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Abstract: In this study, we study the result which are obtained by BISHOP (1975)  for a 
timelike curve in Minkowski 3-Space.In addition , the Darboux vector(matrix) for the 
timelike curve is found. Furthermore, using the derivative of the tangent vector T  of the 
timelike curve, the relations between the curvature funtions τκ ,  and 21 , kk  are found. 
 
Key words: Bishop Frame, Natural Frenet Frame, Fermi-Walker Frame (RPAF),Timelike 
Curve, Minkowski 3-Space. 
 

MINKOWSKI 3-UZAYINDA TİMELİKE EĞRİNİN BİSHOP ÇATISI  
 
Özet: Biz bu çalışmada, BISHOP (1975) tarafından elde edilen sonucu, Minkowski 3-
uzayında timelike eğriler için çalıştık. İlaveten, timelike eğriler için Darboux 
vectörü(matrisi) bulundu. Ayrıca, timelike eğrinin T  teğet vektörünün türevi kullanılarak 
τκ ,  ve 21 , kk  eğrilik fonksiyonları arasındaki ilişkiler bulundu.  

 
Anahtar kelimeler: Bishop Çatısı, Doğal Frenet Çatısı, Fermi-Walker Çatısı, Timelike 
Eğri, Minkowski 3-uzayı. 
 
 
1. PRELIMINARIES 
 
Let ( ){ }RxxxxxxR ∈= 321321

3 ,,,,  be a 3-dimensional vector space, and let 

( )321 ,, xxxx =  and ( )321 ,, yyyy =  be two vectors in 3R . The Lorentz scalar product of  
and y  is defined by  

332211, yxyxyxyx
L

++−= , 
 

( )
L

yxRR ,,33
1 =  is called 3-dimensional Lorentzian space or Minkowski 3-Space.The 

vector x  in 3
1R  is called a spacelike vector, a null vector or a timelike vector if 0, >

L
yx  

or 0=x , 0, =
L

yx  and 0≠x  or 0, <
L

yx , respectively. For 3
1Rx∈ , the norm of the 
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vector x  defined by 
LL

xxx ,= , and x  is called a unit vector if 1=
L

x  

(PETROVIC-TORGASEV & SUCUROVIC 2001). For any 3
1, Ryx ∈ , Lorentzian vectoral 

product of x  and y  is defined by  
( )122131133223 ,, yxyxyxyxyxyxyx L −−−=∧ . 

The equations pcPC L
rr

∧=.    and  pcccpcpcc LLLL
rrrrrrrrr

〉〈+〉−〈=∧∧ ,,)(  are valid 
(KARACAN 2004) . Let P  be a point in Lorentzian plane  and .0>r  The curve  
{ }rPXRX

L
=∈ 2

1  has two branches and each of them is called Lorentzian circle with 
center P  and radius r (YUCE & KURUOGLU 2006).The Lorentzian sphere of center 

( )321 ,, mmmm =  and radius +∈ Rr  in the Minkowski 3-space is defined by  

( ){ }.,,, 23
1321

2
1 rmamaRaaaaS

L
=−−∈==  

Denote by { }BNT ,,  the moving Frenet frame along the curve α . Then NT ,  and B  are the 
tangent, the principal normal and the binormal vector of the curve α , respectively. If α  is 
a timelike curve, then this set of orthogonal unit vectors, known as the Frenet-Serret frame, 
has the following properties (PETROVIC-TORGASEV & SUCUROVIC 2001): 
 

NBBTNNT ττκκ −=+== ',',' , 
.1,,1,,1, ==−= BBNNTT  

 
2. INTRODUCTION 
 
The Frenet frame of a 3-times continuously differentiable non-degenerate timelike curve 
invariant under semi-Euclidean space has long been the standart vehicle for analyzing 
properties of the timelike curve invariant under semi-Euclidean motions. For arbitrary 
moving frames that is, orthonormal basis fields, we can express the derivatives of the frame 
with respect to the timelike curve parameter in term of the frame its self, and due to semi- 
orthonormality the coefficient matrix is always semi- skew symmetric. Thus it generally 
has three nonzero entries. The Frenet frame gains part of its special significance from the 
fact that one of the three derivatives is zero. Another feature of the Frenet frame is that it is 
adapted to the timelike curve: the members are either tangent to or perpendicular to the 
timelike curve. It is the purpose of this paper to show that there are other frames which 
have these same advantages and to compare them with the Frenet frame.  
 
