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Abstract: This paper gives a method for determining a developable timelike ruled
surface by using dual vector calculus. A developable timelike ruled surface can be
parameterized in the form m(¢, u) =p(¢t)+ux(t) (p(t)is called the base curve of
m(t, u)). The dual vectorial expression of a developable timelike ruled surface is
obtained from the coordinates and the first derivatives of the base curve.
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BiR ACILABILIR TIMELIKE REGLE YUZEYIN BELIRLENMESI UZERINE

Ozet: Bu makalede dual vektor analizi kullanilarak bir agilabilir timelike regle yiizeyin
belirlenmesi i¢in bir metot verilmistir. Bir acilabilir timelike regle ylizey
m(t, u) =p(t)+ux(t) formunda parametrelestirilebilir ( p(r) ye m(t, u) nin dayanak
egrisi denir). Bir acilabilir timelike regle yiizeyin dual vektdrel ifadesi koordinatlar ve
dayanak egrisinin ilk tiirevlerinden elde edildi.

Anahtar kelimeler: Minkowski Uzay1, Acilabilir Yiizey, Timelike Regle Yiizey.

1. INTRODUCTION

Ruled surfaces, particularly developable surfaces, have been widely studied and applied
in mathematics and engineering. The generation and machining of ruled surfaces play
an important role in design and manufacturing of products and many other areas
(RAVANI & KU 1991, ZHA 1997).

Dual numbers, dual vectors, dual inner products, dual cross product, dual angle, E.
Study Mapping, etc. are the most important notions on the geometry of lines and
kinematics. E. Study mapping plays a fundamental role between the real and dual
Lorentzian spaces. By this mapping, there exist one-to-one correspondence between the
vectors of dual unit sphere S and the directed lines of the space of lines £° (STUDY
1903). Therefore, the motion locus of a straight line in £° can be described by that of a
point on the surface of dual unit sphere S* in dual space D’ . Then a ruled surface in E’
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corresponds to a unique dual curve on the surface of S* (GUGENHEIMER 1977).
Therefore, the generation of a ruled surface can be converted into the determination of a
unique corresponding spherical curve.

The correspondence of E. Study’s mapping states that there is a one-to-one
correspondence between an oriented straight timelike line in 3-dimensional Minkowski

space IR’ and a dual point on the surface of a dual hyperbolic unit sphere I:IO2 in 3-
dimentional dual Lorentzian space D; (UGURLU & CALISKAN 1996). Thus, a

timelike ruled surface in IR; corresponds to a unique dual curve on the surface of H; .

In this study, using methods given in (KOSE 1999), we determine a method of
determination of a developable timelike ruled surface and obtain a linear differential
equation of first order.

2. DUAL NUMBERS AND DUAL LORENTZIAN VECTORS

In this section we give a brief summary of the theory of dual numbers and dual
Lorentzian vectors.

Let IR be a 3-dimensional Minkowski space over the field of real numbers IR with
the Lorentzian inner product <, > given by

<a,b>=ab,+a,b, —a,b,,
where a=(a,,a,,a,) and b = (b, b,, b)) € IR’.
A vector a=(a,,a,,a,) of IR’ is said to be timelike if <a,a>< 0, spacelike if
<a,a>>0 or a=0, and lightlike (or null ) if <a,a>=0 and a #0 (O’ NEILL 1983).

The norm of a vector a is defined by |a|= |<a,a>| . Now let a=(a,, a,,a;) and

b=(b,, b,, by) be two vectors in IR, . Then the Lorentzian cross product is given by
axb = (a;b,—aby , abs—asb, ab,-ab)

(AKUTAGAWA & NISHIKAWA 1990).
A dual number has the form A:=1 +&l’ , where 4 and A  are real numbers, and &
stands for the dual unit which is subject to the rules:

20, =0, 0g = e0=0, le=¢l=¢.
We denote the set of dual numbers by D :

D={i=a+&l |1, A" €IR, & =0].

Addition and multiplication are defined in D by

(A+eX )+ (B+ef)=(A+ f)+e(X + ),

and
(A+ed")-(B+eB)=Ap+e(A S+ B),
respectively. Then it is easy to show that (D,+, .) is a commutative ring with unity.
Now let f be a differentiable function. Then the Maclaurin series generated by 1 is
f@=f(x+ex)=f(x)+ex f(x),
where f'(x) is the derivative of f .
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Let D® be the set of all triples of dual numbers, i.e.

D'={a=(4, 4,, 4)|4 €D, i=1, 2, 3}.
The elements of D® are called as dual vectors. A dual vector @ may be expressed in the
form @ =a+¢ca’, where a and a " are the vectors of IR>.

