

A DECOMPOSITION OF CONTINUITY ON F*– SPACES AND MAPPINGS ON SA*– SPACES

A.ACIKGOZ*, S. YUKSEL**, I. L. REILLY***

 * Aksaray University Faculty of Arts And Sciences Department of Mathematics 68100 Aksaray, TURKEY
** Selcuk University Faculty of Arts And Sciences Department of Mathematics 42031 Campus – Konya / TURKEY e-mail: syuksel@selcuk.edu.tr
*** The University of Auckland Department of Mathematics New Zealand e-mail: i.reilly@auckland.ac.nz Received: 28 September 2007, Accepted: 23 April 2008

Abstract: An ideal topological space (X,τ,I) is said to be an F^* – space if $A=Cl^*(A)$ for every open set $A \subset X$. In this paper, a decomposition of continuity on F^* – spaces is introduced. An ideal topological space (X,τ,I) is said to be an SA^* – space if $(A)^* \subset A$ for every set $A \subset X$. It is shown that $\delta_I - r$ – continuity (resp. pre – I – continuity, semi – $\delta - I$ – continuity, * – perfect continuity) is equivalent to R – I – continuity (resp. R – I – continuity, t – I – continuity, * – dense – in – itself continuity) if the domain is an SA* – space.

Key words: R - I – open set, $\delta - I$ – open set, $\delta - I$ – regüler set, decomposition of R - I – continuity, topological ideal.

Mathematics Subject Classification (2000): Primary 54C08, 54A20; Secondary 54A05, 54C10.

F*-UZAYLARDA SÜREKLİLİĞİN BİR AYRIŞIMI VE SA* -UZAYLARDA DÖNÜŞÜMLER

Özet: Eğer (X, τ , I) uzayının her açık A alt kümesi için A = Cl*(A) ise bu taktirde bu uzaya F* – uzay denir. Bu çalışmada, F* – uzayında sürekliliğin bir ayrışımı verildi. Eğer (X, τ , I) uzayının her açık A alt kümesi için (A)* \subset A ise bu taktirde bu uzaya SA* – uzay denir. SA*-uzayında $\delta_I - r$ –süreklilik (sırasıyla, pre-I-süreklilik, semi-I-süreklilik, * – perfect süreklilik) ile R – I – sürekliliğin (sırasıyla, R – I – süreklilik, t – I – süreklilik, kendi içinde *-yoğun süreklilik) birbirine eşdeğer olduğu gösterildi.

Anahtar Kelimeler: R-I-açık küme, $\delta - I - açık$ küme, $\delta - I - regüler$ küme, R - I - sürekliliğin ayrışımı, ideal topoloji.

1. INTRODUCTION

Recently, ACIKGOZ et al. (2004) introduced the notion of a " $\delta - I$ – open set" in an ideal topological space, investigated some of its properties and obtained a decomposition of a $\alpha - I$ – continuous function using this set. HATIR & NOIRI

(2002) introduced the notions of t - I - sets, $\alpha^* - I - sets$, $B_I - sets$ and $C_I - sets$. YÜKSEL et al. (2005) introduced the notion of an R - I - open set and obtained some of its properties.

The purpose of this paper is to introduce a decomposition of continuity on F^* – spaces and also to show that $\delta_I - r$ – continuity (resp. pre – I – continuity, semi – δ – I – continuity, * – perfect continuity) is equivalent to R – I – continuity (resp. R – I – continuity, t – I – continuity, * – dense – in – itself continuity) if the domain is an SA* – space.

2. PRELIMINARIES

Let (X,τ) be a topological space, and $A \subset X$. Throughout this paper Cl(A) and Int(A) denote the closure and the interior of A with respect to τ , respectively.