3. PARALLEL FIELDS 
 
3.1. Relatively Parallel Fields:  We say that a normal vector field N  along a curve α  is 
relatively parallel if its derivative is tangential. Such a vector field turns only whatever 
amount is necessary for it to remain normal, so it is as close to being parallel as possible 
without losing normality. Since its derivative is perpendicular to it, a relatively parallel 
normal vector field has constant length. Such fields occur classically in the discussion of 
curves which are said to be parallel to given curve. Indeed, if α  is a curve, considered as a 
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displacement vector function of a parameter t , then if  N  is relatively parallel, the curve 
with displacement vector N+α  has velocity  ( ) ( )TfvN +=+ 'α , where T  is the unit 
tangent vector field of α , v  is the speed of α  and TfN =' . Thus the segment between the 
two curves are perpendicular to both. Whether or not this segment is locally a segment of 
minimum length between the two curves depends on the curvature and the length of N . It 
is easily verified that the segment local minimizes length if N  is short enough. Conversely, 
a curve which runs at constant distance from α  must be given by N+α , where N  is 
relatively parallel.  
 
A single normal vector field 0N  at a point )( 0tα  generates a unique relatively parallel field 
N  such that 00 )( NtN = . The uniqueness is trivial: the difference of two relatively parallel 
fields is obviously relatively parallel, so if two such coincide at one point, their difference 
has constant length 0 . To show existence one takes auxiliary adapted frames; the Frenet 
frame would do if it exists, but we want existence even for degenerate curves, that is, those 
which have curvature vanishing at some points. Such frames can be constructed locally by 
appling the Gram-Schmidt process to T  and two parallel fields.  
 
Theorem 3.1. Let α  be a timelike curve. If { }21 ,, NNT  is an adapted frame, then the 
derivatives of the frame with respect to the curve parameter are as the following:  
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Proof. We can write  
                                                      20210100' NNTT ρρρ ++=                                           (3.1) 
for some the functions 0100 ,ρρ   and 02ρ . From equation (3.1), we find  
 

.,'

,,'

,0,'

202

101

00

L

L

L

NT

NT

TT

=

=

==−

ρ

ρ

ρ

 

So we get 
..0' 202101 NNTT ρρ ++=  

Similarly, we can write 
21211110

'
1 NNTN ρρρ ++=  

and 
22212120

'
2 NNTN ρρρ ++= , 

where 
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and 
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Thus we get 
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or shortly, 
XKX =' . 

Moreover K  is semi skew-matrix for satisyfing εε KK T −= , where ε  is a diagonal 
matrix whose components are 1,1 and -1.Now we find the condition for a normal field of 
constant length L  to be relatively parallel. There is a smooth function θ  such that  

[ ]θθ sincos 21 NNLN += . 
Differentiating, we have 

( )( ) ( )[ ].sincoscossin 02012112
'' TNNLN θρθρθθρθ +++−+=  

From this we see that N  is relatively parallel iff 12
' ρθ −=  . 

Since there is a solution for θ  satisfying any initial condition, this shows that local 
relatively parallel normal fields exist. To get global existence we can patch together local 
ones, which exist on a covering by intervals. Smoothness at the points where they link 
together is a consequence of the uniqueness part. We define a tangential field to be 
relatively parallel if it is a constant multiple of the unit tangent field T . An arbitrary field is 
relatively parallel if its tangential and normal components are reletively parallel. We spell 
out the complete hypotheses for the existence and uniqueness of this fields as follows.  
 
