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Abstract  

 

It is shown that the temperature dependence of the heat capacity of the magnetic solids can 

completely be described by a sequence of universal power functions of temperature. Characteristic 

for universality is that each power function holds over a finite temperature range and has a rational 

exponent. The analytical change from one to the adjacent power function is a typical crossover 

event. Universality reveals that the temperature dependence of the heat capacity is determined by 

a boson field whereas the absolute values are given by all magnetic and non-magnetic inter-atomic 

interactions. Universality for temperatures outside the critical range at Tc, i.e. for temperatures for 

which the phonons dominate the heat capacity has to be characterized as non-intrinsic, arising from 

interactions of the phonons with the bosons of the continuous magnetic medium. As we have 

shown earlier, the bosons of the continuous magnetic solid are essentially magnetic dipole 

radiation generated via stimulated emission by the precessing spins. We have called them 

Goldstone bosons. The interactions of the Goldstone bosons with the magnons modify the wave-

vector dependence of the magnons. For cubic crystals the dispersions along [ζ, 0, 0] direction are 

essentially as for the linear spin chain, i.e. one-dimensional. As the different rational exponent 

values in the temperature power function of the heat capacity show, there exists a number of 

distinct modes of interaction between the Goldstone boson field and the phonons. The actual 

exponent depends additionally on the proportion between the magnetic and the non-magnetic 

energy contributions and therefore changes with temperature. The observed exponents are, 

however, difficult to interpret. 
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1. Introduction     
     As is well-known, the magnetic ordering 

transition gives rise to a peak in the heat capacity. 

Since development of the Renormalization Group 

(RG) theory [1] we know that the critical magnetic 

dynamics is the dynamics of a boson field. At the 

critical temperature the boson field orders. As a 

consequence, the peak in the heat capacity has to 

be attributed to the boson field. Ordering of the 

spin system is a consequence of the ordering of the 

boson field.  

    The bosons are the excitations of the continuous 

magnetic solid. We have called them Goldstone 

bosons [2]. Experimental evidenced could be 

obtained that the Goldstone bosons are essentially 

magnetic dipole radiation, generated by the 

rotating transverse components of the precessing 

spins [3]. From the identical critical behavior of 

ferromagnets and of antiferromagnets it 

immediately follows that the exchange 

interactions between the spins are of no 

importance for the critical magnetic dynamics [4]. 

This means, all thermal energy is in the boson field 

and not in the system of the interacting spins. As a 

consequence, the magnetic ordering transition is 

not driven by the exchange interactions between 

the spins but by the boson field. According to the 

symmetry selection principle of relevance of the 

RG-theory, either the bosons with continuous 

translational symmetry or the magnons with 

discrete and periodic translational symmetry can 

host the thermal energy and thus determine the 

dynamics.  

    Condition for a definite symmetry classification 

is that the thermal energy can change between the 

two systems. This requires a finite interaction 



  
148 / Vol. 23 (No. 3)  Int. Centre for Applied Thermodynamics (ICAT) 

between them. The transfer of the thermal energy 

from the system of the interacting spins to the 

boson field occurs at the crossover from the Curie-

Weiss susceptibility to the critical susceptibility 

[5].  

    Universality of the critical behavior results from 

the fact that the bosons propagate ballistic, that is, 

independent of all microscopic details such as the 

spin structure and largely also the lattice structure. 

In fact, universality is the thermodynamic 

behavior of a boson field. Since integer and half-

integer spins precess somewhat different, the 

generated boson fields are correspondingly 

different [6,7]. As a consequence, the critical 

exponents of the boson-driven ordering transition 

are different for magnets with an integer and with 

a half-integer spin [7] and differ distinctly from the 

predictions of the atomistic models [8]. For 

instance, mean field critical behavior is specific to 

the magnets with a half-integer spin and a three-

dimensional boson field [5-7]. A realistic field 

theory of the critical magnetic behavior, 

conforming to these experimental findings is, 

however, missing [9]. 

    Typical for the ordered boson field are domains 

[7]. The ordered bosons are in coherent states, and 

propagate no longer isotropic in space but along 

the few domain axes only. In this way the spatially 

isotropic symmetry of the disordered boson field 

gets broken upon crossing the magnetic ordering 

transition. Essential for the broken symmetry and 

for the perfect one-dimensional boson field within 

each magnetic domain is that the bosons get 

generated by stimulated emission [3,7]. The one-

dimensional boson field within each domain 

resembles the radiation field of a LASER. The 

magnetic ordering transition can be compared with 

the threshold for the onset of stimulated emission 

of a LASER.  

    Due to a finite interaction between the ordered 

boson field and the spins, the spin system gets 

ordered. The one-dimensional boson field within 

each domain aligns all spins rigidly collinear to its 

axis, in spite of ubiquitous local exchange 

anisotropies that are, as all microscopic 

interactions, not relevant for the dynamics. Only 

the local spin order, either parallel or antiparallel, 

is determined by the exchange interactions 

between the spins, but this microscopic detail has 

no effect on the boson field. In other words, the 

functionality of bosons and magnons is clearly 

distinguished. Moreover, the coherence of the 

boson field stabilizes a perfect long-range 

magnetic order over a distance given by the 

coherence length of the bosons that corresponds to 

the linear dimension of the domains. Note that 

magnons are the local excitations of the discrete 

atomic lattice, and provide no evidence of a 

coherent long-range order [7]. Since magnons 

occur above the magnetic ordering temperature as 

well [7], they are indicative of a short-range order 

only.     

    In the magnets with a pure spin moment, such 

as in tetragonal MnF2, the collinear and coherent 

spin order is much stronger stabilized than it can 

be expected if the nearly isotropic exchange 

interactions [10] would be the relevant excitations. 

For magnets with a pure spin moment, i.e. with a 

g-factor of g≈2, the spin-flop field [11] and the 

magnon gap [10] provide a measure of the boson-

stabilized collinear spin order [6]. For T→Tc the 

spin order gets unstable and the gap tends to zero.  

For MnF2 with an axial lattice structure, and only 

one-domain type along symmetry axis, the 

stabilized one-dimensional spin structure lets the 

longitudinal susceptibility (along the tetragonal 

axis) tend to zero for T→0 [12,13]. Note that in the 

framework of the atomistic models, χ→0 for T→0 

can be explained by a very strong axial single-

particle anisotropy only, which is absent in the 

magnets with pure spin magnetism [6,13]. It is the 

one-dimensional boson field of the single domain 

material MnF2 that provides the ordered spin 

system with a large axial anisotropy, thus giving 

rise to a surprisingly large magnon gap of 1.06 

meV [10] and a spin-flop field of 120 kOe [11]. 

MnF2 therefore provides the opportunity to study 

the properties of the isolated magnetic domain. 

    The boson-magnon interaction does not only 

generate a magnon gap, it modifies the wave-

vector dependence of the magnon excitation 

spectra for all q-values [6,7,14]. Since magnon 

propagation is restricted to the volume of the 

individual domain, within which the spin 

alignment is perfectly one-dimensional, the 

magnon dispersion is essentially as for the linear 

spin chain [7,14]. Only the absolute magnon 

energies are given by the microscopic interactions 

between the spins. Since the wave-vector 

dependence of the magnons is determined by the 

Goldstone bosons, it can be understood that the 

spin dynamics is also determined by the Goldstone 

bosons, and that the spontaneous magnetization 

follows universal power functions of temperature 

with rational exponents that are defined by the 

Goldstone boson field [6,7].      

    However, the linear chain dispersion of the 

magnons pertains to the individual domain and is 
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not typical for the dimensionality of the global 

boson field. A two-dimensional or three-

dimensional global boson field results by some 

dynamic coupling of the one-dimensional boson 

fields of the differently oriented magnetic domains 

[15]. The dimensionality of the global boson field 

can be recognized from the number of in-

equivalent domain orientations, provided there is a 

finite dynamic coupling between the domains, 

which is, however, not always given [15]. The 

inter-domain coupling is different for magnets 

with an integer and with a half-integer spin, and 

determines the dimensionality of the global boson 

field and, therefore, the observed critical 

exponents [6,7]. The one-dimensional boson field 

within each domain remains essentially 

unchanged, and is responsible for the collinear 

spin order but not for the dynamics. Note that this 

definition of the dimensionality of ordered 

magnets refers to the domain configuration, and to 

the resulting dynamics of the global boson field 

and is completely different from the classification 

of the atomistic models that do not consider 

magnetic domains, and distinguish between the 

dimensionality of the spin and between an 

idealized, mostly not perfect realized 

dimensionality of the exchange interactions [8,16]. 

The only condition for boson dynamics is that the 

dimensionality of the spin must be three, in order 

that the spins are able to precess and can generate 

field quanta. Ising spins, for instance, do not 

precess and therefore are unable to generate 

Goldstone bosons. As a consequence, in Ising 

magnets the boson field gets not populated with 

field quanta, and the dynamics is determined by 

the atomistic exchange interactions instead by a 

boson field [3]. However, true Ising magnets are 

extremely rare. Only for the two known, real 2d-

Ising magnets, K2CoF4 and Rb2CoF4, it could be 

evidenced experimentally that the spontaneous 

(sublattice)magnetization is perfectly described by 

Onsager´s exact solution of the 2d-Ising 

Hamiltonian [17-19]. Note that the conventional 

classification by the term 2d-Ising model means 

two-dimensional exchange interactions and a one-

dimensional spin.  

    Characteristic for the magnetic order due to 

exchange interactions, is the absence of domains 

[19]. Connected with this fact is that the collinear 

spin order is not well stabilized. The magnetic 

ordering transition is a less sharp event [20]. For 

the two 2d-Ising magnets K2CoF4, Rb2CoF4, the 

susceptibility along the axis of the ordered Ising 

spins is finite for T→0 [20]. For all other magnets 

with precessing three-dimensional spins, the 

generated boson field is the relevant excitation 

system and defines the universal dynamics. As a 

consequence, the Heisenberg model is not realized 

in nature [8]. The presence of domains provides 

another clear evidence for boson dynamics.  

    Boson dynamics reveals furthermore from the 

finite width of the critical range and from the 

rational values of the critical exponents α (heat 

capacity), β (spontaneous magnetization), γ 

(susceptibility), ν (inverse correlation length), etc. 

[7]. Note that the critical power functions 

calculated by the atomistic models on the basis of 

Hamiltonians, hold asymptotically at the critical 

temperature only, and have exponents that are not 

necessarily rational numbers [8,17]. Moreover, the 

actual, the boson driven ordering transition is at a 

lower temperature compared to the hypothetical 

exchange driven ordering transition as it would be 

determined by the absolute magnitude of the 

magnon energies [5]. For the ferromagnets, the 

ordering transition gets decreased from the Curie-

Weiss temperature Θ to the actual ordering 

temperature, TC, upon crossover from atomistic 

dynamics to boson dynamics that occurs at the 

crossover from Curie-Weiss susceptibility to 

critical susceptibility [5].     

