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Abstract:In this paper, we consider the classical viral dynamic mathematical model. 
Global dynamics of the model is rigorously established. We prove that, if the basic 
reproduction  number, the HIV infection is cleared from the T-cell population; if 

, the HIV infection persists. For an open set of parameter values, the chronic-
infection equilibrium 

0 1R ≤

0 1R >
*
1E  can be unstable and periodic solutions may exist. We establish 

parameter regions for which *
1E  is globally stable. 
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BİR VİRAL DİNAMİK MODELİN GLOBAL KARARLILIĞI VE PERİYODİK 

ÇÖZÜMÜ 
 
Özet: Bu makalede klasik viral dinamik modeli ele aldık. Modelin global dinamikleri 
oluşturuldu. Eğer temel üretim sayısı 0 1R ≤  olur ise HIV enfeksiyonu T hücre 
nüfusundan çıkartılır, eğer  olursa HIV enfeksiyonu çıkartılamaz. Parametre 
değerlerinin açık bir kümesi için kronik enfeksiyon dengesi 

0 1R >
*
1E  kararsızdır ve periyodik 

çözüm oluşabilir. *
1E  ın global kararlı olduğu parametre bölgeleri oluşturuldu. 

 
Anahtar kelimeler: Global Kararlılık, HIV enfeksiyon, CD4+ T hücreler, Periyodik 
çözüm 
 
 
1. INTRODUCTION 
 
There has been much interest recently dimensional models of viral population dynamics 
in host cells (CULSHAW & RUAN 2000, DE BOER & PERELSON 1995; HO ET AL 
1995; KİRSCHNER 1996; MCLEAN 1994; NELSON & PERELSON 2002; NELSON 
ET AL 2004, NOWAK & MAY 2000), with most attention focussed on HIV 
(PERELSON & NELSON 2000). The goal of such modelling is not only to understand 
the nature of various diseases and their time courses, but also to develop efficient 
regimes for drug treatments, including the highly successful combination therapies 
(CALLAWAY & PERELSON 2002; PERELSON ET AL 1997; PHİLLİPS ET AL 
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1997; WEİN ET AL 1997, TAN & WU 1998) used a Monte Carlo simulation to 
estimate the probability of clearing an initial inoculum of virus. Using a Monte Carlo 
model of inhost HIV infection, some scientists investigated the variability in T-cell 
count and viral load (HEFFERNAN & WAHL 2005). Stochastic models have also 
proven to be useful, especially in determining probabilities of detection of the virus (LE 
CORFEC ET AL 1999, TAN & WU 1998; KAMİNA ET AL 2001; TUCKWELL 
2004). Computed solutions for the four-component model were similar and have been 
described in (TUCKWELL & WAN 2000). 
  
The virus causing AIDS(Acquired Immune Deficiency Syndrome) was first discovered 
in 1983 by Dr.Luc Montaigner, and then was kept being followed by the scientists at 
Paris Pasteur Institute. These scientists found this virus in the lymph nodes of the 
patient. Almost synchronously with these investigations, some other scientists met with 
this virus as well. And it was called as HIV(Human Immuno Deficincy Virus) by 
International Virus Classification Committee. 
 
It is impossible for a HIV virus to keep living like a normal cell so as not to have any 
organ and enzyme. They have to penetrate in to a living cell in order to maintain vital 
activities such as propagation. Therefore, HIV virus invades CD4+T-cells existing in 
blood. This virus melts the membrane of the cell when it clings to the cell. In the 
beginning, after words, it pours its own nucleic acid (RNA and DNA) from this 
puncture. Penetrated nucleic acid into cell of virus immediately seizes the power and 
starts to use the cell for its own account. Firstly it has the copies of its nucleic acid and 
directly then its protein covers synthesized. And, combining these, it gets to reveal 
hundreds of viruses. After a certain time, the viruses inside the cell come out by 
blowing up the cell and attack new ones. Thus, CD4+T cells are damaged extensively. 
As long as these cells are damaged, the immunity system of the person weakens and he 
is caught to opportunist infections more quickly. The amount of HIV virus in man’s 
blood can be determined by doing mischallenous tests. And one of these is 
determination of viral load. Viral load is the amount of HIV virus in the blood of man. 
The person having high amount of viral load evolves AIDS more swiftly than the 
person who has low viral load. CD4+T cells are also named as leukocytes or T helper 
cells. These with other cells in the human immunity system fight against diseases. HIV 
uses cells in order to propagate. The number of CD4+T cells of a healthy person is 800-
1200/  3mm
 