Theorem 3.2. Let α  be a kC  timelike curve in Minkowski 3-space which is regular, that 
is, the velocity never vanishes ( )2≥k . Then for any vector 0X  at )( 0tα  there is a unique 

1−kC  relatively parallel field X  along α such that 00 )( XtX =  and the scalar product of two 
relatively parallel fields are constant.  
 
Proof. To prove that the scalar product 

L
YX ,  of two relatively parallel fields YX ,  is 

constant, we observe that it is trivial for tangential ones and may be verified for the 
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tangential and normal parts separately. Thus we assume X  and Y  are normal, with 
derivatives fT  and gT . Then the derivative of 

L
YX ,  is  

,0
0.0.

,,

,,

',,',

=
+=

+=

+=

+=

gf

TXgYTf

gTXYfT

YXYXYX
dt
d

LL

LL

LLL

 

as desired. Thus, 
L

YX ,  is constant. 
 
3.2. Special Adapted Frames. It should be clear that the relatively parallel fields on a 2C  
regular curve form a 3-dimensional vector space over R with distinguished subspaces 
consisting of an oriented 1-dimensional tangential part and a 2-dimensional normal part, 
and there is a Lorentzian scalar product inherited from the pointwise scalar product on the 
ambient semi-Euclidean space.We call an semi-orthonormal basis of this vector space 
which fits the two subspaces a relatively parallel adapted frame or RPAF. If we assume that 
the ambient semi-Euclidean space has a preferred orientation, then so does the normal 
space of the timelike curve, and we may refer to a properly oriented RPAF. The totality of 
RPAF’S are in the form of two lorentzian circles,one in each orientation class, since they 
can be parametrized by the 2-dimensional semi-orthogonal group, according to the 
following obvious result.  
 
Theorem 3.3. If { }21 ,, NNT  is a relatively paralel adapted frame, then the totality RPAF’s 
consists of frames the form { }2121 ,, dNcNbNaNT ++ , where 









dc
ba

 

runs through semi-orthogonal matrices having constant entries. 
 
Now if { }21 ,, NNT  is a RPAF, denoting derivatives with respect to arc length by a dot, we 
have 

                                                  .
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                                           (3.2) 

This shows that we accomplished our original goal of showing that there are other adapted 
frames which have only two nonzero entires in their Cartan matrices. In fact, given one 
such RPAF, Theorem 3.3 tells us that possible Cartan matrices for  RPAF’s are 
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K  

where ∗  denotes an entry which can be determined by using semi skew-symmetry. The 
Frenet frame has semi-Cartan matrix 

















− 00
0

00

τ
τκ

κ
, 

and is unique once the orientation of the ambient space and a convention on the sign of the 
torsion τ  have been chosen. The only other possibility for a semi-Cartan matrix with one 
entry vanishing would be  
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It is simple to relate the entries of the various semi-Cartan matrices. Indeed, 
.2

2
2

12211 kkNkNkT
LL

+=+== •κ  

Writing the principal normal as 

                               ,sincos 2
2

1
1

21 NkNkNNN 





+






=+=

κκ
θθ                                   (3.3) 

and differentiating we obtain 
( ).cossin 21 θθθκτκ NNTBTN +−+=+= ••  

If { }21 ,, NNT  is properly oriented, we conclude that θθ cossin 21 NNB +−=  and hence 
τθ =• .Thus κ  and an indefinite integral ∫ dss)(τ  are polar coordinates for  the curve 

( )21 , kk . 
 