    It is, however, not possible to conclude from the 

critical exponent α, observed in the heat capacity 

at Tc, on the dimensionality of the global boson 

field. This is essentially because the heat capacity 

is an integral quantity and includes magnetic and 

non-magnetic contributions that are not 

independent of each other but interact 

significantly. Only the critical exponents of the 

spontaneous (sublattice)magnetization and of the 

(staggered) susceptibility are intrinsically 

magnetic and are characteristic for the 

dimensionality of the global boson field [15]. As 

will be shown in this communication, the 

interaction of the Goldstone bosons with the non-

magnetic degrees of freedom of the phonons 

affects the critical behavior of the heat capacity 

and, as a consequence, modifies the critical 

exponent α. The effective interaction between the 

magnetic and the elastic degrees of freedom 

depends not only on the coupling strength between 

bosons and phonons but additionally on how 

strong the phonons are thermally exited. An 

approximate measure of how strong the phonons 

are excited at the critical temperature Tc is given 

by the expression Tc/ΘD with ΘD as Debye 

temperature. This quantity is certainly not 

quantized and cannot be the reason for the 



  
150 / Vol. 23 (No. 3)  Int. Centre for Applied Thermodynamics (ICAT) 

observed discrete and rational values of α. 

Additionally, the coupling strength between 

bosons and phonons will be different for different 

materials. The observed rational critical exponents 

α therefore vary over a wide range. However, the 

general observation of universality illustrates the 

dominant role of the bosons for the dynamics of 

the coupled system of the elastic and magnetic 

degrees of freedom.  

    Due to the finite boson-phonon interaction is a 

quantitative separation into magnetic and non-

magnetic heat capacity contributions at Tc not 

possible, and, fortunately, not necessary because 

the Goldstone bosons govern the temperature 

dependence of the total heat capacity. In other 

words, in contrast to the common practice in the 

earlier analyses of the critical heat capacity data, 

the magnetic and the non-magnetic heat capacity 

contributions do not superimpose linearly [21-24]. 

The observed heat capacity is not given by a sum 

of different functions of temperature but by a 

sequence of sectionally different universal power 

functions of temperature. Only for non-interacting 

systems, the heat capacities superimpose. This, 

however, is observed in the metallic solids only. 

As is well-known, the heat capacity of the Debye 

bosons (~T3) and the heat capacity of the bosons 

of the continuous metallic solid (~T) superimpose 

at very low temperatures [25]. Since the bosons of 

the continuous metallic solid do nearly not interact 

with the elastic degrees of freedom, they have a 

large mean free path [26]. This is different for the 

Debye bosons that interact with the phonons 

[26,27].  

    The conceptual shortcomings of the 

conventional data analyses of the critical heat 

capacity had severe consequences on the fitted 

values for the critical exponent α and on their 

interpretation. In particular, data analysis was 

made under the premise that the heat capacity is 

finite at Tc, and that the critical exponents α are 

identical above and below Tc [8], in alleged 

agreement with the atomistic models. The here 

presented analyses of published heat capacity data 

demonstrate the inadequacy of the atomistic 

models, and result in dramatically different values 

for the critical exponent α.  

    Interactions of the magnetic system with the 

elastic degrees of freedom are well-known from 

the phenomenon of magnetostriction [6,28,29]. In 

the thermal lattice parameter variation due to 

spontaneous magnetostriction, universal power 

functions of absolute temperature with rational 

exponents can also be identified [6]. Commonly, 

the spontaneous magnetostriction is weak above 

the magnetic ordering temperature but strong 

below the magnetic ordering temperature, i.e. not 

symmetric with respect to the ordering 

temperature [6]. This corresponds to the different 

critical exponents α above and below Tc. As the 

discrete values of the critical exponent α show, 

there are only well-distinguished modes of 

interaction between the Goldstone bosons and the 

phonons. The boson-phonon interaction therefore 

can be considered as quantized. It is evident that 

the assumed contribution of the phonons to the 

total heat capacity is a continuous and steadily 

increasing function of temperature. Nevertheless, 

the boson-controlled total heat capacity reacts in 

discrete steps on the continuous variations of the 

non-magnetic (and non-relevant) background. As 

we know from RG-theory, when non-relevant 

energy degrees of freedom have increased beyond 

some threshold, they can induce an analytical 

crossover event in the temperature dependence of 

the relevant system. This crossover can be either a 

sudden change in the pre-factor of the universal 

power function (amplitude crossover) [5] or in 

both, the pre-factor and the exponent [6]. Each 

crossover is additionally associated with a change 

of the absolute constant. Note that only the 

asymptotic “critical” power function for T→0 

includes no absolute constant.  

    As a consequence of the increasing importance 

of the phonons as a function of an increasing 

temperature, consecutive crossover events can be 

induced in the temperature dependence of the total 

heat capacity. The observed universality in 

temperature regions with a phonon dominated heat 

capacity has to be characterized as non-intrinsic, 

arising from the interactions of the phonons with 

the Goldstone bosons. The fact that universality is 

observed far above Tc proves that the Goldstone 

bosons can dominate the temperature dependence 

of the heat capacity also when they have no heat 

capacity. No heat capacity means that the 

dispersion relation is thermally not populated. This 

is as for the disordered Debye boson field in the 

non-magnetic solids [27]. The dispersion relation 

of the Debye bosons is populated thermally only 

up to ~10…30 K. Nevertheless, the Debye bosons 

provide the heat capacity of the phonons with 

universal power functions of temperature up to the 

Dulong-Petit (D-P) limit [27].  

    In the critical range near Tc, the universal power 

functions in the heat capacity are functions of |T-

Tc|, outside the critical range they are functions of 

absolute temperature. The universal power 
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functions of absolute temperature show that T=0 is 

a critical temperature, completely equivalent to a 

finite ordering temperature. Moreover, since 

outside the critical range at Tc only power 

functions of absolute temperature occur, T=0 is the 

only other critical temperature in addition to the 

finite magnetic ordering temperature. The 

universal power functions of absolute temperature 

have to be ascribed to the boson field with the 

critical temperature of T=0. This boson field 

defines the temperature dependence of the heat 

capacity for all temperatures, except for the rather 

narrow critical range. On the high- and low-

temperature side of Tc the critical range is limited 

by the analytical crossover events from the power 

functions of the argument |T-Tc| to the power 

functions of absolute temperature. In other words, 

the boson field with the critical temperature T=Tc 

is the relevant excitation system over a relatively 

narrow temperature range only.  

    Note that boson fields with a critical 

temperature of Tc=0 are not ordered. This applies 

to the Debye boson field (sound waves). 

Nevertheless, the heat capacity of the Debye boson 

field shows universality for T→0 and is given for 

all solids by the famous T3 function that holds over 

a finite temperature range, commonly up to 

T=10…30 K. At this temperature, thermal energy 

gets transferred to the phonon system [30]. This 

crossover marks the width of the critical range at 

T=0. Essential for the occurrence of the same T3 

function in solids with different lattice structures is 

that there are no domains in the disordered Debye 

boson field. In this respect the disordered Debye 

boson field can be considered as isotropic. Note, 

that the dimensionality of the ordered Goldstone 

boson field and therefore the universal exponents, 

depend on the domain configuration which is 

coupled to the lattice structure. In axial crystals, 

commonly only one domain type along the 

symmetry axis occurs. The global Goldstone 

boson field then is that of the isolated domain, i.e. 

one-dimensional. In cubic crystals, the global 

Goldstone boson field is three-dimensional, 

provided the magnetic domains along x-, y- and z-

axis are coupled dynamically [15]. Since the 

domain configuration of the non-cubic materials is 

not very stable and can depend on the strain in the 

sample, the universality classes, and therefore the 

critical exponents, can be meta-stable [6]. 

Metastability of the domain configuration is well-

known from the ferromagnets that can be 

transformed into the mono-domain state by the 

application of the moderate demagnetization field 

[32]. In a similar way can the mosaic structure of 

the non-magnetic, axial crystals easily be 

manipulated by the application of moderate 

pressure [31]. 

    It belongs to the important issues of RG theory 

that in the vicinity of a critical temperature, either 

T=0 or a finite ordering temperature, the dynamics 

is exclusively due to bosons, i.e. universal. In the 

temperature range of the “critical” T3 function of 

the Debye boson field, the atomistic phonons are 

not relevant and do not contribute at all to the heat 

capacity [14,27]. The dispersion of the phonons is 

thermally not populated. This is as for the 

exchange interactions between the spins, that are 

completely excluded from the critical 

paramagnetic dynamics above the magnetic 

ordering temperature (and for all lower 

temperatures as well) [5-7]. Exclusion of the 

exchange interactions is the basis of the 

universality of the critical magnetic behavior. 

Only for temperatures beyond the crossover from 

the critical paramagnetic susceptibility to the 

Curie-Weiss susceptibility, the atomistic exchange 

interactions are the relevant excitations [5].  

    Non-relevance of the Debye bosons for 

temperatures of higher than ~20 K means that the 

dispersion relation of the Debye bosons is no 

longer thermally populated [26,27,30]. The 

thermal energy now is in the system of the 

vibrating atoms (phonons). The absolute values of 

the heat capacity then are given by the total 

number of the atomic degrees of freedom and by 

the inter-atomic interaction strengths. 

Nevertheless, as we have shown recently, the 

temperature dependence of the heat capacity of the 

non-magnetic solids is determined for all 

temperatures by the Debye bosons that furnish the 

heat capacity of the lattice(!) with non-intrinsic 

universal power functions of absolute temperature 

up to the Dulong-Petit (D-P) limit [27].  

    A boson-controlled temperature dependence of 

the heat capacity of the phonons requires a finite 

interaction between bosons and phonons. This 

interaction modifies the dispersion relations of 

both systems: the dispersion of the Debye bosons 

becomes a weaker than linear function of wave-

vector and the wave-vector dependence of the 

phonon dispersions gets composed of two 

analytically different sections [14,27,30]. For low 

q-values the dispersion of the acoustic phonons 

agrees over a finite q-range with the linear 

dispersion of the Debye bosons [27,30]. Identical 

dispersions of Debye bosons and phonons means 

that the two dispersion relations have attracted 
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each other. This is usually the case when there is 

an interaction between excitations with different 

(translational) symmetries. Crossing then is 

forbidden. For larger q-values an analytical 

crossover to a sine function of wave vector occurs 

in the dispersion of the acoustic phonons along the 

[1 0 0] direction [27,30]. Since the sine function is 

the dispersion of the linear atomic chain it is 

suggestive to assume that the generation of the 

Debye bosons is, as the generation of the 

Goldstone bosons, by stimulated emission. 