2. VIRAL DYNAMICAL MODEL 
 
On the behaviour of solution of viral dynamic model is examined at the study 
(TUCKWELL HC & WAN FYM 2004). The components of the basic three-component 
model are uninfected CD4+ T-cells, infected such cells and free virus particles are 
denoted respectively by ( ), ( )x t y t  and . These quantities satisfy ( )v t
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dx s x x
dt
dy

v

xv y
dt
dv cy v
dt

μ β

β α

γ

⎧ =⎪
⎪
⎪ =⎨
⎪
⎪ =⎪⎩

 (1) 

 
Here  

s is the (assumed constant) rate of production of CD4+ T-cells,  
μ is their per capita death rate,  
βxy is the rate of infection of CD4+ T-cells by virus,  
α is the per capita rate of disappearance of infected cells,  
c is the rate of production of virions by infected cells and 
γ is the death rate of virus particles 
 

Typical parameter values are, with time in days and particle (cell) densities in numbers 
per cubic millimeter: 

0 0 0 0 00.272, 0.00136, 0.00027, 0.33, 50, 2s c 0μ β α= = = = = γ =  
 
This was done with the standard parameter values given above and initial values 

 and  for the three-component model. (0) 200, (0) 0x y= = (0) 1v =
 
In this case at the study (TUCKWELL HC & WAN FYM 2004) the simple 
mathematical model of population dynamics of HIV-1 virus in the beginning was deal 
with. Although this kind of differential equation systems has numerical solutions, there 
were few theoretical results duo to nonlinearities. That’s why some theoretical results 
were given. Furthermore, quantitative analysis of equilibrium points was accomplished. 
 
2.1 EQUILIBRIA, STABILITY AND PERIODIC SOLUTION OF VIRAL 
INFECTION 
 
The possible non-negative equilibria of system (1) are * *

0 0 1 1 1 1( ,0,0), ( , , )E x E x y v , where 

0

1

1

1

,

,

,

.

sx

x
c

sy
c

scv

μ
αγ
β

μγ
α β

μ
αγ β

=

=

= −

= −

 

Now, we will begin the analysis of the stability of the equilibria of system (1). Let 
( )* 1 1 1, ,E x y v  be any arbitrary equilibrium. The Jacobian matrix of (1) at  *E
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( )( )
1 1

* 1 1 1 1 1

0
, ,

0

v x
J E x y v v x

c

μ β β
β α β

γ

⎡ ⎤− − −
⎢= −⎢
⎢ ⎥−⎣ ⎦

⎥
⎥ .    

 (2) 
Then the characteristic equation about  is given by *E
 

( )( )
1 1

* 1 1 1 1 1

0
, ,

0

v x
J E x y v I v x

c

μ β λ β
λ β α λ β

γ λ

− − − −
− = − −

− −
   

 (3) 
For equilibrium , (3) reduces to *

0 0( , 0,0)E x

( ) ( )2
0c xμ λ λ α γ λ αγ β⎡ ⎤+ + + + −⎣ ⎦ =0     

 (4) 
Hence,  is asymptotically stable for *

0 0( , 0,0)E x 0 /x cαγ β< , is a saddle with 

for ( ) ( )* *
0 0dim 2, dim 1,s uW E W E= = 0 /x cαγ β> . 

