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Abstract: In this study, we study the result which are obtained by BISHOP (1975) for a
timelike curve in Minkowski 3-Space.In addition , the Darboux vector(matrix) for the
timelike curve is found. Furthermore, using the derivative of the tangent vector 7' of the
timelike curve, the relations between the curvature funtions «,7 and k,,k, are found.

Key words: Bishop Frame, Natural Frenet Frame, Fermi-Walker Frame (RPAF),Timelike
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MINKOWSKI 3-UZAYINDA TiMELIKE EGRiININ BiSHOP CATISI

Ozet: Biz bu calismada, BISHOP (1975) tarafindan elde edilen sonucu, Minkowski 3-
uzayinda timelike egriler icin calistik. Ilaveten, timelike egriler igin Darboux
vectorii(matrisi) bulundu. Ayrica, timelike egrinin 7' teget vektoriiniin tiirevi kullanilarak
k,7 ve k,,k, egrilik fonksiyonlari arasindaki iligkiler bulundu.

Anahtar kelimeler: Bishop Catisi, Dogal Frenet Catisi, Fermi-Walker Catisi, Timelike
Egri, Minkowski 3-uzayi.

1. PRELIMINARIES

Let R’ :{(xl,xz,x3)| Xpy Xy, X, eR} be a 3-dimensional vector space, and let

x=(x,,x,,x;) and y=(y,,y,,7;) be two vectors in R’. The Lorentz scalar product of
and y is defined by

<x’y>L :—lel +x2y2 +x3y3a

R’ = (R3,<x, y> L) is called 3-dimensional Lorentzian space or Minkowski 3-Space.The
vector x in Rf is called a spacelike vector, a null vector or a timelike vector if <x, y>L >0

or x=0, <x,y>L =0 and x#0 or <x,y>L <0, respectively. For x e Rf, the norm of the
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vector x defined by ||x||L = ‘<x,x>L

, and x 1is called a unit vector if ||x||L =1

(PETROVIC-TORGASEV & SUCUROVIC 2001). For any x,y € R, Lorentzian vectoral
product of x and y is defined by

XN Y= (x3y2 X )5 X3 T X V3 %), _x2y1)~
The equations C.P=c A, p and c A, (cAn, p)=—c,p),c+{(c,c), p are valid
(KARACAN 2004) . Let P be a point in Lorentzian plane and r>0. The curve
{X € Rlz‘ ||PX || L= r} has two branches and each of them is called Lorentzian circle with

center P and radius 7 (YUCE & KURUOGLU 2006).The Lorentzian sphere of center
m= (ml N m3) and radius 7 € R" in the Minkowski 3-space is defined by

S? =\a=(a,,a,.a)e R:|(a-m,a-m), - )
Denote by {T ,N,B } the moving Frenet frame along the curve « . Then 7,N and B are the

tangent, the principal normal and the binormal vector of the curve « , respectively. If « is
a timelike curve, then this set of orthogonal unit vectors, known as the Frenet-Serret frame,
has the following properties (PETROVIC-TORGASEV & SUCUROVIC 2001):

T'=xN ,N'=xT +1B, B'=—-1N,
(T,T)=-1,(N,N)=1,(B,B)=1.

2. INTRODUCTION

The Frenet frame of a 3-times continuously differentiable non-degenerate timelike curve
invariant under semi-Euclidean space has long been the standart vehicle for analyzing
properties of the timelike curve invariant under semi-Euclidean motions. For arbitrary
moving frames that is, orthonormal basis fields, we can express the derivatives of the frame
with respect to the timelike curve parameter in term of the frame its self, and due to semi-
orthonormality the coefficient matrix is always semi- skew symmetric. Thus it generally
has three nonzero entries. The Frenet frame gains part of its special significance from the
fact that one of the three derivatives is zero. Another feature of the Frenet frame is that it is
adapted to the timelike curve: the members are either tangent to or perpendicular to the
timelike curve. It is the purpose of this paper to show that there are other frames which
have these same advantages and to compare them with the Frenet frame.