However, nothing is known about the spontaneous 

generation (or absorption) of Debye bosons by 

individual atoms.  

    As a consequence, in contrast to the atomistic 

models [33], the phonon dispersion relations 

cannot be understood neglecting the interaction 

with the Debye bosons. This interaction is active 

for all thermal energies, also for those for which 

the dispersion relation of the Debye bosons is 

thermally not populated, i.e., for temperatures of 

T>10…30 K. For these temperatures, the Debye 

bosons are physically not present and can be 

considered as virtual states. Nevertheless, Debye 

bosons (sound waves) can be excited out of 

thermal equilibrium for all temperatures, up to 

melting point. Since the Debye bosons modify the 

wave-vector dependence of the phonons it appears 

plausible that they determine the temperature 

dependence of the heat capacity of the phonons as 

well [14,27]. Quite generally, bosons seem to be 

the dominant (or relevant) excitations to determine 

the temperature dependence of the thermodynamic 

observables, also for temperatures for which the 

atomic degrees of freedom dominate the absolute 

values of the heat capacity. This will be further 

confirmed by the magnetic solids investigated 

here.  

       The interplay of the atomistic and of the 

bosonic degrees of freedom is well-known for the 

magnetic solids: the absolute values of the 

spontaneous magnetization are given by the 

atomic magnetic moments but the dynamics, for 

instance, the temperature dependence of the 

spontaneous magnetization is determined by the 

Goldstone boson field and exhibits universal 

power functions of temperature [5-7]. In 

particular, the thermal decrease of the spontaneous 

magnetization with respect to T=0 is given by the 

heat capacity of the Goldstone boson field at T=0. 

A spin dynamics that is controlled by the 

Goldstone bosons requires a finite boson-magnon 

interaction. This interaction has a similar effect as 

the Debye boson-phonon interaction in the non-

magnetic solids, in that the dispersion of the 

magnons assumes essentially the dispersion of the 

linear spin chain [7,14]. Note that according to 

spin wave theory, the linear spin chain is not 

ordered at any finite temperature [34]. This proves 

again the inapplicability of the spin-wave theory 

that restricts on the exchange interactions and 

neglects the energy degrees of freedom of the 

continuous magnetic solid. As for the acoustic 

phonons [14,27], the dispersion of the magnons 

cannot be understood on the basis of the atomistic 

interactions [7]. On the other hand, non-relevance 

of the atomistic interactions is condition for 

universality. 

    Since the heat capacity is an integral quantity, 

all energy degrees of freedom contribute 

potentially to the absolute value of the heat 

capacity. In the magnetic solids, this are the Debye 

bosons, the Goldstone bosons, the phonons and the 

magnons. In the metallic magnets, the heat 

capacity of the bosons of the continuous metallic 

solid has to be considered additionally [25,26]. 

The decisive difference to the conventional, 

exclusively atomistic point of view is, that one has 

to distinguish between the different translational 

symmetries of the different sub-systems and the 

effects due to their interactions. As a consequence 

of these interactions, thermal energy can change 

between the different sub-systems, and can 

concentrate in one sub-system. The total heat 

capacity therefore is not given by a linear 

superposition of all individual heat capacity 

contributions, assuming that all dispersion 

relations are thermally populated according to the 

Boltzmann factor. For T→0 thermal energy is 

exclusively in a boson field and not in an atomistic 

sub-system. Sufficiently strong but non-relevant 

atomistic sub-systems can increase the pre-factor 

of the universal power function of the heat 

capacity of the relevant boson field but they do not 

change the universal exponent [6,27]. On the other 

hand, at sufficiently high temperatures, thermal 

energy changes to the atomistic excitation systems 

because these systems have the lower dispersion 

energy. Nevertheless, because of the finite 

interactions between bosons and atomistic 

systems, the temperature dependence of the heat 

capacity assumes for all temperatures universality 

furnished from bosons.  

    It is evident that the heat capacity peak at the 

magnetic ordering temperature is dominated by the 

Goldstone bosons. Outside the critical range at Tc, 

the absolute values of the heat capacity are 

determined essentially by the non-magnetic inter-
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atomic interactions (phonons). According to the 

atomistic models of the lattice dynamics [33], 

these heat capacity values should be material 

specific throughout and should not exhibit 

universality. This, however, applies to the absolute 

heat capacity values only and not to the 

temperature dependence. On the other hand, it is 

very comfortable that in spite of complicated inter-

atomic interactions and of complicated but 

quantized boson-phonon interactions, the 

temperature dependence of the observed heat 

capacity exhibits universality, though a non-

intrinsic universality, irrespective of whether the 

bosons or the phonons give the dominant 

contribution to the heat capacity. 

    Since in the non-magnetic solids the wave-

vector dependence of the phonons gets modified 

by the Debye boson-phonon interaction, it can be 

expected that, according to the principle of 

reciprocity, the dispersion relations of the Debye 

bosons get correspondingly modified [14,27,30]. 

As we have shown recently [27,30], the dispersion 

relations of the Debye bosons can easily be 

constructed for all energies up to a thermal energy 

that corresponds to the melting temperature (Tm), 

using the known temperature dependence of the 

sound velocities, calculated from the elastic 

constants [35]. Since Tm [36] is generally large 

than the Debye temperature ΘD [37] it follows that 

the dispersion energy of the Debye bosons exceeds 

the dispersion energy of the phonons by far. Only 

for thermal energies of lower than kB‧ΘD for which 

the phonons are partly excited only, the dispersion 

of the Debye bosons is a nearly linear function of 

wave-vector. When all phonons are excited, that is 

for energies of larger than kB‧ΘD, the dispersion of 

the Debye bosons becomes a power function of 

wave vector (~qx) with a rational exponent x of 

smaller than unity [27,30]. An exponent of x<1 

means a damped propagation of the Debye bosons. 

The discrete values of x show that there are a few 

distinguished modes of boson-phonon interaction 

only. In other words, approximately at kB‧ΘD an 

analytical crossover from a nearly linear 

dispersion at low energies to a power function of 

wave-vector at high-energies occurs in the 

dispersion relation of the Debye bosons [27]. 

Moreover, the dispersion of the Debye bosons 

exceeds the zone boundary. Since the sources of 

the Debye bosons are the atoms, the shortest 

possible wave-length of the Debye bosons is of the 

order of the diameter of the atoms and therefore is 

smaller than the lattice parameter. The largest 

wave-vector of the Debye bosons therefore is 

larger than the zone boundary [27,30]. 

    In the same way, we must assume that the 

dispersion relations of the Goldstone bosons get 

modified by the boson-magnon interaction, at least 

for thermal energies for which the density of states 

of the magnons is sufficiently high. Unfortunately, 

for higher excitation energies there is no 

quantitative information available as to the wave-

vector dependence of the Goldstone bosons. Note 

that mass-less bosons cannot be observed using 

inelastic neutron scattering. Only for low thermal 

energies for which magnons are weakly excited 

only, it could be evidenced experimentally that the 

dispersion relations of the Goldstone bosons, at the 

critical temperature T=0, are simple power 

functions of wave-vector with rational exponents 

that are characteristic for the dimensionality of the 

global boson field [7,38]. Additionally, the 

exponents are different for magnets with an integer 

and with a half-integer spin [7]. The energy 

densities -or heat capacities- of the boson fields 

generated by the two spin species therefore are 

different. Note that the deviation of the 

spontaneous magnetization from saturation at T=0 

is given by the heat capacity of the Goldstone 

boson field at T=0 and therefore is universal but is 

different for magnets with an integer and with a 

half-integer spin [5-7]. The spin dependence is a 

typical quantum effect associated with the fact that 

the number of states per spin is even for half-

integer spins but odd for integer spins. However, 

for the generation of magnetic dipole radiation by 

the precessing spins there is no quantitative 

theoretical description available as yet.     

    The aim of this communication is to 

demonstrate on account of quantitative but rather 

empirical analyses of published heat capacity data 

[39,40] that in the magnetic solids the temperature 

dependence of the heat capacity is determined for 

all temperatures by the Goldstone bosons in a 

similar way as it is determined by the Debye 

bosons in the non-magnetic solids [27]. In contrast 

to the non-magnetic solids, evidence for the 

necessary interactions between the Goldstone 

bosons and the magnons is available from the 

magnon dispersion relations only but not from the 

dispersion of the Goldstone bosons that are known 

for low thermal energies only, where interaction 

effects with the magnons and/or phonons are 

below the threshold to induce an analytical 

crossover to a different wave-vector dependence 

[7,38]. 
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    A general result of our analyses is that on the 

high-temperature side of the magnetic ordering 

temperature, Tc, the critical heat capacity is 

divergent. According to the here adopted sign 

convention, divergence of the heat capacity is 

expressed by a negative exponent α. Many of the 

observed α-values for T>Tc fall in the sequence 

α=0, -1/4, -2/4, -3/4, -4/4 and -5/4. Divergence of 

the heat capacity for T>Tc is indicative of weak 

boson-phonon interactions. This conforms to the 

generally weak spontaneous magnetostriction for 

T>Tc [6]. On the low-temperature side of Tc the 

critical heat capacity is finite. This is in accord 

with the rather strong spontaneous 

magnetostriction. A clearly identified sequences 

for the critical exponent α is α=1/2, 1/3, 1/4, 1/5 

and 1/6 but other exponents are observed in 

addition (see Chapter Results below). As we have 

mentioned, the interpretation of these exponents is 

difficult because too many parameters are 

involved. 

    Since for T<Tc the heat capacity is finite at Tc 

(the critical exponent α is positive according to our 

sign convention) but divergent for T>Tc, the heat 

capacity is discontinuous at Tc. This result is in 

contrast to the atomistic theories [8] and to many 

earlier heat capacity analyses that made an explicit 

subtraction of an assumed non-magnetic heat 

capacity background [21-24].  It is evident that the 

as obtained α-values depend critically on the 

assumed non-magnetic background. 

    Note that all our fit functions contain three fit 

parameters only: the critical exponent, the pre-

factor of the critical power function and an 

absolute constant. The critical temperature is fixed 

to the sharp maximum of the heat capacity. 

According to our aforementioned arguments, no 

explicit background is subtracted from the 

experimental heat capacity data. A constant 

background is automatically accounted for by the 

fitted absolute constant that includes magnetic and 

non-magnetic heat capacity contributions in an 

unclear way and, as a consequence, is difficult to 

interpret. The same applies to the fitted pre-factor 

of the critical power function. The only revealing 

fit parameter is the exponent α. However, as we 

have mentioned, the actual value of α depends in 

an unclear way on the interaction between the 

Goldstone bosons with all other degrees of 

freedom. It is, however, considered as a proof of 

consistence for our fitting procedure that, within 

the experimental error limits, the critical 

exponents α come out as rational numbers that are 

reproduced by different materials. 