An ideal, I is defined as a nonempty collection of subsets of X satisfying the following two conditions: (1) If $A \in I$ and $B \subset A$, then $B \in I$; (2) If $A \in I$ and $B \in I$, then $A \cup B \in I$. An ideal topological space is a topological space (X,τ) with an ideal *I* on X and is denoted by (X,τ,I) . For a subset A of X, $A^*(I) = \{x \in X \mid U \cap A \notin I \text{ for each neighborhood U of} x\}$ is called the local function of A with respect to *I* and τ (KESKIN et al. 2004). We simply write A* instead of A*(*I*) when there is no chance for confusion. Note that X* is often a proper subset of X. The hypothesis that $X = X^*$ (HATIR & NOIRI 2005) is equivalent to the hypothesis that $\tau \cap I = \emptyset$ (Levine, 1963). The ideal topological spaces which satisfy this hypothesis are called *Hayashi – Samuels space*. (ANKOVIĆ & HAMLETT 1990). For every ideal topological space (X, τ , *I*), there exists a topology $\tau^*(I)$, finer than τ , generated by β (I, τ) = {U \ I: $U \in \tau$ and $I \in I$ }, but in general β (I, τ) is not always a topology (JANKOVIĆ & HAMLETT 1990).

Additionally, $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$.

First we shall recall some definitions that will be used in the sequel.

DEFINITION 1. A subset A of an ideal topological space (X, τ) is said to be *regular* open (DUGUNDJI 1966) (*semi – open* (KURATOWSKI 1966)) if A = Int(Cl(A)) (A \subset Cl(Int(A))).

DEFINITION 2. A subset A of an ideal topological space (X, τ , I) is said to be

- a) $\alpha I open$ (HATIR & NOIRI 2002) if A \subset Int(Cl*(Int(A))),
- b) α^* -*I*-set (HATIR & NOIRI 2002) if A = Int(Cl*(Int(A))),
- c) pre I open (DONTCHEV 1996) if $A \subset Int(Cl^*(A))$,
- d) R I open (YUKSEL et. al. 2005) if A = Int(Cl*(A)),
- e) t I set (HATIR & NOIRI 2002) if Int(A) = Int(Cl*(A)),
- f) $\delta I open$ (ACİKGOZ et. al. 2004) if Int(Cl*(A)) \subset Cl*(Int(A)),
- g) regular I closed (SAMUELS 1975) if A=(Int(A))*,
- h) I open (ABD EL MONSEF et. al. 1992) if A \subset Int((A)*),
- i) $f_I set$ (KESKİN et. al. 2004) if A \subset (Int(A))*,
- j) semi I open (HATIR & NOIRI 2002) if A \subset Cl*(Int(A)),

- k) β -*I*-open (HATIR & NOIRI 2002) if A \subset Cl(Int(Cl*(A))),
- l) *- perfect (HAYASHI 1964) if A=A*,
- m) * dense in itself (HAYASHI 1964) if A \subset A*,
- n) *I* − *locally closed* (DONTCHEV 1999) if A=U∩V, where U is open and V is * perfect,
- o) B_I set (HATIR & NOIRI 2002) if A=U \cap V, where U is open and V is t I set,
- p) $C_I set$ (HATIR & NOIRI 2002) if A=U \cap V, where U is open and V is $\alpha^* I set$.

The family of all R – I – open (resp. α – I – open, pre – I – open, t – I – set, δ – I – open, * – perfect set, * – dense – in – itself) sets in an ideal topological space (X, τ , I) is denoted by RIO (X, τ) (resp. α IO (X, τ), PIO (X, τ), tIO (X, τ), δ IO (X, τ), *PI (X, τ), *DI (X, τ)).

DEFINITION 3. A subset A of an ideal topological space (X, τ , I) is said to be $\delta - I - regular$ (ACIKGOZ &YUKSEL 2006) if A is both a pre – I – open set and a $\delta - I - open set$.

The family of all $\delta - I$ – regular sets of (X, τ, I) is denoted by $\delta_I R(X, \tau)$, when there is no chance for confusion with the ideal.

The following diagram is given by Acikgoz et al. (ACIKGOZ & YUKSEL 2006).

3. ON F*- SPACES AND SA*- SPACES

PROPOSITION 1. Let (X,τ,I) be an ideal topological space and A a subset of X. Then the following properties hold:

a) If A is an R - I – open set and (X, τ, I) is a Hayashi-Samuels space, then A is an I – locally closed set,

b) If A is an R - I – open set, then A is a B_I – set.

c) If A is a B_I – set, then A is a C_I – set.