Since 0 and 1x x  satisfy 

0

1 1 1

0,
0,

s x
s x x v

μ
μ β

− =
− − =

 

1 1 ,scs x x βμ μ
αγ

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 

1 1 1

1 1 1

, 0

, 0

s
0

0

,

,

x s x x x

sx s x x x

μ
μ

μ
μ

> − > ⇒ >

< − < ⇒ <
 

 
 

Hence, if 1
sx
μ

> , then 1 0
sx x
μ

> = , and  is unstable, at the same time, *
0 0( , 0,0)E x

the positive equilibrium ( )* 1 1 1
1 , ,E x y v  exists. Further, if 1

sx
μ

< , then 1 0
sx x
μ

< = , 

and 
*
0 0( , 0,0)E x is locally asymptotically stable, meanwhile, the positive equilibrium 

( )* 1 1 1
1 , ,E x y v .  is not feasible. Let 1 10, 0y v< <

0
sR
μ

= , 
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denote the basic reproduction number. When , the uninfected steady-state 0 1R > *
0E  is 

stable and the infected steady-state *
1E dose not exist (unphysical). When , 0 1R < *

0E  
becomes unstable and *

1E  exists. 

For equilibrium ( )* 1 1 1
1 , ,E x y v , (1) reduces to 

3 2
1 2 3 0a a aλ λ λ+ + + = ,       

 (5) 
where 

( )

1

2

3

0,

0,

3 0

sca

sca

a sc ,

βα γ
γα
βα γ
γα

β μγα

= + + >

= + >

= − >

 

We also have 

( ) ( )
2

2
1 2 3 3 0sc sca a a scβ βα γ α γ β μγα

γα γα
⎛ ⎞ ⎛ ⎞

− = + + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.>  

By Routh–Hurwitz criterion, we have the following Theorem 2.1. 
 
Theorem 2.1.Suppose that, 

(i)  0 1R >

(ii) ( ) ( )
2

2
1 2 3 3 0sc sca a a scβ βα γ α γ β μγα

γα γα
⎛ ⎞ ⎛ ⎞

− = + + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,> . 

Then the positive equilibrium ( )* 1 1 1
1 , ,E x y v  is asymptotically stable. 

For the parameter values  
0 0 0 0 00.272, 0.00136, 0.00027, 0.33, 50, 2s c 0μ β α= = = = = γ =  this parameter 

existence in the literature, the conditions of Theorem 2.1 are satisfied. The infected 
steady state ( )*

1 122220,0.6228,15.5690E  is asymptotically stable. Numerical 
simulations show that trajectories of system (1) approach to the steady state. 
 
Theorem 2.2. There is such that, for any positive solution 0M > ( )( ), ( ), ( )x t y t v t of 
system 
(1), 

( ) , ( )y t M v t M< < , for all large t. 
 

Proof. Set 
  .Calculating the derivative of  along the solutions of 
system (1), we find 

1 ( ) ( ) ( )K t x t y t= + 1 ( )K t

1

1

( ) ( ) ( )
( )

K t s x t y t
K t s

μ α
μ

′ = − −
≤ − +

 

1 1( ) ( )K t K t sμ′ + ≤  
Furthermore, 
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1 1( ) (0) ts sK t K e μ

μ μ
−⎛ ⎞

≤ + −⎜ ⎟
⎝ ⎠

 

Hence, we obtain the boundedness of , that is, there exist , such 
that 

1 ( )K t 2 10 0t ve M> >

1 1( )K t M< , for . Then I (t) has an ultimately above bound. It follows from the 
third equation of Eq. (1) that y(t) has an ultimately above bound, say, their maximum is 
a M. Then the assertion of Theorem 2.2 now follows and the proof is complete. This 
shows that system (4) is dissipative. 

2t t>

�  
Define 

( ){ }0( ), ( ), ( ) : 0 ( ) , 0 ( ), ( )x t y t v t x t x y t v t MΩ = ≤ ≤ ≤ ≤ . 
It is easy to see that, for system (1), 

x s xμ′ ≥ − , 
which implies that 

liminf ( )
t

x t m
c

αγ
β→∞

≥ ≡  

 
Theorem 2.3. If , then  is globally asymptotically stable. 0 1R > *

0 0( , 0,0)E x
 
Proof. From the last two equations of Eq. (1), for , we have 1t t>

0y x v y
v cy v

β α
γ

′ = −
′ = −

     

 (6) 
Since , we have 0 1R > s μ>  

( ) (0) ts sx t x e μ

μ μ
−⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

 

This clearly shows that 0lim ( )
t

x t x
→∞

= . This proves the theorem.  