    On the other hand, we have to admit that it is not 

possible to verify a diverging heat capacity 

experimentally. The problem in reliable heat 

capacity measurements very near to Tc is that for 

structurally perfect and pure single crystals, the 

heat capacity peak at Tc can be extremely sharp. 

Since heat capacity measurements require the 

application of a finite heat pulse, the experimental 

temperature resolution is limited to the 

temperature increment induced by the heat pulse. 

In fact, a diverging heat capacity at Tc can be 

rationalized by extrapolation only. This, however, 

is reasonably possible since the critical power 

functions hold over a finite distance from Tc, as it 

is well-known for the other thermodynamic 

observables such as the critical susceptibility, the 

spontaneous magnetization or the two-spin 

correlation length [5-7]. The only problem is to 

identify the upper and lower bounds of the fit range 

and to exclude all data beyond this range from the 

fit. Both limits are not very sharp and have to be 

made sure by appropriate variations of the fit rang. 

For temperatures sufficiently away from Tc the 

critical range is limited by the crossover from the 

power function of the argument |T-Tc| to a power 

function of absolute temperature. On the other 

hand, very near to Tc the limit of the fit range 

depends on the experimental conditions and on the 

structural perfection of the sample, and is more 

difficult to specify generally. Due to the inevitably 

limited temperature resolution, the heat capacity 

measurements very near to Tc integrate over the 

narrow heat capacity peak and let the heat capacity 

appear finite at Tc all the more the heat capacity is 

finite for T≤Tc [21-24]. Moreover, the two heat 

capacity branches for T<Tc and for T>Tc seem to 

approach each other for T→Tc. This artefact is due 

to the limited temperature resolution and suggests 

a continuous behavior of the heat capacity at Tc 

with positive values of α on both sides of Tc 

(according to our sign convention). At first-order 

transitions with a discontinuous spontaneous 

magnetization the heat capacity can be divergent 

on both sides of Tc. 

    As we have already mentioned, outside the 

critical range at Tc, the heat capacity exhibits also 

universality and can sectionally be described by 

universal power functions of absolute temperature 

according to the expression cp(T)=A+B‧Tε. Two 

variants of this expression have to be 

distinguished. At high-temperatures, commonly 

for T>Tc, the coefficient A is positive but B and 

the exponent ε are negative. Formally, this variant 

of cp(T) describes the deviations of the heat 
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capacity from the D-P limit. However, as for the 

non-magnetic solids, the fitted value for the 

asymptotic parameter A is generally larger than the 

theoretical D-P value, that is given by 3n‧NL‧kB, 

with n as the number of atoms per formula unit, NL 

the number of atoms per mole and kB as the 

Boltzmann constant. On the other hand, as for all 

fitted absolute constants, the fit result for the 

asymptotic parameter A seems to be of no physical 

significance since before saturation at cp=A is 

reached, a crossover occurs, rather precisely at the 

D-P limit, i.e. at T~ ΘD, where the heat capacity 

deflects suddenly from the function cp(T)=A+B‧Tε 

towards larger values [27,41]. Note that heat 

capacity values of larger than the D-P limit are 

beyond the atomistic concepts and have to be 

attributed to the bosons that drive the solid-liquid 

phase transition [41]. Most of the observed 

exponents ε fall in the sequence ε=0, -2/4, -3/4, -

4/4, -5/4, -6/4. The same rational exponent values 

occur also for the critical exponents α for T>Tc, but 

not necessarily at the same material. Nevertheless, 

the agreement of the ε-values with the typical 

magnetic exponent α provides some evidence that 

the exponents ε are due to the Goldstone bosons 

and not due to the Debye bosons. Moreover, most 

of the exponents ε observed in the magnetic solids 

are different compared to the corresponding 

exponents in the non-magnetic solids that, 

commonly, are ε=-1, -4/3 and -5/4 [27]. Many of 

the exponent α on the low-temperature side of Tc 

can be grouped according to the sequences α=1/2, 

1/3, 1/4, 1/5 and 1/6. Alternatively, the exponents 

can be grouped according to the sequence ε= 2/3, 

2/4, 2/5 and 2/6, while α=1 seems to be forbidden.  

    At low-temperatures, several temperature 

sections with different functions of type 

cp(T)=A+B‧Tε can be distinguished. Common to 

these functions is that the coefficient B and the 

exponent ε are positive, while A is negative. The 

observed exponents can be grouped into the two 

sequences ε=1/2, 2/2, 3/2, 4/2, 5/2, 6/2 and ε= 1/3, 

3/3, 4/3. Only for the asymptotic T3 function 

according to Debye, the absolute constant A is 

zero. In other words, a finite absolute constant, A, 

indicates that the power function is not the 

asymptotic behavior for T→0. In the following 

chapter we start the discussion with the 

temperature dependence of the heat capacity for 

T<Tc for magnetic materials with a rather high 

magnetic ordering temperature.  

 
2. The Heat Capacity for T<Tc 

    The most critical point in fitting a power 

function of temperature to a particular temperature 

section of the heat capacity is the identification of 

the upper and lower bounds of this function. As we 

have already mentioned, the validity range of each 

power function of temperature is limited by the 

crossover events to the adjacent power functions. 

However, the fit cannot be conducted just to the 

crossover temperature since a crossover is not a 

very sharp event but can be considerably rounded. 

The rounded region has to be excluded from the 

fit. Since we can be rather sure that all critical 

exponents are rational numbers, it is useful to plot, 

in a first step, the heat capacity data on a Tε 

temperature scale, using suitable rational test 

values for ε, and looking for a section with a linear 

dependence on the Tε scale. When the validity 

limits of the Tε function are identified, the 

exponent can be fitted reliably. 

  
Figure 1. In the temperature range shown, the heat 

capacity of the rhombohedral antiferromagnet 

Cr2O3 can be described by four universal power 

functions of temperature [42]. Note that the 

theoretical Dulong-Petit limit (124.75 JK-1mole-1) 

is reached for higher temperatures than are 

shown. The exponent of the asymptotic power 

function for T→∞ is ε=-2/3 (not shown) [36]. 

 

    Figure 1 shows the fit results for the heat 

capacity of the rhombohedral antiferromagnet 

Cr2O3 [42]. For the temperature range shown, four 

sections with different power functions of 

temperature can be distinguished. One further 

temperature power function can be expected for 

T→∞. Since Cr2O3 is a hard material with a high 

Debye temperature, the heat capacity approaches 

the D-P limit for T→∞ for higher temperatures 

than in Figure 1. From the high-temperature data 
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of [36] an exponent of ε=-2/3 (fitted exponent: ε=-

0.688±0.107) can be inferred. It should be noted 

that over the temperature range of the Debye T3 

function and of the following ~T function, the 

spontaneous sublattice magnetization decreases by 

a single T3 function [6,43]. The T3 function in the 

spontaneous magnetization is characteristic for the 

heat capacity of the 1d-Goldstone boson field at 

the critical temperature T=0 in magnets with an 

integer spin [6,7]. The one-dimensional dynamic 

symmetry conforms to the axial lattice structure of 

rhombohedral Cr2O3. In other words, there is only 

one domain type with all spins oriented along the 

rhombohedral c-axis [43,44].  

    Two power functions in the heat capacity over a 

temperature range over which the spontaneous 

magnetization is given by a single T3 function 

illustrates that different energy degrees of freedom 

dominate the heat capacity at different 

temperatures. Note that for magnets with a high 

ordering temperature the magnetic contributions to 

the low-temperature heat capacity are negligible 

such that the Debye bosons dominate the heat 

capacity. If the T3 function holds without absolute 

constant, all thermal energy is in the Debye boson 

field. From the pre-factor of the asymptotic T3 

function, a Debye temperature of ΘD=663 K can 

be calculated for Cr2O3. Another situation, 

allowing for a clear interpretation of the low-

temperature heat capacity data is given for the 

magnets with a very low ordering temperature (see 

discussion of Figure 12 below). In this case the 

magnetic degrees of freedom dominate the heat 

capacity for T→0 and the contribution of the 

Debye bosons is negligible. All thermal energy 

then is in the Goldstone boson field, and the heat 

capacity for T→0 is given by the Tε function of the 

heat capacity of the Goldstone boson field. This Tε 

function defines the thermal decrease of the 

spontaneous magnetization.  

    Since the T3 function in the thermal decrease of 

the spontaneous magnetization is indicative of an 

integer spin but, according to Hund´s rules, the 

free Cr3+ has a half-integer spin of S=3/2, it 

follows that the crystal field interaction is relevant 

in Cr2O3 [6,45]. The crystal electric field is another 

example illustrating that the boson-controlled 

dynamics reacts in a discrete and threshold 

induced way on continuous variations of atomistic 

quantities, such as the crystal electric field. Only a 

sufficiently strong crystal field can become 

relevant, i.e. can induce a crossover to another 

universality class of the spontaneous 

magnetization. A weaker crystal field interaction 

has no effect [6,45]. Because in the 3d-metal 

compounds the orbital moments of the 3d ions are 

largely quenched, magnetism is manly of spin type 

and crystal field interaction is relatively weak. 

Note that the crystal electric field acts on the 

orbital moment. In the boson controlled ordered 

state of the 3d-metal compounds, the common 

effect of a relevant crystal field is to remove only 

one of the 2S+1 spin-states from the dynamics 

[45]. This means that the spin of the Cr3+ ion in 

Cr2O3 is reduced from S=3/2 to Seff=1. In this way 

the dynamic universality class of the spontaneous 

magnetization changes from T5/2 for S=3/2 to T3 

for Seff=1 [6,7]. Consistent with a reduced 

effective spin is a reduced saturation magnetic 

moment [44]. Note, however, that in non-cubic 

crystals, the dimensionality of the global boson 

field can depend on sample preparation [48]. In 

axial crystals the boson field needs not be one-

dimensional. This is a question of the domain 

configuration. Large single crystals can be 

considerably strained due to the crystal grows 

process. Strain can change the configuration of the 

magnetic domains and therefore the 

dimensionality of the global boson field.  

  
Figure 2. In the temperature range shown, the heat 

capacity of ferromagnetic gadolinium with 

hexagonal hcp-structure and S=7/2 can be fitted 

by four universal power functions of temperature 

[46]. Note the unusually large critical range for 

T<TC. For T>TC the critical heat capacity is 

logarithmically divergent. 