PROOF. a) Let A be an R - I – open set. Since (X,τ,I) is a Hayashi-Samuels space, then $X^* = X$. Since every R - I – open set is an open set by (ACIKGOZ & YUKSEL 2006) and X is a * – perfect set, $A = A \cap X$ is an I – locally closed set.

b) Let A be an R - I – open set. Hence A is a t – I – set by (ACIKGOZ & YUKSEL 2006). Since X is an open set, $A = A \cap X$ is a B_I – set.

c) The proof is obvious from (HATIR & NOIRI 2002).

REMARK 1. The converse of Proposition 1(b) need not be true as shown in the following example. Also, HATIR & NOIRI (2002) showed that C_I – set is not a B_I – set, in general.

EXAMPLE 1. Let $X = \{a,b,c,d\}, \tau = \{\emptyset,X,\{a,b\}\}, I = \{\emptyset,\{c\}\}$. Set $A = \{d\}$. Then A is a B_I – set which is not an R - I – open set. For $A = \{d\}$, since $Cl^*(A) = \{c,d\}$, Int($Cl^*(A)$) = \emptyset and Int(A) = Int($Cl^*(A)$), A is a t – I – set. By [7, Proposition 3.1(c)] since every t – I – set is a B_I – set, A is a B_I – set. On the other hand, since $Cl^*(Int(A)) = \emptyset \neq A$, A is not an R - I – open set.

DIAGRAM II has been expanded by using DIAGRAM I. ACIKGOZ et al. (2004) also have showed that every semi – I – open set is a δ – I – open set and definitions of pre – I – open sets and δ – I – open sets are independent concepts. HATIR & NOIRI (2002) have already showed that every open set is a B_I – set and every B_I – set is a C_I – set.

PROPOSITION 2. For a subset, A of an ideal topological space, (X,τ,I) , the following properties hold:

a) Every regular I – closed set is a δ – I – open set,

b) Every $\delta - I$ – regular set is a $\beta - I$ – open set,

c) Every * – perfect set is a δ – I – open set.

PROOF. a) Let A be a regular I – closed set. Then A = $(Int(A))^*$ and so $A \subset Cl^*(Int(A))$. By Definition 2, A is a semi – I – open set. Hence, A is a $\delta - I$ – open set using Diagram II.

b) Let A be a δ – I – regular set. By Definition 3, A is a pre – I – open set. Then A \subset Int(Cl*(A)) \subset Cl(Int(Cl*(A))). Hence A is a β – I – open set.

c) Let A be a * – perfect set. Then A = (A)* and so $Cl^*(A) = A \cup A^* = A$. Hence $Int(Cl^*(A)) = Int(A)$, and therefore, A is a t – I – set. Since every t – I – set is a δ – I – open set by Diagram I, A is δ – I – open set.

REMARK 2. The converses of Proposition 2 need not be true as shown in the following examples.

EXAMPLE 2. Let X = {a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a,c\}, \{a,c,d\}\}, I = \{\emptyset, \{a\}\}.$ Set A = {a,c}. Then A is a $\delta - I$ – open set which is not a regular I – closed set. For A = {a,c}, since Cl*(A) = {a,b,c}, Int(Cl*(A)) = {a,c}, Cl*(Int(A)) = Cl*({a,c}) = {a,b,c} and Int(Cl*(A)) \subset Cl*(Int(A)), A is a $\delta - I$ – open set. On the other hand, since A $\not\subset$ Int(Cl*(A)), A is not regular I – closed set.

EXAMPLE 3. Let $X = \{a,b,c,d\}, \tau = \{\emptyset,X,\{a\},\{c\},\{a,c\}\}, I = \{\emptyset,\{a\},\{c\},\{a,c\}\}$. Set $A = \{c,d\}$. Then A is a $\beta - I$ – open set which is not a $\delta - I$ – regular set. For $A = \{c,d\}$, since $Cl^*(A) = \{b,c,d\}$ Int($Cl^*(A)$) = $\{c\}, Cl(Int(Cl^*(A))) = \{b,c,d\}$ and so $A \subset Cl(Int(Cl^*(A)))$. This shows that A is not a $\beta - I$ – open set.