 
Theorem 2.4. If , then system (2) is permanent. 0 1R >
 

Proof. If , we have 0 1R > 0x
c

αγ
β

> . We begin by verifying weak persistence of (1). If it 

is not weakly persistence, it follows from the proof of Theorem 2.1 that there is a 
positive orbit ( ( ), ( ), ( ))x t y t v t  of (1) such that 

0lim ( ) , lim ( ) 0, lim ( ) 0.
t t t

x t x y t v t
→∞ →∞ →∞

= = =  

Then choose  large enough such that if , we have 0 0t > 0t t≥
ˆ( ) ( ) ( ),

( ) ( ) ( ).
y t xv t y t
v t cy t v t

β α
γ

′ ≥ −⎧
⎨ ′ = −⎩

 

Let us consider the matrix Aε  
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x̂
A

cε
α β

γ
−⎛

= ⎜
⎞
⎟−⎝ ⎠

     

 (8) 
Since Aε  admits positive off-diagonal element, the Perron–Frobenius theorem implies 
that there is positive eigenvector ( )1 2,v v v=  for the maximum eigenvalue α′  of Aε . 
Let us consider 

     1 1 1

2 1 2

ˆ ( ) ( ),
( ) ( ).

z xz t z t
z cz t z t

β α
γ

′ = −⎧
⎨ ′ = −⎩

   

 (9) 
Let ( 1 2( ) ( ), ( ))z t z t z t=  be a solution of (9) through ( )1 2,lv lv  at , where  
satisfies , . Since the semi flow of (9) is monotone and , it 
follows that  is strictly increasing and , as , contradicting the 
eventual boundedness of positive solution of (2). Thus, no positive orbit of (2) tends to 

, at t tends to infinity. This shows that (2) is weakly persistent. Then an 
application of the techniques of paper (PERELSON AS & NEUMANN A & 
MARKOWİTZ M & LEONARD J& HO D 1996) concludes the permanence of (2). 
The proof of Theorem 

0t t= 0l >

1 0( )lv y t< 2 ( )lv v t< 0

)

0A vε >
( )iz t ( )iz t → +∞ t →∞

( 0 ,0,0x

2.4 is completed.  
 
Theorem 2.5. Assume D is convex and bounded. Suppose system 

( ),X F X X D′ = ∈         
 (10) 

is competitive and permanent and has the property of stability of periodic orbit. If 0X  is 
the only equilibrium point in intD and if it is locally asymptotically stable, then it is 
globally asymptotically stable in intD. 
By looking at its Jacobian matrix and choosing the matrix H as 

1 0 0
0 1 0
0 0 1

H
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

 

we see that system (2) is competitive in Ω, with respect to the partial order defined by 
the 
orthant ( ){ }3

1 , , : 0, 0, 0K x y v R x y v= ∈ ≤ ≥ ≥  
 
Theorem 2.6. If , then the positive equilibrium  of (1) is globally 
asymptotically stable. 

0 1R > *E

 
Proof. The proof of this theorem is the same as those of Theorem 2.1 and 4.2 in [10]. 
Since system (1) is competitive, permanent and  is locally asymptotically stable if 

. Furthermore, in accordance with Theorem 2.5 (where we can choose ), 
Theorem 2.6 would be established if we show that system (1) has the property of 
stability of periodic orbits. In the following, we prove it. 

*E
0 1R > D = Ω
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Preposition 2.1 System (1) has the property of stability of periodic orbits. 
System (2.1) has the property of stability of periodic orbits. 
 