Now let d=a+ca”, b=b+eb" eD* and 1=, +&A €D. Letus define

d+b=a+b+e(a”+b"),

Aa=Aa+e(Aa’+Aa).
Then D’ is a module together with these operations. It is called as D -module or dual
space.
The Lorentzian inner product of dual vectors d=a+ca” and b= b+ ¢ b" is defined
by

<a,b>=<a,b>+e(<a,b >+<a",b>),

where <a,b> is the Lorentzian inner product of the vectors a and b in the Minkowski
3-space IR (UGURLU&CALISKAN 1996).
A dual vector d=a+e¢a’ is said to be timelike if <a,a><0, spacelike if <a,a>> 0
or a =0 and lightlike (or null) if <a,a>=0 and a #0.
The set of dual timelike, spacelike and lightlike vectors is called dual Lorentzian space
and it is denoted by D;,

D13={d=a+ga* a, a*eIRf}.

The Lorentzian cross product of dual vectors @ and be D; is defined by
axb —axb+¢e(a" xb+axb"),
where a x b is the Lorentzian cross product in /R, (UGURLU & CALISKAN 1996).
Lemma 2.1. Let &, b, ¢, d € D} . Then we have
< axb,i>=—det(a, b ,?)

axb=-bxa,

(ax b)x ¢=—<a,é>b+<b,é> a,
<51><Z5,E><d>=—<é,c <b,d>+<ad,d><b,c>
<€z><5, a>=0; and <ax5,5>:0

(UGURLU & CALISKAN 1996).
Let G=a+ca eD;. Then a is said to be dual timelike (resp. spacelike) unit vector if
the vectors ¢ and a satisfy the following equations

<a,a>=-1, <a, a>=0 (resp.<a,a>=1, <a, a >= 0).
The set of all dual timelike unit vectors is called the dual hyperbolic unit sphere and is
denoted by H 5 :

HOZ:{&za+5a*EIRI3|<a, a>=—1}.
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Theorem 2.2 (E. Study’s Mapping) The dual timelike unit vectors of the dual
hyperbolic unit sphere H, 3 are in one to one correspondence with the directed timelike
lines of the Minkowski 3-space IR; (UGURLU & CALISKAN 1996).

3. THE DUAL VECTOR FORMULATION

By using the dual vector representation, the Pliicker vectors x and pxx of a timelike
line L can be collected into a single dual timelike vectorX=x+gcpxx=x+ex*,
where x is the direction vector of L and p is the position vector of any point on L.
A timelike ruled surface m(t, u) = p(¢)+ux(¢) is written as the dual vector function
X(t) given by
)?(t) :x(t)+gp(t)><x(t)=x(t)+8x*(t). (1)
Since the spherical image of x(¢) is a timelike unit vector, the dual vector X(¢)also has
unit magnitude:
<X, X>=<X+EPXX, X+EPXX>

=<X, X>+<26X, pXX>+E < PXX, pXX>

=<x, x>=—1.
Thus, a timelike ruled surface can be represented by a dual curve on the surface of a

dual hyperbolic unit sphere.
The dual arc-length of a timelike ruled surface x(¢) is defined by

¢ |lax
S =\ |[—|dt. 2
(1) j ” @)
The integrant of Equation (2) is the dual speed , ) , of X(¢) and is
p
. ﬁ ) ﬂ < e E><x >
dt| |dt dxll’? ’
dt
or
dx dx’
< el S ar
=[] 14+ 6—9L—9L__| = 5(1+&A). 3)
dt dx
dt
The curvature function
dx dp dx dx’
< E , EX X > < E, Z >
A= = 4
dt dt

is the well-known distribution parameter of the timelike ruled surface.
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eg—f’
EG-F*’
F=<m,m, >G=<m,m,> are the first fundamental coefficients and

The Gaussian curvature of a surface is given by K = where E =<m,,m, >,

m,xm, xm

m m, Xm
>, f=<m,, ——=> g=<m, , ——=> are the second

e=<m >
|mt xm, m,xm,

o

m,xm,

fundamental coefficients. Then the relation between the Gaussian curvature K and the
distribution parameter A of a timelike ruled surface m(¢, u) is given by (KASAP et al.
2005)
AZ
K=o v ©®)
(A +u )

If K is zero everywhere, that is, A is zero everywhere then the timelike ruled surface is
said to be developable.

4. THE DETERMINATION OF A DEVELOPABLE TIMELIKE RULED
SURFACE

The dual coordinatesX, =x,+¢&x; (i=1,2, 3) of an arbitrary point ¥ of the dual

hyperbolic unit sphere A, g , centered at the origin, may be expressed as
% =x +é&x =sinhfcos ,
%, = x, + &x} = sinh sin @, (6)
%, =x,+&x =coshd
where 6 =0+¢6° and @p=p+ec¢ are dual hyperbolic and spacelike angles with
fe IR and 0< ¢ <2r, respectively.