EXAMPLE 4. Let X = {a,b,c,d}, $\tau = \{\emptyset, X, \{c\}, \{a,b,d\}\}$, I = { $\emptyset, \{d\}\}$. Set A = {c,d}. Then A is a $\delta - I$ – open set which is not a * – perfect set. For A = {c,d}, since Cl*(A) = {c,d}, Int(Cl*(A)) = {c}, Cl*(Int(A)) = {c} and so Int(Cl*(A)) \subset Cl*(Int(A)). This shows that A is a $\delta - I$ – open set. On the other hand, since (A)* = {c} \neq A, A is not a * – perfect set.

REMARK 3. Using the two examples presented below, it is shown that R - I - open sets and regular I - closed sets are independent of each other.

EXAMPLE 5. Let X = {a,b,c,d}, $\tau = \{\emptyset, X, \{b\}, \{a,c\}, \{a,b,c\}\}, I = \{\emptyset, \{a\}, \{d\}, \{a,d\}\}.$ Set A = {b}. Then A is a R – I – open set which is not a regular I – closed set. For A = {b}, since Cl*(A) = {b,d} and Int(Cl*(A)) = {b}. This shows that A is not an R – I – open set. On the other hand, since (Int(A))* = {b,d} \neq A, A is not a regular I – closed set.

EXAMPLE 6. Let $X = \{a,b,c,d\}, \tau = \{\emptyset,X,\{a\},\{b,c\},\{a,b,c\}\}, I = \{\emptyset,\{a\},\{b\},\{a,b\}\}.$ Set $A = \{b,c,d\}$. Then A is a regular I – closed set which is not an R – I – open set. For $A = \{b,c,d\}, \text{ since } (Int(A))^* = \{b,c,d\}.$ This shows that A is a regular I – closed set. On the other hand, since $Cl^*(Int(A)) = \{b,c,d\} \neq A$, A is not an R – I – open set.

REMARK 4. The following diagram showing the relationship among several sets defined above, is obtained using DIAGRAM II, Proposition 2 and the Diagram in (KESKIN et. al. 2004).

DEFINITION 4. An ideal topological space (X,τ,I) is said to be a F^* – space if A=Cl*(A) for every open set A \subset X.

EXAMPLE 7. Let X = {a,b,c}, $\tau = \{\emptyset, X, \{c\}\}, I = \{\emptyset, \{a\}, \{c\}, \{a,c\}\}$. Then X is a F* – space. For every A $\in \tau$, we have since (A)* \subset A.

EXAMPLE 8. Let X = {a,b,c,d}, $\tau = \{\emptyset, X, \{c\}, \{a,c\}, \{b,c\}, \{a,c,d\}\}, I = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$. For every A $\in \tau$, since (A)* $\not\subset$ A, we have X is not F* – space.

DEFINITION 5. A subset A of an ideal topological space (X,τ,I) is said to be a) A semi – I – closed if (HATIR & NOIRI 2005) Int(Cl*(A)) \subset A,

b) A SC - I - open set if $A = U \cap V$, where $U \in \tau$ and A is semi - I - closed set.

THEOREM 1. For a subset A of an ideal topological space (X, τ, I) , the following property holds: A is an open set if and only if A is an $\alpha - I$ – open set and a SC – I – open set.

PROOF. The necessity is obvious.

Sufficiency: Let A be an $\alpha - I$ – open and a SC – I – open set. Then A \subset Int(Cl*(Int(A))) and A = U \cap V, where U $\in \tau$ and V is semi – I – closed.

We have $A \subset Int(Cl^*(Int(A))) = Int(Cl^*(Int(U \cap V))) \subset Int(Cl^*(U \cap V)) \subset Int(Cl^*(U))$ $\cap Int(Cl^*(V)) = Int(Cl^*(U)) \cap Int(V)$. Thus we obtain $A = U \cap A \subset U \cap Int(Cl^*(U)) \cap$ $Int(V) = Int(U \cap V) = Int(A)$ and hence A is open – set.

PROPOSITION 3. For a subset, A of a F^* – space (X, τ ,I), the following properties hold: A is an open set if and only if A is a pre – I – open set and a δ – I – open set.