Proof. Let ( )( ) ( ), ( ), ( )P t x t y t v t= be a periodic solution whose orbit Γ is contained in 
int . In accordance with the criterion given by (MULDOWNEY JS 1990), for the 
asymptotic orbital stability of a periodic orbit of a general autonomous system, it is 
sufficient to prove that the linear nonautonomous system 

Ω

[ ] ( )( )2( ) ( ) ( )W t DF P t W t=&        

 (11) 
is asymptotically stable, where [ ]2DF  is the second additive compound matrix of the 
Jacobian 
DF  (see Appendix A). 
 The Jacobian of Eq. (1) is given by 

0

0

v x
DF v x

c

μ β β
β α β

γ

− − −⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

 

For the solution , Eq. (11) becomes ( )P t

    
( )

( )
( )

1 1 2

2 1 2

3 2 3

,

,

,

W v W xW

W cW v W

W vW W

μ α β β β

μ γ β

β α γ

⎧ = − + + + +
⎪⎪ = − + +⎨
⎪ = − +⎪⎩

&

&

&

3xW

  

 (12) 
To prove that Eq. (12) is asymptotically stable, we will use the following Lyapunov 
function, 

( ) ( )1 2 3 1 2 3, , , , , sup , yU W W W x y v W W W
v

⎧ ⎫= +⎨ ⎬
⎩ ⎭

.   

 (13) 
From Theorem 2.4, we obtain that the orbit of  remains at a positive distance from 
the 

( )P t

boundary of . Therefore, there exists a constant , such that Ω 1 0c >

( ) { }1 2 3 1 1 2 3, , , , , sup , ( ), ( )U W W W x y v c W W t W t≥    
 (14) 

For all we have the following inequalities: ( ) ( )1 2 3, , and , , ( )W W W x y v P t∈ ,

( ) ( )
( )
( )

1 1

2 1 2

3 32

,

,

.

D W v W x W W

D W c W v W

D W v W W

μ α β β

μ γ β

β α γ

+

+

+

⎧ ≤ − + + + +
⎪⎪ ≤ − + +⎨
⎪ ≤ − +⎪⎩

2 3

   

 (15) 
From (15), we get 
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( ) ( ) ( )

( ) ( )

( )

2 3 2 3 2 32

2 3 1

3 .

y y yv yD W W W W D W W
v v vv

y v y y yW W c W W
y v v v v

y W
v

γ μ

α γ

+ +

′ ′⎛ ⎞+ = − + + +⎜ ⎟
⎝ ⎠

′ ′⎛ ⎞
≤ − + + − +⎜ ⎟
⎝ ⎠

− +

2  

Thus, we can obtain 
{ }1 2( ) sup ( ), ( ) ( ),D U t g t g t U t+ ≤      

 (16) 
where 

( )

{ }

1

2 1

1

( ) ,

( ) ,

min , .

xvg t v
y

cy y vg t G
v y v

G

βμ β α

μ γ α γ

= − + + +

′ ′
= + − −

= + +

 

From the second equation of system (1), we have 

( )

( )

1 ( ) xvg t v
y
xv yv v
y y

βμ β α

βμ β α μ β

= − + + +

′
≤ − + + + = − − +

 

If μ α> , then 1G μ γ= + , then we get 

2 ( ) yg t
y

μ
′

= − . 

Hence, 

{ }1 2 2sup ( ), ( ) ( ) yg t g t g t
y

μ
′

≤ = −     

 (17) 
If μ α< , then 1G α γ= + , then we get 

2 ( ) yg t
y

α
′

= − .      

 (18) 
Hence, 

{ }1 2 2sup ( ), ( ) ( ) yg t g t g t
y

α
′

≤ = −  

Let { }min ,m α μ= . Then from (17) and (18), we have  

{ }1 2sup ( ), ( ) yg t g t m
y
′

≤ − . 

Therfore, from (16) and Gronwall’s inequality, we obtain 
( ) (0) ( ) (0)mt mtU t U y t e U Me− −≤ ≤ . 