 

    The crossover temperature at TCO=230 K from 

the ~T function to the critical power function with 

α=1/2 nicely agrees with the crossover 

temperature from T3 function to the critical power 

function with β=1/3 in the spontaneous sublattice-
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magnetization of Cr2O3 [6]. Since, except for the 

Debye T3 function, the fitted power functions in 

Figure 1 are supposed to be induced by the 

Goldstone boson field, the observed universal 

exponents can be expected to be independent of 

the spin structure but they are likely to depend on 

whether the spin quantum number is integer or 

half-integer. This, however, is difficult to evidence 

in general since the spin quantum number can be 

ambiguous through the action of a relevant crystal 

field [45]. 

    For mechanically soft materials with a low 

Debye temperature the asymptotic function for 

T→∞, cp(T)=A+B‧Tε (with B and ε negative), sets 

in at a fairly low temperature. For the metallic, 

hexagonal ferromagnet gadolinium, the Debye 

temperature of ΘD=182 K [37] is considerably 

lower than the Curie temperature of TC= 291 K 

[47]. As a consequence, the asymptotic 

cp(T)=A+B‧Tε function, with B and ε negative, 

appears already on the low-temperature side of the 

heat capacity peak at TC. Due to the large spin 

quantum number of S=7/2, the magnetic 

contribution to the total heat capacity of the 

ordered state is unusually large. In fact, for T>75 

K the heat capacity values in Figure 2 are already 

beyond the theoretical D-P limit of 24.95 JK-

1mole-1. As it is generally observed, the fitted value 

for the asymptotic heat capacity (T→∞) of A=42 

JK-1mole-1 is much larger than the theoretical D-P 

limit and has an unclear physical significance. The 

enormous large critical range on the low-

temperature side of TC with critical exponent of 

α=1/5 conforms to the large critical range of the 

spontaneous magnetization with critical exponent 

of β=1/3 [6,47]. Note, however, that in non-cubic 

magnets, the critical exponent β can depend on the 

shape and size of the sample when the mean free 

path of the bosons is of the order of the linear 

dimensions of the sample [32,48]. For a long-stick 

single crystal, cut parallel to the c-axis, the critical 

behavior is in favor of a one-dimensional dynamic 

symmetry, and β=1/3 is observed [6,47]. On the 

other hand, for a small spherical sample with a 

diameter of smaller than the mean free path of the 

Goldstone bosons, all bosons get reflected on the 

inner surface of the sample. The resulting boson 

field and the dynamic symmetry then are 3d-

isotropic. For a half-integer spin the critical 

exponent β then is β=1/2 [6,32]. We therefore have 

to assume that the fitted exponents in Figure 2 are 

not generally specific for Gd but can depend on the 

size and shape of the investigated sample. 

    In the nominally cubic antiferromagnet CoO 

spontaneous tetragonal lattice distortions set in at 

the Néel temperature [28,29]. Depending on 

sample preparation, crystal field effects can 

become additionally relevant [6]. This makes the 

interpretation of the fitted exponents for the heat 

capacity in Figure 3 ambiguous. Tetragonal lattice 

distortions have been observed for CoO powder 

material using neutron scattering [28] and 

synchrotron radiation diffraction [29]. However, it 

can depend on the grain size and on the quality of 

the powder material whether lattice distortions are 

sufficiently strong to induce a crossover to a lower 

dimensionality of the global boson field [48]. 

Commonly, small powder grains are less distorted 

than large single crystals. If the crystal field 

interaction is not relevant, the spin of the Co2+ ion 

is S=3/2 and thermal decrease of the spontaneous 

magnetization of the undistorted CoO crystal is 

expected to be by T2 function [6,7]. For larger 

single crystals lattice distortions commonly are 

large. For a relevant tetragonal (axial) lattice 

distortion, thermal decrease of the spontaneous 

magnetization is by T5/2 function for an half-

integer spin of S=3/2 [6]. On the other hand, for 

commercially available powder material the T9/2 

function of the isotropic boson field in magnets 

with an integer spin has been observed [6]. As a 

consequence, the powder grains of this sample are 

weakly strained only. According to a measured 

saturation magnetic moment for this CoO powder 

material of ms=3.98 ±0.06 μB/Co the spin cannot 

be Seff=1 but must be Seff=2 [29]. In other words, 

it is possible that the orbital degrees of freedom 

add one quantum state to the 2S+1 spin states. The 

g-factor then falls below g=2 [45].  

 
Figure 3. For the temperature range shown, the 

heat capacity of antiferromagnetic CoO can be 
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described by four universal power functions of 

temperature [39]. 

 

 
Figure 4. For monoclinic Fe3Se4 with a Néel 

temperature of as high as TN=309 K and a Debye 

temperature of only ΘD=126 K the asymptotic 

power function for T→∞, cp(T)=A+B‧Tε, with 

negative exponent and negative pre-factor, B, 

appears on the low temperature side of TN [39]. 

Note that the theoretical Dulong-Petit limiting 

value is c(D-P)=174.7 JK-1mole-1. 

 
Figure 5. In hexagonal MnTe the asymptotic 

power function for T→∞, cp(T)=A+B‧Tε, with 

negative pre-factor B, and negative exponent ε 

appears on the low-temperature side of TN=306.5 

K [39] as it is typical for materials with ΘD<TN. 

 

    Since in monoclinic Fe3Se4 the asymptotic heat 

capacity for T→∞ appears at relatively low 

temperatures, the Debye temperature must be low 

(Figure 4). In fact, from the fitted low-temperature 

T3 function a Debye temperature of ΘD=126 K can 

be calculated. A similar behavior is observed for 

MnTe (Figure 5). 

    In nominally cubic NiO, spontaneous 

rhombohedral lattice distortions set in at the Néel 

temperature [28]. Consistent with an integer spin 

of S=1 of the Ni2+ ion and with a relevant axial 

lattice distortion is a thermal decrease of the 

spontaneous magnetization according to a T3 

function [6]. For this universality class, the boson-

magnon interaction is particularly strong, giving 

rise to a large magnon excitation gap [6]. For NiO 

the gap is ~4.54 meV (compare discussion of 

Figure 19) [6,49]. In Figure 6 four power functions 

of temperature are fitted to the heat capacity of 

NiO [39]. For NiO with a Néel temperature of as 

high as TN=523 K the magnetic contributions to 

the low-temperature heat capacity are negligible 

and the heat capacity is given by the Debye T3 

function. Note, however, that two T3 functions 

with different pre-factors have to be distinguished 

[6,27]. The non-asymptotic T3 function has a 

larger pre-factor and includes a small negative 

absolute constant. The larger pre-factor is due to 

the finite heat capacity contributions of the non-

relevant phonons. In Figure 6 the non-asymptotic 

T3 function is depicted. From the asymptotic T3 

function (with no absolute constant) a Debye 

temperature of ΘD=610 K is obtained. As a 

consequence, the heat capacity approaches the D-

P limit for temperatures outside the temperature 

window of Figure 6 (see Figure 19). 

  
Figure 6. Heat capacity of NiO combined from two 

literature sources [39]. The spin of the Ni2+ ion is 

S=1. For T≤TN the cubic lattice is rhombohedrally 

distorted [28]. The low-temperature T3 data are 

from this work (see text). 
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Figure 7. Heat capacity of monoclinic TiCl3 with 

S=1/2 due to the Ti3+ ion, as a function of absolute 

temperature [39]. The negative exponent α on the 

low-temperature side of TN is indicative of a first-

order magnetic phase transition. Because of the 

low spin moment, the magnetic contribution to the 

heat capacity is low and the theoretical Dulong-

Petit limit of c(D-P)=99.7 JK-1mole-1 is 

reasonably realized.  
 

3. The Critical Heat Capacity at Tc 

    In the past, the ferromagnets EuS and EuO and 

the antiferromagnets EuTe and RbMnF3 were 

considered as nearly ideal realizations of the 

Heisenberg model. In fact, all four materials have 

cubic lattice structure and pure spin moments. 

However, as we have explained, in contrast to the 

assumptions of the Heisenberg model, the ordering 

transitions of magnets with a three-dimensional 

spin are not driven by the exchange interactions 

between the spins but by the Goldstone boson 

field. Evidence for boson dynamics is provided by 

the finite width of the critical range and by the 

rational critical exponents [5,6]. By the way, the 

finite width of the critical range is condition for a 

reliable experimental evaluation of the critical 

exponents. Note that the critical exponents 

predicted by the atomistic models pertain to the 

leading term of a power series expansion at the 

critical point [8,17,18]. Power series contain too 

many fit parameters and can nearly not be verified 

experimentally. The measured critical exponents 

of the four mentioned materials agree, in fact, 

within the experimental error limits (β=1/3, γ=4/3 

and ν=2/3) [5,15,50]. Independence of the critical 

exponents on the spin structure proves 

impressively that the exchange interactions 

between the spins are excluded from the critical 

dynamics, i.e. are not relevant. 

    However, there is an intriguing particularity 

with these critical exponents. This becomes 

obvious by a comparison with tetragonal MnF2 

[51] that is, perhaps, the best investigated boson-

controlled one-dimensional antiferromagnet: the 

critical exponents of EuS, EuO, EuTe and RbMnF3 

agree within error limits with those of the mono-

domain antiferromagnet MnF2 [15]. As a 

conclusion, in spite of their cubic lattice structures 

the ordering transitions of EuS, EuO, EuTe and 

RbMnF3 are driven, as for tetragonal MnF2, by a 

one-dimensional boson field. This can easily be 

explained, assuming that, for some reasons, in the 

four cubic materials the boson fields of the 

domains long x-, y- and z-axis are not coupled 

dynamically [15]. For instance, when the domains 

are rather large, the boson fields of adjacent 

domains are not in dense contact and interaction 

between them becomes less likely. For completely 

decoupled domains, the observed critical behavior 

of the bulk material is determined by the behavior 

of the isolated magnetic domain, and is one-

dimensional. The is as for bulk MnF2 that can be 

considered as one large magnetic domain [51]. All 

Mn2+ moments are rigidly coupled to the one-

dimensional boson field along the tetragonal c-

axis. Typical for the one-dimensional dynamic 

symmetry of MnF2 is, that the two-spin correlation 

length and the staggered susceptibility transverse 

to the tetragonal c-axis, do not diverge at the Néel 

temperature [51]. For cubic magnets with a half-

integer spin, for which the domains along x-, y- 

and z-axis are coupled dynamically, the global 

boson field is 3d, and the critical behavior is of 

mean field type [5,6]. Famous examples of mean 

field critical behavior are the cubic ferromagnets 

GdZn and GdMg with S=7/2 [6]. The important 

difference to the classical mean field 

approximation is that for the boson-defined mean-

field critical behavior, the width of the critical 

range is finite and clearly limited by a crossover 

event. Moreover, for the cubic ferromagnet GdZn 

with S=7/2, discussed in [6], indications are 

obtained that the critical exponent is α=0 

(logarithmically divergent) on both sides of TC and 

therefore is at variance with the Landau model that 

predicts a finite heat capacity at Tc. Note that for 

the magnets with mean field critical behavior 

(S=half-integer, d=3) the interaction between 

bosons and magnons is very weak, as becomes 

evident by a very small magnon gap [5]. The boson 

magnon interaction seems to be decisive for the 

type of critical behavior [5].
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    In spite of identical critical exponents of β=1/3, 

γ=4/3 and ν=2/3 the exponents α observed for the 

critical heat capacity of EuS, EuO, EuTe and 

RbMnF3 are different. One reason for this could be 

the different ordering temperatures and, as a 

consequence, the different proportions of magnetic 

to non-magnetic energy contributions at Tc. 

