication by zero indicates the absence of the corresponding coefficient. For example, in the second row there
is no second coefficient, which is consistent with the second row of system (3.4). The coefficients multiplied by zero form the diagonal of
the matrix, which divides it into two parts. Coefficients in the upper part of the diagonal, as a rule, have a plus sign, and in the lower part -
coefficients with a minus sign.
The constructed matrix which we call the matrix of solution class, visually specifies the form of the general solution of the equations in
question.
In particular, based on (3.4) and (3.5), we can construct the class of general solutions of equation (3.2) in the following form:

x = 676±105k1±56k2,

y = 13∓30k1±56k3,

z = 338∓30k2∓105k3,

where {k1,k2,k3} is any set inside Z.

Remark 3.3. In the book [4, pp. 23–33] proposed an algorithm for finding a solution of linear Diophantine equations, which requires
a fairly lengthy process. The application of this algorithm was demonstrated by the example of one equation with three variables. By
comparing, we can make sure that our proposed method looks slightly simpler.
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4. Equation with n variables

Now consider the equation (1.1) with n variables. Dividing by gcd(A1,A2, . . . ,An), we write it in the form

a1x1 +a2x2 + · · · +anxn = b, (4.1)

where {ai,b} ⊂ Z, i = 1,2, . . . ,n and gcd(a1,a2, . . . ,an) = 1.

4.1. General class of solutions.

In this subsection, we demonstrate a general description of the algorithm for constructing the class of all solutions of equation (4.1). Suppose
that the set of numbers (α1,α2, . . . ,αn) is the partial solution to this equation. Such a solution can always be found using the general
algorithm (crushing method) described in the previous sections. To find a general solution to the equation, we represent it in the form of type
(3.3). After similar reasoning as in Subsection 3.2, we can construct the class of all solutions of equation (4.1) in the following form:

x1 = α1±a2k12±a3k13±a4k14±·· ·±ank1n,

x2 = α2∓a1k21±a3k23±a4k24±·· ·±ank2n,

x3 = α3∓a1k31∓a2k32±a4k34±·· ·±ank3n,

x4 = α4∓a1k41∓a2k42∓a3k43±·· ·±ank4n,

· · · · · · · · · · · · · · · · · · · · · · · ·
xn = αn∓a1kn1∓a2kn2∓a4kn3∓·· ·∓an−1knn−1,

(4.2)

where
∥∥ki j

∥∥n
i, j=1 is the quadratic matrix such that ki j ∈ Z, kii = 0 and ki j = k ji for all i, j = 1,2, . . . ,n.

The following matrix, as in the case of three variables, gives a clear picture of constructing a class of general solutions of the equation,
indicating the coefficients and their signs in each row of the system (4.2):

α1←→
α2←→
α3←→

...

αn−1←→
αn←→



0 ·a1 ±a2 ±a3 · · · ±an−1 ±an

∓a1 0 ·a2 ±a3 · · · ±an−1 ±an

∓a1 ∓a2 0 ·a3 · · · ±an−1 ±an

...
...

...
. . .

...
...

∓a1 ∓a2 ∓a3 · · · 0 ·an−1 ±an

∓a1 ∓a2 ∓a3 · · · ∓an−1 0 ·an


. (4.3)

Note that in the case of an equation with many variables, constructing the matrix of the form (4.3) greatly simplifies discussions in solving
the equations.

Remark 4.1. According to the fact that ki j = k ji, i, j = 1,2, . . . ,n, the number of all different symbols ki j is
(n

2
)
, i.e.(

n
2

)
=

n(n−1)
2

. (4.4)

Let’s get to the examples.

Exercise 4.2. Find a partial solution of the equation

30x+42y+105z+70u = 17. (4.5)

Solution. The coefficients of the equation are a = 30, b = 42, c = 105 and d = 70. Using the superpositions of the coefficients we obtain

1) Spos(b,d) = 2b−d = 14 =: a1;
2) Spos(a,a1) = a−2a1 = a−4b+2d = 2 =: a2;
3) Spos(c,a2) = c−52a2 = c−52a+208b−104d = 1.

We obtained

−52a+208b+ c−104d = 1.

Therefore

−884a+3536b+17c−1768d = 17,

and thus we have a partial solution

x0 =−884, y0 = 3536, z0 = 17, u0 =−1768.

Now we construct the matrix of solution class:

−884←→
3536←→

17←→
−1768←→


0 ·30 ±42 ±105 ±70

∓30 0 ·42 ±105 ±70

∓30 ∓42 0 ·105 ±70

∓30 ∓42 ∓105 0 ·70

 .
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Thereafter we can construct the class of all solutions in the form
x =−884±42k12±105k13±70k14,

y = 3536∓30k21±105k23±70k24,

z = 17∓30k31∓42k32±70k34,

u =−1768∓30k41∓42k42∓105k43.