Since £’ =&’ =---=0, according to the Taylor series expansion from Equation (6), we
obtain

X =x, +&x; =sinh(0+£0")cos(p+ @)
= (sinh @ + £0" cosh @)(cos ¢ — £’ sin @)
=sinh & cos @+ £(0" cosh @ cos @ — " sinh Gsin @),
X, =x, +&x, =sinh(+ £0")sin(p + gp”)
= (sinh @ + £0" cosh B)(sin @ + £p* cos @)
=sinh @sin @ + £(0" cosh @sin ¢ + ¢ sinh & cos @),
and
X, = x, +&x; =cosh(0+¢&0")
=cosh @+ &6" sinh 4.
Then we obtain the real parts as
x, =sinhdcos g,
x, =sinh @sin @, (7)
x;, =cosh 6,
and the dual parts as
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x; =6 cosh@ cosp— " sinhfsin g,
x, =6 cosh@sin g+ ¢’ sinh @ cos @, (8)
x; =6 sinh 4.
Now let us consider a dual curve X(¢) = x(¢)+&x"(t) on the dual hyperbolic unit sphere
corresponding to a timelike ruled surface m(¢, u) = p(t)+u x(t)in IR’ . Then we write
X(t)=x(t)+ex'(t) = (sinh&’(t) cos@(t) , sinh@(¢)sing(t) , cosh@(t))
+ 8(49* (¢) cosh@(t) cos p(t) — " (t) sinh@(¢) sinp(t), 6" (t) coshO(¢) singp(t) (9)
+¢" (¢)sinh 6(¢) cosg(t), O (¢) sinh6(1)).
Since x"(¢) = p(¢)x x(t), we have the following system of linear equations in p,, p, and
p, (where p,, p, and p, are the coordinates of p(¢)):
—p,cosh@+ p, sinh @ sinp = @ coshé cosp—¢" sinh @ sing
p,cosh@ — p, sinh@ cosp = 6 cosh@ sing+¢” sinh @ cosg
p, sinh @sin @ — p,sinh@ cosp= 6" sinh &
The matrix of coefficients of unknowns p, p, and p, is the Lorentzian skew-
symmetric matrix

0 —cosh @ sinh@sin @
cosh @ 0 —sinh @ cos @
sinh@singp —sinhfcosp 0
and therefore its rank is 2 with 8(¢) € IR . Also the rank of the augmented matrix
0 —cosh@ sinh@cosep @ cosh@cosp—¢ sinhBsing
cosh 6 0 —sinh@cosp @ cosh@sing+ ¢ sinhfcose
sinh@singp —sinh&cos@ 0 @ sinh @

is 2. Hence this system has infinite solutions given by
p,=(p;+@")tanh @ cosp + O'sing,
p,=(p;+@") sinh@ sinp—0 cosp , (10)
P; = Ds-
Since p,(¢) can be chosen arbitrarily, then we may take p,(t)=-¢"(¢). In this case,
Equation (10) reduces to

p, =0 sing,
p, =—0 cosg, (11)
Pi=—¢ .

The distribution parameter of the timelike ruled surface given by Equation (9) is
_dv A d0'do
dt

dp do° .  , (dpY .
- > + —~ ““—sinh“ @ + 6 | == | sinh&coshd
dt dt dt dt dt dt

2 - 2 2
(d&j +sinh* @ (dgoj
dt dt

(12)
dx

dt
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If this ruled surface is a developable one, then A =0and then Equation (12) becomes

* * 2
49 do , dg dp oo [92) sinh@cosho=0. (13)
d dr | dr e dr

Dividing the Equation (13) by sinh” @ gives

* 2 %
a0 d(coth&’) —0’(%) cothd — de di=0

dr dt dt  di
Setting
2
a (d("j dody”
dt dt _dt
t)=cothd, A(t)=———, and B(t)=*>—**—,
y(®) (®) o () o
dt dt
we are lead to a linear differential equation of first order
%—A(z)y—B(t)zo. (14)

In the case that the hyperbolic angle #(¢) and spacelike angle ¢(¢)are both constant, this
equation is identically zero, that is, the ruled surface X(¢) is a timelike cylinder .

Let p(¢) be a curve. Then we can find a developable timelike ruled surface such that its
base curve is the curve p(¢). In fact from Equation (11), we have

tango=—ﬂ, 0" =+ p/+p;,and ¢ =-p,

b
Now only ¢(f) remains to be determined. The solution of the linear differential

Equation (14) gives coth@. This solution includes an integral constant. Therefore we
have infinitely many developable timelike ruled surfaces such that its base curve is

p@).

It is to be noted that &"(¢) has two values; when we use the minus sign we obtain the
reciprocal of the timelike ruled surface X(z) obtained by using the plus sign for a given
integral constant.
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