PROOF. Necessity: The proof is obvious from DIAGRAM I. Sufficiency: Let A be a pre – I – open set. Then A \subset Int(Cl*(A)). Since A is a δ – I – open set, Int(Cl*(A)) \subset Cl*(Int(A)). Furthermore by hypothesis, since X is also an F* – space, Cl*(Int(A)) \subset Int(A). Consequently, A \subset Int(Cl*(A)) \subset Cl*(Int(A)) \subset Int(A), that is, A = Int(A) and hence A is an open set.

DEFINITION 6. An ideal topological (X,τ,I) is said to be an $SA^* - space$ if $(A)^* \subset A$ for every set $A \subset X$.

EXAMPLE 9. Let $X = \{a,b,c\}, \tau = \{\emptyset,X,\{a,c\}\}, I = \{\emptyset,\{a\},\{c\},\{a,c\}\}$. Then X is an SA* – space. For every $A \subset X$ since $(A)^* \subset A$, X is an SA* – space.

THEOREM 2. Every SA^* – space is F^* – space.

REMARK 5. The converse of Theorem 2 need to be true as Example 7 shows.

In any ideal topological space (X,τ,I) SA* – space, we have the following fundamental relationships between the classes of subsets of X considered:

PROPOSITION 4. For a subset A of an ideal topological space (X,τ,I) SA* – space, the following properties hold:

- a) $\delta_{I}R(X,\tau) = RIO(X,\tau),$
- b) $tIO(X,\tau) = \delta IO(X,\tau)$,
- c) *PI $(X,\tau) = *DI (X,\tau)$.

PROOF. a) Necessity: By [3, Proposition 3(a)], we have RIO $(X,\tau) \subset \delta_I R(X,\tau)$. Sufficiency: Let A be a $\delta - I$ – regular set. According to Definition 3, A is both a $\delta - I$ – open set and a pre – I – open set. Hence A \subset Int(Cl*(A)) \subset Cl*(Int(A)). Furthermore by hypothesis, since X is also an SA* – space, (Int(A))* \subset Int(A), Cl*(Int(A)) = (Int(A) \cup (Int(A)*)) \subset Int(A) and Cl*(Int(A)) \subset Int(A). Consequently, A = Int(Cl*(A)) and hence A is an R – I – open set.

b) and c) are analogous to the Proof of (a) and are thus omitted.

PROPOSITION 5. For a subset A of an SA* ideal topological space (X,τ,I) , the following properties hold:

- a) Every I open set is an R I open set,
- b) Every f_I set is an open set,
- c) Every βI open set is a semi open set.

PROOF. a) Let A be an I – open set. Then A \subset Int((A)*). Furthermore by hypothesis, since X is also an SA* – space, (A)* \subset A and Cl*(A) \subset A. Consequently, A \subset Int((A)*) \subset Int(Cl*(A)) \subset Int(A) \subset A and so A = Int(Cl*(A)). Hence A is an R – I – open set.

b) Let A be an f_I – set. By Definition 2, we have $A \subset (Int(A))^*$. Since X is also an SA* – space, $(Int(A))^* \subset Int(A)$ and so $A \subset (Int(A))^* \subset Int(A)$. Hence A is an open set.

c) Let A be an β – I – open set. Then A \subset Cl(Int(Cl*(A))). Since X is an SA* – space, A \subset Cl(Int(Cl*(A))) \subset Cl(Int(A)) and so A \subset Cl(Int(A)). Hence A is a semi – open set.

DEFINITION 7. A function $f: (X, \tau) \rightarrow (Y, \phi)$ between two topological spaces is said to be *semi – continuous* (KURATOWSKI 1966) if for every $V \in \phi$, $f^{-1}(A)$ is semi – open of (X, τ) .

DEFINITION 8. A function $f: (X, \tau, I) \rightarrow (Y, \varphi)$ from an ideal topological space to a topological space is said to be R - I - continuous (ACIKGOZ & YUKSEL 2006) (resp. $\delta_I - r - continuous$ (ACIKGOZ & YUKSEL 2006), pre - I - continuous (DONTCHEV 1996), $semi - \delta - I - continuous$ (ACIKGOZ et. al. 2004), I - continuous (ABD EL – MONSEF et. al. 1992), $f_I - I - continuous$ (KESKIN et. al. 2004), $\alpha^* - I - continuous$ (HATIR & NOIRI 2002), t - I - continuous (HATIR & NOIRI 2002), t - I - continuous (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR & NOIRI 2002), $\tau - I - continuous$ (HATIR $\delta_I = 0$), $\tau -$

We are now able to provide a decomposition of continuity in this setting.