4. THE NORMAL DEVELOPMENT OF A TIMELIKE CURVE 
 
We want to view ( )21 , kk  as a sort of invariant of the timelike curve α . This slightly more 
difficult to conceive than in a the case of ( )τκ , , since the RPAF is not unique. However, 
we have spelled out what degree of freedom there is Theorem 3.3: ( )21 , kk  is determined up 
to a semi-orthogonal transformation in the non oriented case and up to a semi-rotation 
about the origin in the oriented case. Thus we must think of ( )21 , kk  as a parametrized (by 
an arc-length parameter for α  ) continuous timelike curve in a centro semi-Euclidean 
plane, that is, a semi-Euclidean plane having a distinguished point. When conceived of in 
this way we call α  the normal development of timelike curve α . This situation is not 
really so different from the case of the Frenet invariants ( )τκ , , because in the non oriented 
case ( )τκ ,  and the Frenet frame are determined only up to an action by the two-element 
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group, with the non identity changing the sign of  τ  andκ . That is, ( )τκ ,  cannot be 
distinguished from ( )τκ −, . The standart facts about the relation between ( )τκ ,  and the 
timelike the curve α  as an object of semi-Euclidean geometry correspond to similar facts 
about ( )21 , kk  and α . The proofs are identical with the Frenet case, and in fact are partly 
given in unified form in (O’NEILL 1996) .  
 
Theorem 4.1. Two 2C  regular timelike curves in semi-Euclidean space are congurent if 
and only if they have the same normal development. For any parametrised continous curve 
in a centro semi-Euclidean plane there is a 2C  regular curve in semi - Euclidean space 
having the given curve as its normal development.i.e. Two curves are congruent iff they 
have the same arc-length parametrisation of their curvature and torsion.  
The modifications for the oriented case are clear: make both the semi-Euclidean space and 
the centro semi-Euclidean plane be oriented and congurences be proper.  
 
Theorem 4.2. Let α  be a 2C  regular timelike curve. Then the curve α  lies on a 
Lorentzian sphere of radius r  and center p  iff its normal development lies on a line not 
through the origin. The distance of this line from the origin and the radius of the Lorentzian 
sphere are reciprocals.  
 
Proof. :⇒ If α  lies on a Lorentzian sphere with center p  and radius r , then  

., 2rpp
L
=−− αα                        (4.1) 

Differentiating with respect to arc length gives 
0, =−

L
pT α .                       (4.2) 

 
so 

21 gNfNp +=−α                        (4.3) 
 
for some functions gf , . From equation (4.3), we get 
                                                

LL
NpgNpf 21 ,,, −=−= αα                    (4.4) 

Derivating equation (4.4), we have 
( )

.0

,0

,,

,

1

11

1

=

−+=

−+=

−=
•

••

L

LL

L

Tkp

NpNT

Npf

α

α

α

 

This means that .tan tconsf =  
Similarly, g  is constant. Then differentiating equation (4.2) and by using theorem 3.2, we 
get 
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.01

01,,

01,

0,,

0,
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2211

2211

=−+

=−−+−

=−−+

=+−

=−
•

gkfk

pNkpNk

pNkNk

TTpT

pT

LL

L

LL

L

αα

α

α

α

 

 
That is, ( )21 , kk  is on the line 

          .01=−+ gyfx                                              (4.5) 
 
Moreover, distance of line l  from the origin is 

.11
222 d

rgf
==

+
 

:⇐ Conversely, suppose that ,01 =−+ gyfx  where f  and g  are constant. Let  

,21 gNfNp +=
→

α  then 

[ ]

,0
.0
1 21

21

21

=
=

++−=
++−=
++−=− ••••

T
Tgkfk
TgkTfkT

gNfNp α

 

so p  is constant. Moreover, let 

,, 2
2

rppp
L

L

=−−=
→

ααα  

then 
( ) 0,2, =−=−− •

LL
pTpp ααα  

is obtained. Therefore 
.constant, 22 ==−−= rppp

LL
ααα  

So timelike curve α  lies on a Lorentzian sphere of radius r  and center p . 
 