3. PARALLEL FIELDS

3.1. Relatively Parallel Fields: We say that a normal vector field N along a curve « is
relatively parallel if its derivative is tangential. Such a vector field turns only whatever
amount is necessary for it to remain normal, so it is as close to being parallel as possible
without losing normality. Since its derivative is perpendicular to it, a relatively parallel
normal vector field has constant length. Such fields occur classically in the discussion of
curves which are said to be parallel to given curve. Indeed, if « is a curve, considered as a
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displacement vector function of a parameter ¢, then if N is relatively parallel, the curve
with displacement vector &+ N has velocity (c+N) =(v+ f)T, where T is the unit
tangent vector field of «, v is the speed of ¢ and N'= f T . Thus the segment between the

two curves are perpendicular to both. Whether or not this segment is locally a segment of
minimum length between the two curves depends on the curvature and the length of N . It
is easily verified that the segment local minimizes length if N is short enough. Conversely,
a curve which runs at constant distance from o must be given by o + N, where N is
relatively parallel.

A single normal vector field N, at a point «(z,) generates a unique relatively parallel field
N such that N(¢,) = N,. The uniqueness is trivial: the difference of two relatively parallel

fields is obviously relatively parallel, so if two such coincide at one point, their difference
has constant length 0. To show existence one takes auxiliary adapted frames; the Frenet
frame would do if it exists, but we want existence even for degenerate curves, that is, those
which have curvature vanishing at some points. Such frames can be constructed locally by
appling the Gram-Schmidt process to 7' and two parallel fields.

Theorem 3.1. Let o be a timelike curve. If {T , N],Nz} is an adapted frame, then the
derivatives of the frame with respect to the curve parameter are as the following:

T 0 po Pu| T
Ni|=1pn 0 p,|l N

Nz Pn Pn 0 [N,
Proof. We can write
T'= poyT + poy N, + pp N, (3.1)

for some the functions p,,, p,, and p,,. From equation (3.1), we find

~ Pwo :<T"T>L =0,
Poi :<T'aN1>La

Po = <T'9N2>L-
So we get
I'=0T+ py N, + pp, N,.

Similarly, we can write

N, = p T+ p N, + p, N,
and

N, =py T+ py N, + pn,N,,
where
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p11:<N{>N1 LZO,
p12:<N1yaN2>L
and
pzo—_<N2aT>L:<TV:N2>L—:002:
p21=<N2,N1>L—<N1,N2> Pras
p22=<N2,N2>L—0
Thus we get
T 0 po Pu|l T
N£ = Pn 0  pp|| N
N, Pu Pn 0 ||N,
or shortly,

X'=KX.

Moreover K is semi skew-matrix for satisyfing K’ =—¢K ¢, where ¢ is a diagonal
matrix whose components are 1,1 and -1.Now we find the condition for a normal field of
constant length L to be relatively parallel. There is a smooth function & such that

N=L[N1 cos@+ N, sin@].
Differentiating, we have

N =L [(6? + P )(— N, sin@+ N, cos8)+(p,, cos@ + p,, sin H)T].

From this we see that N is relatively parallel iff 8 =—p,, .
Since there is a solution for & satisfying any initial condition, this shows that local
relatively parallel normal fields exist. To get global existence we can patch together local
ones, which exist on a covering by intervals. Smoothness at the points where they link
together is a consequence of the uniqueness part. We define a tangential field to be
relatively parallel if it is a constant multiple of the unit tangent field 7 . An arbitrary field is
relatively parallel if its tangential and normal components are reletively parallel. We spell
out the complete hypotheses for the existence and uniqueness of this fields as follows.

Theorem 3.2. Let o be a C* timelike curve in Minkowski 3-space which is regular, that
is, the velocity never vanishes (k > 2). Then for any vector X, at a(t,) there is a unique

C*™! relatively parallel field X along a such that X (¢,) = X, and the scalar product of two
relatively parallel fields are constant.

Proof. To prove that the scalar product <X Y > , of two relatively parallel fields X,Y is

constant, we observe that it is trivial for tangential ones and may be verified for the
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tangential and normal parts separately. Thus we assume X and Y are normal, with
derivatives fT and g7 . Then the derivative of <X Y >L is

S0Y), =), Xy,
:<fT’Y>L +<X,gT>L
= f(T.7), +g(X.T),
=f.0+g0
=0,

as desired. Thus, <X Y > B is constant.

3.2. Special Adapted Frames. It should be clear that the relatively parallel fields on a C*
regular curve form a 3-dimensional vector space over R with distinguished subspaces
consisting of an oriented 1-dimensional tangential part and a 2-dimensional normal part,
and there is a Lorentzian scalar product inherited from the pointwise scalar product on the
ambient semi-Euclidean space.We call an semi-orthonormal basis of this vector space
which fits the two subspaces a relatively parallel adapted frame or RPAF. If we assume that
the ambient semi-Euclidean space has a preferred orientation, then so does the normal
space of the timelike curve, and we may refer to a properly oriented RPAF. The totality of
RPAF’S are in the form of two lorentzian circles,one in each orientation class, since they
can be parametrized by the 2-dimensional semi-orthogonal group, according to the
following obvious result.