Additionally, the coupling strength between the 

magnetic and the elastic degrees of freedom will 

be different.  

    Figures 8-11 show the critical heat capacities of 

EuS [52], EuTe [23], EuO [22] and RbMnF3 [21] 

as a function of the temperature difference to the 

critical point. It can be seen, that in contrast to the 

identical critical exponents β, γ and ν, the fitted 

values for the critical exponents α are considerably 

different for the four materials and lack a clear 

systematic. Only for the critical exponent α for 

T<Tc of EuO, EuS and EuTe some correlation with 

the strength of the magnetostriction is possible, 

that is largest for EuO (α=1/3), intermediate for 

EuS (α=1/4) and very weak for EuTe (α=1/10) 

[53]. 

    As Figures 8-11 show, in contrast to the method 

employed in the data analyses of [21-24], the 

critical exponents α obtained by our three-

parameter fit never result in identical exponents 

above and below Tc. In particular, for T>Tc the 

heat capacity turns out to be always divergent but 

finite for T<Tc. With the exception of EuTe, α=0 

(logarithmic divergence) holds for T>Tc. 

Formally, α=0 fulfills the classical scaling relation 

α+2β+γ=2 either with β=1/3 and γ=4/3 for the 

magnets with 1d-boson field and half-integer spin, 

but also for the mean field critical exponents β=1/2 

and γ=1 for the magnets with 3d-boson field and 

half-integer spin [7]. 

    For EuS, the two available experimental data 

sets for the critical heat capacity are, practically, 

identical [24,52]. However, in the two publications 

the data were analyzed differently, and completely 

different values for the critical exponent α were 

obtained.  In [52], the here favored three-parameter 

fit was made. Our fit results for the data of [52], 

shown in Figure 8, confirm the exponent values 

given in [52], i.e. α=0 for T>TC and α=1/4 for 

T<TC.   

    On the other hand, in [24] an explicit 

temperature dependent, non-magnetic heat 

capacity background was included in the fit, 

whereby the number of fit parameters is increased 

to four. Moreover, the fit was made using the 

constraint of identical critical exponents above and 

below TC. This premise was considered as firmly 

approved by the available atomistic models, that 

are, however, inapplicable, since the dynamics is 

boson controlled. Under these assumptions, a 

finite heat capacity at TC and a non-rational critical 

exponent of α=0.133±0.003 was obtained for EuS.   

 
Figure 8. Critical heat capacity of the cubic 

ferromagnet EuS as a function of the temperature 

difference to the critical point [52]. For T>TC the 

heat capacity is logarithmically divergent (α=0). 

For T<TC the heat capacity is finite at TC 

(α=+1/4). The two, here fitted critical exponent 

values result from a three-parameter fit and agree 

with those given in [52] (see text). 

 

    In [23], the critical heat capacity data of 

antiferromagnetic EuTe were analyzed using the 

same four-parameter fit and the constraint of 

identical exponents above and below TN as in [24] 

for EuS. In contrast to EuS [24], a diverging heat 

with a critical exponent of α=-0.38±0.01 was 

obtained for EuTe. Figure 9 shows our alternative 

analysis of the heat capacity data of [23] using the 

three-parameter fit as for EuS in Figure 8. It turns 

out that only for T>TN the heat capacity of EuTe 

diverges with a rational critical exponent of α=-

1/4, for T<TN the heat capacity is finite (α=+1/10). 

The small value of α indicates some tendency for 

a first-order transition. 

    Critical heat capacity data of EuO [22] were 

fitted by the same four-parameter fit as for EuS 

[24] using the constraint of identical critical 

exponents α above and below TC. In this way, the 

heat capacity came out to be finite at TC with a 

fitted critical exponent of α=0.044±0.01. As the 

results of our three-parameter fit in Figure 10 

show, the heat capacity of EuO is divergent (α=0) 

for T>TC. For T<TC the heat capacity remains 
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finite at TC, and the critical exponent is very 

precisely α=1/3. 

    The results of our three-parameter fit to the 

critical heat capacity data of RbMnF3 of [21] 

shown in Figure 11 are again in contrast to the four 

parameter fit of [21] that used the constraint of 

identical exponents α above and below TN. The 

method of analysis of [21] resulted in a finite heat 

capacity above and below TN with a positive 

critical exponent of α=+0.14±0.01, according to 

our sign convention. Note that a finite heat 

capacity for T>TN can result when the too small 

experimental heat capacity data very close to TN 

are not excluded from the fit.  

 
Figure 9. Critical heat capacity of 

antiferromagnetic EuTe as a function of the 

distance from Néel temperature [23]. Note the 

surprisingly different exponents compared to EuS 

(Figure 8). Using our three-parameter fit, with no 

explicit temperature dependence of a non-

magnetic heat capacity background, the heat 

capacity turns out to be divergent for T>TN only. 

 

    For the magnets with ordering temperatures of a 

few Kelvin only, the magnetic heat capacity for 

T→0 is much larger than the non-magnetic heat 

capacity background due to the Debye bosons. 

One therefore might expect to observe the intrinsic 

critical behavior due the magnetic degrees of 

freedom. This, however, is not confirmed. Only 

the exponent ε of the asymptotic Tε power function 

in the heat capacity for T→0 agrees with the Tε 

power function in the thermal decrease of the 

spontaneous magnetization and therefore is 

intrinsically magnetic [6]. This proves that the 

thermal decrease of the spontaneous 

magnetization with respect to saturation at T=0 is 

given by the heat capacity of the Goldstone boson 

field at T=0. 

 

 
Figure 10. Critical heat capacity of EuO as a 

function of the distance from the critical 

temperature [22]. As for EuS (Figure 8) the heat 

capacity is logarithmically divergent (α=0) for 

T>TC. However, for T<TC α=+1/3 is observed 

instead of α=+1/4 for EuS. 

 
Figure 11. Critical Heat capacity of 

antiferromagnetic RbMnF3 as a function of the 

temperature difference to the Néel temperature 

[21]. Using a three-parameter fit, the heat 

capacity turns out to be logarithmically divergent 

for T>TN, as for ferromagnetic EuS (Figure 8) and 

EuO (Figure 10). For T<TN a particular exponent 

(α=+2/5) is observed. 

 

    Figure 12 shows the heat capacity of 

NiCl2‧6H2O, as a typical example of an 

antiferromagnet with a low Néel temperature of 

5.34 K only [54]. The asymptotic T3 function at the 

lowest temperatures includes no absolute constant 
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and is characteristic for the heat capacity of the 1d 

Goldstone boson field in magnets with an integer 

spin [6,7]. Integer spin conforms to the Ni2+ ion 

with S=1. The asymptotic T3 function cannot be 

confused with the heat capacity of the Debye 

boson field because its pre-factor is much too 

large. The Debye boson field dominates the heat 

capacity in the range 12<T<20 K only, where the 

heat capacity of the magnetic degrees of freedom 

has strongly decreased. This is outside the 

temperature window of Figure 12. In contrast to 

the asymptotic T3 function, the T3 function of the 

range 12<T<20 K includes an absolute constant of 

~2.1 JK-1mole-1 as it is typical for a non-

asymptotic universal power function. The absolute 

constant can be taken as a measure of the 

interaction strength between the Debye-bosons 

and the Goldstone bosons. Note that due to this 

interaction the heat capacities of the two boson 

fields do not superimpose but appear alternately as 

a function of temperature [3,45]. The relevant 

system therefore is clearly defined. By chance the 

exponent is ε=3 for both systems. The boson field 

with the larger heat capacity determines the 

universal exponent. For magnets with a very low 

ordering temperature such as NiCl2‧6H2O, the 

asymptotic heat capacity for T→0 is determined 

by the Goldstone bosons. For magnets with a high 

ordering temperature, say, Tc>100 K, the magnetic 

heat capacity is weak at low temperatures, and the 

asymptotic heat capacity for T→0 is determined 

by the Debye bosons (see Figures 1,4, 6) [3,45]. In 

this case a crossover to the heat capacity of the 

Goldstone bosons occurs at a sufficiently high 

temperature at which the dispersion energy of the 

Debye bosons is higher than the dispersion energy 

of the Goldstone bosons. Thermal energy then is 

in the Goldstone boson field. Figure 12 includes 

the Debye heat capacity of NiCl2‧6H2O, observed 

in the range 12<T<20 K after subtraction of the 

absolute constant. The Debye temperature 

calculated from the pre-factor of this T3 function is 

ΘD=331 K.  

The interpretation of the fitted critical exponents α 

in Figure 12 is difficult. For instance, the exponent 

α=+1/4 for T<TN of NiCl2‧6H2O is observed also 

for EuS (Figure 8). Note, however, that EuS has a 

half-integer spin of S=7/2 but NiCl2‧6H2O has an 

integer spin of S=1. On the other hand, α=-1/5 for 

T>TN in Figure 12 is a new exponent value, not 

observed as yet. 

    The two fitted critical exponents α for T>TN and 

for T<TN of CoCl2‧6H2O (Figure 13) agree with 

those for EuS (Figure 8). This, however, is 

certainly fortuitous. Unfortunately, in Figure 13 

there are no data of the asymptotic power function 

for T→0 available to evaluate the spin quantum 

number. It is, however, evident that this power 

function must have a large exponent. The indicated 

T9/2 function of the heat capacity of the isotropic 

Goldstone boson field in magnets with an integer 

spin is the most reasonable assumption and is 

consistent with the analyses to follow. Crystal field 

interaction therefore is relevant in CoCl2‧6H2O 

and decreases the spin quantum number of the 

Co2+ ion from S=3/2 for the free Co2+ ion to Seff=1. 

Agreement of the fitted exponent α with those of 

EuS with a half-integer spin of S=7/2 (Figure 8) 

therefore is amazing.     

 
Figure 12. Heat capacity of NiCl2‧6H2O in the 

vicinity of the Néel temperature of TN=5.34 K as a 

function of absolute temperature [54]. Three 

universal power functions can be identified. The 

low-temperature T3 function is due to the 1d 

Goldstone boson field in magnets with an integer 

spin (S=1 for the Ni2+ ion). The pre-factor of this 

T3 function is much large than that one of the 

Debye boson field (curve labeled as Debye 

bosons). 