THEOREM 3. Let (X, τ, I) be an F^* – space. For a function $f : \longrightarrow (X, \tau, I)$ (Y, ϕ) , the following properties are equivalent:

- a) f is continuous,
- b) f is pre I continuous and semi δ I continuous.

PROOF. This follows from Proposition 3.

THEOREM 4. Let (X, τ, I) be an SA* – space. For a function $f : (X, \tau, I) \longrightarrow (Y, \phi)$, the following equivalences hold:

- a) f is $\delta_I r$ continuous if and only if it is R I continuous,
- b) f is semi δ I continuous if and only if it is t I continuous,
- c) f is * perfect continuous and if and only if it is * dense in itself continuous.

PROOF. This follows from Proposition 4.

THEOREM 5. Let (X, τ, I) be an SA* – space. For a function $f : (X, \tau, I) \rightarrow (Y, \phi)$, the following implications hold:

- a) If f is I continuous, then it is R I continuous,
- b) If f is f_I continuous, then it is continuous,
- c) If f is βI continuous, then it is semi continuous.

PROOF. This follows from Proposition 5.

The authors wish to thank the referees for their valuable suggestions.

ACKNOWLEDGEMENT

This study is supported by Selçuk University – Scientific Research Projects Office (S. U. BAP).

REFERENCES

- ABD EL MONSEF ME, LASHIEN EF, NASEF AA, 1992. On I open sets and I continuous functions, *Kyungpook Mathematical Journal*, 32(1), 21–30.
- ACİKGOZ A, NOİRİ T, YUKSEL S, 2004. On δI open sets and decomposition of αI continuity, *Acta Mathematica Hungarica*, 102(4), 349–357.
- ACIKGOZ A, YUKSEL S, 2006. On δ I regular sets and two decompositions of R I continuity, *Far East Journal of Mathematical Sciences*, 23, 53–64.
- DONTCHEV J, 1996. On pre I open sets and a decomposition of I continuity, *Banyan Mathematical Journal*, Vol. 2.
- DONTCHEV J, GANSTER M, ROSE D, 1999. Ideal resolvability, *Topology and its Applications*, 93, 1–16.
- DONTCHEV J, 1999. Idealization of Ganster Reilly decomposition theorems, Math. GN/ 9901017, 5 Jan. (Internet).
- DUGUNDJI J, 1966. Topology, Allyn and Bacon, Boston, pp. 92.
- HATIR E, NOIRI T, 2002. On decompositions of continuity via idealization, *Acta Mathematica Hungarica*, 96, 341–349.
- HATIR E, NOIRI T, 2005. On semi I open sets and semi I continuous functions, *Acta Mathematica Hungarica*, 10(4), 345–353.
- HAYASHI E, 1964. Topologies defined by local properties, *Mathematische Annalen*, 156, 205–215.
- JANKOVIĆ D, HAMLETT TR, 1990. New topologies from old via ideals, *The American Mathematical Monthly*, 97, 295–310.
- KESKİN A, NOİRİ T, YUKSEL S, 2004. F₁ sets and decomposition of R₁C continuity, *Acta Mathematica Hungarica*, 104(4), 307–313.
- KESKİN A, NOİRİ T, YUKSEL Ş, 2004. Idealization of decomposition theorem, *Acta Mathematica Hungarica*, 102(4), 269–277.
- KURATOWSKI K, 1966. Topology Vol. 1 (transl.), Academic Press, New York.
- LEVINE N, 1963. Semi open sets and semi continuity in topological spaces, *The American Mathematical Monthly*, 70, 36–41.
- SAMUELS P, 1975. A topology formed from a given topology and ideal, *Journal of the London Mathematical Society (2),* 10, 409–416.
- YUKSEL S, ACİKGOZ A, NOİRİ T, 2005. On δ I continuous functions, *Turkish Journal of Mathematics*, 29, 39-51.