Definition 4.1. If a rigid body moves along a timelike curve α  which we suppose that the 
curve is unit speed, then the motion of body consists of translation along timelike curve α  
and about the rotation timelike curve α .The rotation is determined by an angular velocity 
vector ϖ  which satifies  

.,, 2211 NNNNTT LLL ∧=∧=∧= ••• ϖϖϖ  
The vector ϖ  is called the Darboux vector. 
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Theorem 4.3. Let ϖ  be the Darboux vector of the curve α  , 3
1: RI →α  with  curvatures 

{ }21 , kk  and W be the matrix which corresponds to ϖ .Then the following hold:  

2112 NkNk +−=ϖ  
and 

 .
00
00

0

2

1

21
















=

k
k

kk
W  

 
Proof. First of all let us find the Darboux vector ϖ . Then we write 

       21 cNbNaT ++=ϖ                       (4.6) 
and take cross products with 1, NT  and 2N  to determine ba,  and c . So we get 

( )
( ) ( )

212211

21

21

bNcNNkNk
NTcNTb

cNbNaTTTT

LL

LL

−=+
∧−∧−=

++∧−=∧=• ϖ
 

then  1kc =  and 2kb −= .Similarly,  
( )

( ) ( )
,0,21

211

21111

=+=
∧−∧−=

++∧−=∧=•

aaNcTTk
NNcTNa

cNbNaTNNN

LL

LLϖ
 

and 
( )

( ) ( )
., 212

122

21222

kbaNbTTk
NNbTNa

cNbNaTNNN

LL

LL

−=+−=
∧−∧−=

++∧−=∧=• ϖ
 

Thus we can write the Darboux vector as follows, 
( ){ }.,,0

21 ,,122112 NNTkkNkNk −=+−=ϖ  
Moreover we get 

.
00
00

0

2

1

21
















=

k
k

kk
W  

 
Theorem 4.4. If T  is tangent vector of a regular timelike curve α , then the following 
formulas hold: 
a)  ( ) 0, 11212

2 ≠−−−=∧ ••••• kTkkkkTT L ϖκ  
b)  ( ) ••••• −= 1212,,det kkkkTTT  

c)   ( ) ,,,det
2 τθ or

TT

TTT

LL

•

•••

•••

=
∧

 

where ϖ  is the Darboux vector of the timelike curve α . 
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Proof. (a) We can write 

,,

,,
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•••

•••
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since 
( ) ( )

( )
.2211

2
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2
2

2
1

22112211

NkNk

NkNkTkk
TkkTkkNkNkT

••

••

••••
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+++=

+++=
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From definition of the Darboux vector ϖ , we write 
TT L∧=• ϖ . 

So we get 
( )

( ) .

,,

,

,,

2112
2
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2

2112
2

2112
2

Tkkkk

TkkTkk

TNTkTNTk
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••
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••
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∧∧−=∧
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ϖκ
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(b) From the last equality we can write 
( )

LLL TTkkkkTTT ,, 2112
2 ••••• −−−=∧ ϖκ  

and then we get 
( ) ( )

( )( )
.

1,

,,,,det

1221

21122112
2

2112
2

••

••

•••••

−=

−−++−−=

−+−=

kkkk

kkkkTNkNk

TTkkkkTTTT

L

LL

κ

ϖκ

 

(c) From the equality TT L∧=• ϖ , we can write the vector ( )•∧ TT L  as the 
following : 

( )

.
.0

,,

ϖ
ϖ

ϖϖ
ϖ

=
+=

+−=

∧∧=∧ •

T

TTTT
TTTT

LL

LLL

 

And then if we take the norm of the equality ϖ=∧ •TT L , we find 

.2
2

2
1

2
kkTT

LL +=∧ •  

From equality (3.3), we immediately see that 
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1
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k
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=θ                                   (4.7) 

or 

.arctan
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Differentiating from equality (4.7), we find 
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Thus we have 
( ) .,,det

2 τθ or
TT

TTT
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=
∧

=
•••

•••
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