 

    Comparison of the absolute heat capacity values 

of CoCl2‧6H2O (Figure 13) with those of 

NiCl2‧6H2O (Figure 12) is very revealing. As can 

be seen, the heat capacity maximum of 

CoCl2‧6H2O in Figure 13 is much lower than for 

NiCl2‧6H2O in Figure 12, in spite of an assumed 

identical integer spin of S=Seff=1 for both 

materials. The lower heat capacity of CoCl2‧6H2O 

has to be explained by the relevant crystal field 

interaction in this cobalt compound [45]. The Co2+ 

ion is known for rather large orbital moment 

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

h
e

a
t 

c
a

p
a

c
it
y
  
(J

K
-1

m
o
le

-1
)

T  (K)

fitted exponent:

0.251 ± 0.046

a=1/4

fitted exponent:

-0.179 ± 0.038

a= -1/5

NiCl2*6H2O

TN= 5.3 K

~T3

fitted exponent:

2.937 ± 0.138

Debye bosons



 
Int. J. of Thermodynamics (IJoT) Vol. 23 (No. 3) / 163 

contributions in its magnetic moment. The crystal 

electric field therefore is likely to become relevant, 

in particular in magnets with a low ordering 

temperature [45]. Quite generally, the probability 

for the crystal field to become relevant scales with 

the ratio of crystal field interaction energy to 

magnetic interaction energy and therefore is higher 

for materials with a low ordering temperature [45]. 

Another well investigated Co2+ compound with a 

relevant crystal field (Seff=1) is CoF2 (TN=37.85 K) 

[45,55,56]. Note that CoF2 has the lowest ordering 

temperature compared to the other bi-fluorides 

with no relevant crystal field: MnF2 (TN=66.5 K), 

NiF2 (TN=73.2 K) and FeF2 (TN=78.35 K) [56]. 

The effective spin in the ordered state of CoF2 

could be evaluated as Seff=1 using magnetic x-ray 

diffraction [57], and therefore is lower by ΔS=1/2 

compared to S=3/2 of the free Co2+ ion. In other 

words, the effect of the relevant crystal field is to 

excluded one spin state from the dynamics of the 

ordered state. The number of states therefore 

remains an integer, and universality is conserved. 

The observed saturation magnetic moment of 2.21 

μB/Co is perfectly consistent with Seff=1 

[45,56,57].      

  
Figure 13.  Heat capacity of CoCl2‧6H2O in the 

vicinity of the magnetic ordering transition as a 

function of absolute temperature [54]. By chance, 

the critical exponents of CoCl2‧6H2O are identical 

with those of EuS (Figure 8), in spite of an integer 

spin of Seff=1 for CoCl2‧6H2O but of a half-integer 

spin of S=7/2 for EuS. 

 

    A quantitative analysis of the heat capacity of 

CoCl2‧6H2O shows that the magnetic entropy 

saturates, as for CoF2 [45,56], at a value of R‧ln(2) 

instead of R‧ln(3), expected for Seff=1 [54]. The 

same value of R‧ln(2) is observed also for 

CoCl2‧2H2O [58]. On the other hand, the magnetic 

entropy of NiCl2‧6H2O with S=1 and no crystal 

field interaction, saturates, as expected, at R‧ln(3) 

[54]. Note that the spin wave theory treats on non-

quantized classical spins and therefore is unable to 

predict the discrete saturation values for the 

magnetic entropy at R‧ln(2S+1) [45,56]. Only for 

paramagnetic salts with discrete magnetic energy 

levels, the saturation value of the entropy can be 

calculated as R‧ln(2S+1). 

    Saturation of the magnetic entropy at R‧ln(2), 

irrespective of the value Seff is typical for the 

magnetic insulators with a relevant crystal field 

interaction [45,54,56]. This curiosity can be 

explained by the fact that in magnets with a 

relevant crystal field interaction, the magnon gap 

is strongly enhanced. Additionally, for only one 

spin state eliminated from the dynamics, one 

further magnon band at a still higher energy occurs 

[45]. For instance, in CoF2, the measured magnon 

gap energy corresponds to a temperature of ~54 K 

which is larger than the ordering temperature of 

TN=37.85 K [55].  The second magnon band, is 

centered at ~270 K in CoF2 [55]. A larger gap 

energy than corresponds to the ordering 

temperature is known for the conventional Ising 

magnets only [19]. For instance, in the classical 

2d-Ising antiferromagnet Rb2CoF4, the gap energy 

is ~300 K but the ordering temperature is ~100 K 

[19]. The large magnon gap in the Ising magnets is 

atomistic in origin and has to be viewed as a 

measure of the strong, axial single particle 

anisotropy that restricts the number of spin states 

to the two states with ±S. This view conforms to 

the classical, non-quantized treatment of the spin. 

    The magnon gap energy in the here considered 

magnets with a three-dimensional spin also means 

anisotropy but is a measure of how strong the spins 

are coupled to the axis of the one-dimensional 

boson field within each magnetic domain. As a 

consequence, for the magnets with a relevant 

crystal field interaction and therefore with a 

magnon gap energy of larger than corresponds to 

the ordering temperature, there are also only the 

two spin states ±Seff with respect to the axis of the 

boson field possible. In this way, a saturation value 

of the entropy of R‧ln(2), irrespective of the value 

of Seff, can be explained. Only for temperatures 

that correspond to the excitation energy of the 

second magnon band, that is at ~270 K in CoF2, a 

crossover to the final entropy value of R‧ln(4), as 

it corresponds to the full spin quantum number of 

S=3/2 of the free Co2+ ion, can be expected. This, 

however, is difficult to evidence because of the 
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non-linear superposition of the magnetic and the 

non-magnetic heat capacity contributions that 

prevent a quantitative subtraction of the non-

magnetic heat capacity background.   

 
Figure 14. Heat capacity of tetragonal FeF2 for 

temperatures of lower than the ordering 

temperature of TN=78.3 K, as a function of 

absolute temperature [59]. 

 

    For the two bi-fluorides FeF2 and NiF2 with 

tetragonal rutile structure, the spin quantum 

numbers are both integer (S=2 and S=1, 

respectively), and the ordering temperatures are 

very similar (Figures 14 and 15). Nevertheless, 

different values for the critical exponents α are 

observed. Obviously, the absolute value of the spin 

is important because it determines the proportion 

between the magnetic and the elastic heat capacity 

contributions at the critical temperature, and 

therefore is of importance for the critical exponent 

α. In fact, as a comparison of Figures 14 and 15 

shows, the heat capacity peak at TN is about twice 

as large for FeF2 with S=2 compared with NiF2 

with S=1. Moreover, in spite of an identical 

tetragonal lattice symmetry the dynamic symmetry 

is isotropic in NiF2 but one-dimensional in FeF2 

[6]. Thermal decrease of the spontaneous 

magnetization of NiF2 single crystal material is 

according to T9/2 function [6,48], i.e. 3d, but 

according to T3 function for FeF2, i.e. 1d [6]. In 

other words, for some reasons, the tetragonal 

lattice anisotropy is not sufficient in NiF2 to induce 

the crossover to a one-dimensional dynamic 

behavior. Note that the dynamic symmetry is 

related to the domain configuration and therefore 

to the spin orientations. For the tetragonal 

antiferromagnets FeF2 and MnF2 there is only one 

domain type along the tetragonal c-axis, and the 

global boson field therefore is 1d [12,51]. In other 

words, all ordered spins are along the tetragonal c-

axis. On the other hand, for the 3d material NiF2 

the spins were claimed to be oriented in the a-b 

plane [57]. This, however, would imply that the 

dynamics of NiF2 is 2d, and that the spontaneous 

magnetization should decrease according to a T2 

function [6,7]. For the observed isotropic dynamic 

symmetry class of NiF2 single crystal material 

(T9/2 function) [6,48], a nearly equal distribution of 

domains, and therefore of spin orientations along 

all crystallographic axes is compelling. It is 

evident that the dependence of the dynamic 

universality class on the domain configuration 

makes the interpretation of the observed α-values 

additionally complicated. Not for all axial magnets 

the dynamic symmetry is 1d.   

 
Figure 15. Heat capacity of NiF2 in the vicinity of 

the magnetic ordering transition at TN=73.2 K as 

a function of absolute temperature [60].  

 

    Considering that the critical exponents β, γ and 

ν are identical for MnF2 (S=5/2) and for EuO 

(S=7/2) [15], and that the ordering temperatures of 

TN=67.3 K (MnF2) and of TC= 69.3 K (EuO) are 

very similar, identical values for the critical 

exponents α can be anticipated. As a comparison 

of Figure 10 and Figure 16 shows, this is not the 

case, possibly because of the different lattice 

structures and the associated different phonon 

spectra. We should note that the boson field in 

cubic EuO is 1d in the critical range only but 3d 

below the critical range [5,7,15], while in 

tetragonal MnF2 the boson field is 1d throughout 

[6,15]. In other words, in EuO (and in EuS) a 

dimensionality crossover from 1d to 3d occurs at 

the crossover from the critical power function with 
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the argument |TC-T| to the Tε power function at the 

critical temperature T=0 [15]. The necessary 

dynamic coupling of the three domain types at 

lower temperatures can be explained by an 

increasing mean-free path of the bosons as a 

function of a decreasing temperature. The boson 

fields of adjacent domains then become in denser 

contact whereby a dynamic coupling between the 

domains is favored.  

 
Figure 16. Heat capacity of MnF2 in the vicinity of 

the magnetic ordering temperature TN=67.3 K as 

a function of absolute temperature [61]. In spite of 

identical critical exponents β, γ and ν with EuO, 

the critical exponents α for MnF2 and for EuO are 

different (compare Figure 10). 

 

    On the other hand, as a comparison between 

Figure 16 and Figure 17 shows the critical 

exponents α are identical for MnF2 [61] and for 

CrF2 [62]. This, however, is another puzzle since 

the spin quantum number is half-integer (S=5/2) in 

MnF2 but integer (S=2) in CrF2. Integer spin of 

S=2 for CrF2 is proven by an observed saturation 

magnetic moment of 3.96±0.24/Cr [63]. 

Consistent with the different spin quantum 

numbers and with the tetragonal rutile structures 

[63] is that the thermal decrease of the spontaneous 

magnetization is according to a one-dimensional 

boson field, i.e. according to a T5/2 function for 

MnF2 with S=5/2 but according to a T3 function for 

CrF2 with S=2 [6].    

 
Figure 17. In spite of an integer spin of S=2 in 

CrF2, the same critical exponents are observed as 

for MnF2 with a half-integer spin of S=5/2 (Figure 

16) [62]. Consistent with the axial lattice 

structure, the dynamic symmetry is 1d for both 

materials [6]. 
 