Thus li  By (14) it turns out that m ( ) 0.
t

U t
→∞

=
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( )1 2 3, , 0, asW W W t→ →∞  
This implies that the linear system Eq. (12) is asymptotically stable and therefore the 
periodic solution is asymptotically orbitally stable. This proves Proposition 2.1.  �
 
APPENDIX A 
 
In this appendix, we shall give the definition of an additive compound matrix. A survey 
of properties of additive compound matrices together with their connections to 
differential equations may be found in((Lİ Y & MULDOWNEY JS 1995), 
(MULDOWNEY JS 1990)). 
We start by recalling the definition of a kth exterior power or multiplicative compound 
of a 
matrix. 
 
Definition A.1. Let A be an nxm  matrix of real or complex numbers. Let  be 

the minor of A determined by the rows 
1,..., , ,...,1i j jk kia

( )1,..., ki i  and the columns 

( )1 1 2 1 2,..., , 1 ... ,k kj 1 ... .kj i i n j j j m≤ < < < ≤ < < < ≤i ≤  The kth multiplicative 

compound matrix ( )kA  of A is the ( ) ( )n m
k kx  matrix whose entries, written in 

lexicographic order, are . 
1,..., , ,...,1i j jk kia

In particular, when A is an  matrix with columns nxk ( )
1 2, ,..., , k

ka a a A  is the exterior 
product  

1 2 ... .ka a a∧ ∧ ∧  
In the case , the additive compound matrices are defined in the following way. m n=
 
Definition A.2. Let A be an nxn  matrix. The kth additive compound [ ]kA of A is the 

 matrix given by  ( ) ( )n m
k kx

    [ ] ( )( )
0

kk
hA D I hA == +     

 (19) 
If [ ]kB A= , then the following formula for  can be deduced from Eq. (19). For any ,i jb

integer , let  be the ith member in the lexicographic 
ordering 

( )1,..., n
ki = ( ) ( )1 2, ,..., ki i i i=

of all k -tuples of integers such that 1 21 ... .ki i i n≤ < < < ≤ . Then 

  

1 1, ,

,
,

... if ( ) ( ),

( 1) if exactly one entry in ( ) does not occur in ( ) 

                                and   does not occur in ( )
0                           if ( ) differ

k

s r

i i i i k

r s
i j s

i j

r

a a i j

a i i
b

j i
i

+

+

+ + =

−
=

s from ( ) in two or more entires j

⎧
⎪
⎪
⎨
⎪
⎪
⎩

j

In the extreme cases when and k1k = n= , we have [ ] [ ] ( )1 and nA A A tr A= = and A[n] 
= tr(A). For , the 3n =
matrices [ ]kA are as follows: 
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[ ] [ ] [ ]
11 22 23 13

1 2 3
32 11 33 12 11 22 33

31 21 22 33

, ,
a a a a

.A A A a a a a A a a
a a a a

+ −⎛ ⎞
⎜ ⎟= = + = +⎜ ⎟
⎜ ⎟− +⎝ ⎠

a+

 
3. CONCLUSION  
In this paper, we investigate the model of the saturation response of the infection rate, 
and present a complete mathematical analysis for the global dynamics of a model for the 
infection of CD4+ T cells. In the model, the CD4+ T-cell population is partitioned into 
three subclasses: uninfected (susceptible) x , infected cells , and free virus particles 

. The infection is through direct contact with actively infected 
y

v x  cells. After infection, 
a x  cell stays latent for a period of time, then becomes actively infected.  
 
Our analysis shows that such a difference in the growth term does not alter the 
qualitative behaviours of solutions. More specifically, models with these two different 
growth terms have the same basic reproduction number 

 0
sR
μ

=  

where x̂  is the equilibrium of CD4+ T cells in the absence of HIV infection. 
Furthermore, for 
both models, the infection-free equilibrium ( )*

0 ˆ,0,0E x= is globally stable if 0 1R ≤ , 

and a unique chronic-infection equilibrium *
1E  exists if . 0 1R > *

1E  can be unstable for a 
open set of parameter values, and periodic solutions may exist. Quantitatively, both 
growth forms produce the same level of CD4 count at the chronic-infection equilibrium 

*
1E , while the full logistic term leads to a lower level of viral load at the equilibrium *

1E . 
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