Theorem 3.3. If {T ,N,,N 2} is a relatively paralel adapted frame, then the totality RPAF’s
consists of frames the form {T ,aN, +bN,,cN, +dN, } , where
a b
)
runs through semi-orthogonal matrices having constant entries.

Now if {T ,N,,N. 2} is a RPAF, denoting derivatives with respect to arc length by a dot, we
have
T 0 k k|| T
N/ |=|k 0 O[N] (3.2)
N, k, 0 O{|N,
This shows that we accomplished our original goal of showing that there are other adapted

frames which have only two nonzero entires in their Cartan matrices. In fact, given one
such RPAF, Theorem 3.3 tells us that possible Cartan matrices for RPAF’s are

LS}
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0 ak, +bk, ck +dk,
K=+ 0 0
£ 0 0

where * denotes an entry which can be determined by using semi skew-symmetry. The
Frenet frame has semi-Cartan matrix

0 « O
x 0 1|,
0 -z O

and is unique once the orientation of the ambient space and a convention on the sign of the
torsion 7 have been chosen. The only other possibility for a semi-Cartan matrix with one
entry vanishing would be

0 0 f||0 f g
0 0 gl,/f 0 Of.
f —-g O0|l|g 0 O
It is simple to relate the entries of the various semi-Cartan matrices. Indeed,

TL=MM+@N%=JH+@.

K=|
Writing the principal normal as
N =N,cos@+N, Sin9:££]N1 +£k—2jN2, (3.3)
K K
and differentiating we obtain
N* =«T +1B =T +6°(- N,sin@ + N, cos ).
If {T ,N,,N 2} is properly oriented, we conclude that B =—N,sind+ N, cos@ and hence

0° =7 .Thus x and an indefinite integral I 7(s)ds are polar coordinates for the curve
(k. k).

4. THE NORMAL DEVELOPMENT OF A TIMELIKE CURVE

We want to view (k,,k, ) as a sort of invariant of the timelike curve « . This slightly more
difficult to conceive than in a the case of (x,7), since the RPAF is not unique. However,
we have spelled out what degree of freedom there is Theorem 3.3: (k,,k, ) is determined up
to a semi-orthogonal transformation in the non oriented case and up to a semi-rotation
about the origin in the oriented case. Thus we must think of (k,,k, ) as a parametrized (by

an arc-length parameter for & ) continuous timelike curve in a centro semi-Euclidean
plane, that is, a semi-Euclidean plane having a distinguished point. When conceived of in
this way we call a the normal development of timelike curve o . This situation is not
really so different from the case of the Frenet invariants (x,7), because in the non oriented

case (K',T) and the Frenet frame are determined only up to an action by the two-element
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group, with the non identity changing the sign of 7 andx. That is, (K,T) cannot be
distinguished from (x,—7). The standart facts about the relation between (x,7) and the
timelike the curve o as an object of semi-Euclidean geometry correspond to similar facts
about (kl,kz) and « . The proofs are identical with the Frenet case, and in fact are partly
given in unified form in (O’NEILL 1996) .

Theorem 4.1. Two C* regular timelike curves in semi-Euclidean space are congurent if
and only if they have the same normal development. For any parametrised continous curve
in a centro semi-Euclidean plane there is a C* regular curve in semi - Euclidean space
having the given curve as its normal development.i.e. Two curves are congruent iff they
have the same arc-length parametrisation of their curvature and torsion.

The modifications for the oriented case are clear: make both the semi-Euclidean space and
the centro semi-Euclidean plane be oriented and congurences be proper.

Theorem 4.2. Let a be a C’ regular timelike curve. Then the curve « lies on a
Lorentzian sphere of radius » and center p iff its normal development lies on a line not

through the origin. The distance of this line from the origin and the radius of the Lorentzian
sphere are reciprocals.

Proof. =:If o lies on a Lorentzian sphere with center p and radius 7, then

(a—p,a-p), =r’. (4.1)
Differentiating with respect to arc length gives

(T,a-p), =0. (4.2)
SO

a-p=fN, +gN, (4.3)

for some functions f, g . From equation (4.3), we get
f:<a_p7N1>L > g:<a_pDN2>L (44)
Derivating equation (4.4), we have
= (<a—p,N1>L)'

=(T,N,), +{a=p,N;),

=0+(a—-p.kT),

=0.
This means that f = constant.