This system is a class of general solutions of equation (4.5) in accordance with the representation (4.2). Moreover, due to (4.4), the form of
the general solution can be simplified by getting rid of double indices in numbers ki j:

x =−884±42k1±105k2±70k3,

y = 3536∓30k1±105k4±70k5,

z = 17∓30k2∓42k4±70k6,

u =−1768∓30k3∓42k5∓105k6,

where {ki, i = 1,2, . . . ,6} ⊂ Z.

4.2. Special cases.

As in many mathematical theories, we can separate some cases related to the method of searching for partial solutions. In the following
subsections, we highlight several special cases for which there is no need to use a general algorithm to find the partial solution.

4.2.1.

If in the equation b = 0, then the class of its general solutions can be constructed very simply, as in the following example.

Exercise 4.3. Find a class of general solutions of the equation

96x+11y+75z+8u+31v = 0.

Solution. It is seen that x = y = z = u = v = 0 is one of the partial solutions. By using (4.3), let’s build the matrix

0←→
0←→
0←→
0←→
0←→


0 ·96 ±11 ±75 ±8 ±31

∓96 0 ·11 ±75 ±8 ±31

∓96 ∓11 0 ·75 ±8 ±31

∓96 ∓11 ∓75 0 ·8 ±31

∓96 ∓11 ∓75 ∓8 0 ·31

 .

Then the class of general solutions to the equation can be constructed in the following form:

x = 0±11k12±75k13±8k14±31k15,

y = 0∓96k21±75k23±8k24±31k25,

z = 0∓96k31∓11k32±8k34±31k35,

u = 0∓96k41∓11k42∓75k43±31k45,

v = 0∓96k51∓11k52∓75k53∓8k54,

where numbers ki j ∈ Z, such that kii = 0 and ki j = k ji for all i, j = 1,2, . . . ,5.

4.2.2.

If the number b is divisible by some one of the coefficients {a1,a2, . . . ,an}, then the equation can be solved as in the following example.

Exercise 4.4. Find a class of general solutions of the equation

96x+11y+75z+3u+31v = 27.

Solution. We can put x = y = z = v = 0 and get u = 9. Hence by using (4.3), we obtain

x = 0±11k12±75k13±3k14±31k15,

y = 0∓96k21±75k23±3k24±31k25,

z = 0∓96k31∓11k32±3k34±31k35,

u = 9∓96k41∓11k42∓75k43±31k45,

v = 0∓96k51∓11k52∓75k53∓3k54,

herein ki j ∈ Z, such that kii = 0 and ki j = k ji for all i, j = 1,2, . . . ,5.
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4.2.3.

If the set of coefficients {a1,a2, . . . ,an} contains a pair of coefficients {ai1,ai2} such that gcd(ai1,ai2) = 1, then the class of general solutions
of equation (4.1) can be constructed based on the solution of the equation with these coefficients and with the corresponding variables.

Exercise 4.5. Find a class of general solutions of the equation

96x+11y+75z+8u+31v = 27.

Solution. Putting x = z = v = 0 we have

11y+8u = 27.

Now the solution to the last equation does not seem complicated. Thence we can easily construct the class of general solutions in the form of

x = 0±11k12±75k13±8k14±31k15,

y = 9∓96k21±75k23±8k24±31k25,

z = 0∓96k31∓11k32±8k34±31k35,

u =−9∓96k41∓11k42∓75k43±31k45,

v = 0∓96k51∓11k52∓75k53∓8k54,

where numbers ki j ∈ Z are as above.

Remark 4.6. When it is necessary, as in Example 4.5, that the class of general solutions of equation (4.1) can be constructed based
on the solution of the equation with three variables, if the set of coefficients {a1,a2, . . . ,an} contains the subset {ai1,ai2,ai3} for which
gcd(ai1,ai2,ai3) = 1.

5. Concluding notes

In our opinion, the method proposed in this article is very simple and convenient for use by mathematicians with minimal mathematical
skills. We believe that the Crushing method can be developed for a more general case. Subsequently, it will be possible to develop simplified
solution methods for nonlinear equations.
So, in our subsequent researches, the proposed method will be modified and applied in other cases. We will pay special attention to
minimizing the amount of numbers ki j ∈ Z. In particular, we will use it when searching for a solution to a system of linear Diophantine
equations.
As an example, without details, here we give a general solution to the following system of equations found using the algorithm proposed
above: 

3x+4y = 2,

5x+2z = 12,

y+3u = 11.

Using the algorithm, we can find the solution in the following form:
x = 2+12k,

y =−1−9k,

z = 1−30k,

u = 4−4k,

where k ∈ Z.
In addition, we will be interested in solvability in integers of the following equation:

(a1x1 +a2x2 + · · · +anxn)
p = b1x1 +b2x2 + · · · +bnxn,

where p ∈ N and {ai,bi} ⊂ Z, i = 1,2, . . . ,n.
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