Similarly, g is constant. Then differentiating equation (4.2) and by using theorem 3.2, we
get
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<T,a—p>L =0

(1°,a=p), +(1.T), =0

(kyN, +k,N,, a0 = p), —1=0
k(Ny,a—p), +k,(N,,a-p) -1=0

Jk, + gk, -1=0 .
That is, (k,,k,) is on the line
fe+gy—1=0. (4.5)
Moreover, distance of line / from the origin is
1 1
a4
foreg o

<:Conversely, suppose that fx+gy—1=0, where f and g are constant. Let

pﬁa = fN, + gN,, then
-p'=—-a"+ N +gN,
=-T+ fk,T + gk, T
=[-1+ /e, + gk, I
=0T
=0,
so p is constant. Moreover, let

L2

pa

={a-pa-p) =r,

L

then
(@=p.a=p),) =2r.a-p), =0
is obtained. Therefore
||pa||i =(a-p,a- p>L =r* = constant.

So timelike curve a lies on a Lorentzian sphere of radius » and center p .

Definition 4.1. If a rigid body moves along a timelike curve & which we suppose that the
curve is unit speed, then the motion of body consists of translation along timelike curve o
and about the rotation timelike curve « .The rotation is determined by an angular velocity
vector @ which satifies

I''"=on, T, N =oA, N,N, =1, N,.
The vector @ is called the Darboux vector.
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Theorem 4.3. Let @ be the Darboux vector of the curve a , a:I —R; with curvatures
{k,,k,} and W be the matrix which corresponds to @ .Then the following hold:

@ =—k,N, +kN,
and

0 k

bl
N

W =

k
k

2

0
0

oS O

Proof. First of all let us find the Darboux vector @ . Then we write
@ =al +bN, +cN, (4.6)
and take cross products with 7', N, and N, to determine a,b and c. So we get
T* =@, T=-TA, (aT+bN, +cN,)
=-b(T A, N,)—c(T A, N,)
kN, +k,N, =cN, —bN,
then ¢ =k, and b = —k, .Similarly,
N; =@ A, N, ==N, A, (@T +bN, +cN,)
= _a(Nl Ay T)_C(Nl v Nz)
kT =cT +aN,, a=0,
and
N; =@ n, N, ==N, A, (aT +bN, +cN,)
=—a(N2 v T)_b(Nz Ay Nl)
k,T =—=bT +aN,, b=—k,.
Thus we can write the Darboux vector as follows,
@ =k, N, + kN, = (0,~ky .k, )iy vy

Moreover we get

0 k k
W=k 0 0
k, 0 0

2

Theorem 4.4. If T is tangent vector of a regular timelike curve « , then the following
formulas hold:

a) T" A, T" =@ —(kk, =k k! )T, &, %0
b) det(,7°,7")=k:k, —k,k;

o det.(T,T‘,Z"‘;)
VA §

where @ is the Darboux vector of the timelike curve « .

=0° orr,
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Proof. (a) We can write

<T“’T>L :_KZ’
<T”,N1>L _kl.,
(TN, =k

since
T* =k'N, + kN, +k,(k,T)+ k, (k,T)
= (k2 + k2T + kN, + KN,
=k’ +k N, +k;N,.
From definition of the Darboux vector @ , we write
T"=an,T.
So we get
T AT =-T" A, (@A, T)
= <T",T>Lw—<T",zU>LT
=@ —(T" kN, +k,N,) T
=@ +k,(T",N,) T—k(T",N,) T

L
=—x'w —k,k;T —kk;T
= —*m — (ko k; — kS )T
(b) From the last equality we can write
(1* A, T7.T) =(~&*@ ~(lokt —kik3 J1.T),
and then we get
det(T,T°, 7" )= —x*(@,T), +(kok; — ki3 \T.T),
= k(= kN, + kN, T+ (ks —kkS )= 1)
=kk, —k,k;.

(c¢) From the equality 7° =@ A, T, we can write the vector (T A T ) as the
following :

TAT =Tn, (@A, T)
=(T,T),o+(T.@),T
=w+0.T
=a.

And then if we take the norm of the equality 7 A, T° =@, we find
|7, T =k k2

From equality (3.3), we immediately see that




SDU FEN Epl;BiYAT FAKI"JLTESi 90
FEN DERGISI (E-DERGI). 2008, 3(1), 80-90

ks
k,

0= arctan[k—zj.
kl

Differentiating from equality (4.7), we find

tan @ = 4.7)

or

Thus we have
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