4. The Heat Capacity for T>Tc 

 

The deviations of the high-temperature heat 

capacity from the Dulong-Petit (D-P) limiting 

value can be described by the expression 

c=A+B‧Tε with B and ε negative. As a general 

observation, the fitted asymptotic heat capacity for 

T→∞, the fit parameter A, is always larger than 

the theoretical D-P value that is given by the total 

number of atomic degrees of freedom 3‧n‧NL‧kB 

with n as the number of atoms per formula unit, NL 

as the number of atoms per mole and kB as 

Boltzmann constant. 

    Figure 18 shows that the high-temperature heat 

capacity of MnF2 [61] can well be described by 

A=85 JK-1mole-1 and ε=-1. Note that the 

theoretical D-P limiting value is c0=74.85 JK-

1mole-1. Qualitatively, the behavior of the 

asymptotic heat capacity for T→∞ is similar for 

the magnetic and for the non-magnetic solids [27]. 

However, the exponents ε commonly are different 

for the two classes of materials.
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Figure 18. Heat capacity of MnF2 between 10 K 

and 300 K as a function of absolute temperature 

[61]. The deviations of the high-temperature heat 

capacity from saturation value of 85 JK-1mole-1 

can well be described by a T-1 function. The 

critical range at TN=67.3 K is better resolved in 

Figure 16. 

 

    A frequently observed exponent is ε=-1/2. 

Figure 19 displays heat capacity data, normalized 

to the fitted value of the asymptotic parameter A, 

as a function of T-1/2 for a selection of materials 

with ε=-1/2. The lower the absolute value of ε is, 

the slower approaches the heat capacity the D-P 

limit. This is indicative of large magnon energies. 

It can be seen in Figure 19 that for the temperature 

range of T< 300 K, all heat capacity data are 

considerably below the fitted value for A. The 

materials of Figure 19, all have an integer 

(effective) spin: NiF2 has S=1 [6,48], FeF2 has S=2 

[6], CoF2 has Seff=1 [6,45,56] and MnO has Seff=2, 

instead of S=5/2 according to a saturation 

magnetic moment of 4.58±0.03 μB/Mn [64]. As 

was shown in [6], magnets with an integer spin 

have a particular large magnon excitation gap. For 

NiF2 the magnon gap is 3.86 meV, for FeF2 6.59 

meV, for CoF2 3.54 meV and for MnO 3.41 meV. 

The large magnon excitation energies could be 

responsible for the slow saturation of the heat 

capacity for T→∞ and for the small absolute value 

of ε.  

    The lattice structure is tetragonal for the 

fluorides but cubic for MnO (NaCl-type) for 

T>TN=144 K [28,65]. The exponent ε averaged 

over all four materials is ε=-0.479±0.035. 

 
Figure 19. For the selected magnetic solids, the 

asymptotic heat capacity for T→∞ can well be 

described by the function c=A+B‧Tε with ε=-1/2. 

The ordinate gives the heat capacity normalized to 

the fitted asymptotic parameter A. All materials 

have integer (effective) spin (see text). 

 

 
Figure 20. For the selected magnetic solids, the 

asymptotic heat capacity for T→∞ can well be 

described by the function c=A+B‧Tε with ε=-5/4. 

The ordinate gives the heat capacity normalized to 

the fitted asymptotic parameter A. For the 

indicated (effective) spin quantum numbers, see 

text. 

 

    For materials with a larger absolute value of ε, 

the heat capacity approaches the high-temperature 

asymptotic value faster. As can be seen in Figure 

20, the heat capacity data for the selected materials 

with ε=-5/4 all are larger than for the materials in 

Figure 19 with ε=-1/2. The effective spin quantum 
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numbers given in Figure 20 are, however, not 

completely clear.  

    The most likely spin quantum numbers of the 

materials shown in Figure 20 are Seff=1 for CoCl2 

[66,67], S=2 for CrCl2 [68], S=1 for VCl3 [69] and 

Seff=1/2 for NiCl2 [6]. The lattice structures are 

orthorhombic for CrCl2 but rhombohedral for 

CoCl2, VCl3 and NiCl2. However, as we have 

mentioned, for many of the 3d-metal compounds, 

the spin quantum number of the 3d-ion is changed 

with respect to the Hund´s rule value by the action 

of a relevant crystal electric field [45]. Moreover, 

the effective spin quantum number can depend on 

sample preparation. This seems to apply to CoCl2. 

The saturation magnetic moment evaluated for 

CoCl2 powder material using elastic neutron 

scattering of 3.1±0.5μB/Co is consistent with a 

regular spin moment of S=3/2 of the Co2+ ion [66]. 

However, analysis of the heat capacity data of the 

CoCl2 powder sample of Figure 20 gives a 

saturation value for the magnetic entropy of 

R‧ln(2) [67]. Since S=1/2 can be excluded, it 

follows from R‧ln(2) that the crystal field 

interaction is relevant (for this CoCl2 sample) and 

that the spin of the Co2+ ion is Seff=1 instead of 

S=3/2, as indicated in Figure 20. 

    The crystal electric field is relevant also in NiCl2 

and reduces the spin of the Ni2+ ion from S=1 to 

Seff=1/2, as can be concluded from observation of 

a T3/2 function in the temperature dependence of 

the spontaneous magnetization and of the magnon 

gap energy (AFMR) [6]. The most prominent 

example of the T3/2 universality class of the 

magnets with a 2d boson field and a half-integer 

spin is K2CuF4 with S=1/2 [6,70]. In summary, the 

chlorine compounds of Figure 20 seem to have not 

much in common, except for the exponent ε=-5/4. 

The exponent ε averaged over all four materials in 

Figure 20 is ε=-1.182±0.041. 

    It is much surprising that the slopes of the 

different materials in Figure 19 and in Figure 20 

are very similar. For the non-magnetic materials 

discussed in [27], the corresponding slopes scale 

aproximately with the Debye temperature [27]. 

Unfortunately, for the magnetic compounds, there 

is little information on the Debye temperatures. 

The reason for this is that the correct, the elastic 

Debye temperature, has to be calculated from the 

measured sound velocities instead from heat 

capacity data [71]. This rather laborious task 

requires accurate low-temperature data for the 

elastic constants [35]. The elastic Debye 

temperature can be considerably different from the 

calorimetric Debye temperature, evaluated from 

the asymptotic T3 function in the heat capacity 

[71]. As we have mentioned, only for magnets 

with a very high ordering temperature the 

asymptotic heat capacity for T→0 is given by the 

Debye T3 function (Figures 1, 4, 6). On the other 

hand, the very similar slopes in the Figures 19 and 

20 show that in the function c=A+B‧Tε the 

exponent ε and the pre-factor B are correlated. 

This supports the view that the universal exponents 

ε are determined by the Goldstone bosons and not 

by the Debye bosons.   

    As examples of ε=0, i.e. of a logarithmic 

behavior, Figure 21 and 22 display heat capacity 

data of MnO2 [72] and of cubic UO2 [39]. The 

magnetic ordering transitions of the two materials 

are first order [73]. At first-order transitions, the 

critical heat capacity seems to be divergent on both 

sides of Tc. The effective spin of the Mn4+ ion in 

MnO2 is Seff=1 instead of S=3/2. This can be 

concluded from observation of a T3 function below 

the critical range (Figure 21). The lattice structure 

of MnO2 is tetragonal. In cubic UO2 the spin of the 

U4+ ion is S=1. This results clearly from 

observation of T9/2 function in the thermal 

decrease of the spontaneous sublattice 

magnetization [6]. Interestingly, both materials 

with a first order magnetic phase transition exhibit 

the same exponent of ε=0 in the asymptotic power 

function for T →∞. 

 
Figure 21. Heat capacity of MnO2 as a function of 

absolute temperature as an example of ε=0 [72]. 

The magnetic ordering transition seems to be first 

order according to a logarithmically divergent 

critical heat capacity with exponent of α=0 on the 

low-temperature side of TN.
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Figure 22. Heat capacity of UO2 as a function of 

absolute temperature as an example of ε=0 [39]. 

The magnetic ordering transition of UO2 is 

strongly first order [73], giving rise to a divergent 

critical heat capacity with exponent of α=-3/4 on 

the low-temperature side of TN. 
 

5. Results 

    Within the experimental error limits, the critical 

exponents α and ε, fitted to the temperature 

dependence of the heat capacity of the magnetic 

solids, all seem to be rational numbers but they 

lack an obvious systematic. One reason for this is 

that the actual exponent value can depend on the 

preparation condition of the sample. For instance, 

the height of the heat capacity peak at Tc is well-

known to depend on the crystalline perfection of 

the sample. The fitted exponents α therefore might 

also depend on the quality of the sample. 

Nevertheless, the fitted values for the critical 

exponent α always are rational numbers within the 

experimental error limits. In other words, boson 

dynamics and therefore universality holds also for 

imperfect samples, and the number of the observed 

critical exponents remains strongly limited. That 

universality is independent of the morphology of 

the sample we know from the amorphous 

ferromagnets for which no other critical exponents 

than those known for the single crystals are 

observed [5,6,32,48]. The universality class, 

however, can be specific to the individual sample. 

Moreover, as was shown in [48] the dynamic 

universality class can be different for single crystal 

material and for powder samples. This can be 

understood if the powder grains are single domain 

particles. The dependence of the universality 

classes on the absolute size of the sample has been 

investigated in [32]. Note that in earlier times the 

heat capacity measurements were performed on 

large amounts of coarse-grained powder material 

[12,56,59-62]. In recent studies, small single 

crystals were sufficient. Another ambiguity is 

whether the crystal field interaction is relevant, 

and has changed the spin quantum number and 

thus the universality class of the spontaneous 

magnetization. Relevance of the crystal field can 

also depend on the sample preparation. However, 

very encouraging is that most of the exponents are 

reproduced on different materials.  

    One further complication in the interpretation of 

the exponents fitted to the heat capacity is that 

these exponents depend on the unknown coupling 

strength between the Goldstone bosons and the 

phonons. Fortunately, the coupling mechanism 

appears to be quantized [27,30] such that for the 

heat capacity a non-intrinsic universality arising 

from the bosons always holds. Due to the different 

coupling modes, the number of the different 

observed exponents is larger than the six 

universality classes of the spontaneous 

magnetization.  

    We now list the fitted values for the exponent ε 

describing the asymptotic behavior of the heat 

capacity for T→∞ and for the critical exponents α 

for T>Tc and for T<Tc. Note our sign convention 

for α (α<0 means a diverging behavior, α>0 means 

a finite heat capacity at Tc). In those cases where 

the same exponent is observed for different 

materials the averaged value is added. It can be 

seen, that within the experimental error limits, the 

assumption of rational exponent values is 

confirmed. Some of the exponents are grouped in 

a rather suggestive way for assumed constant 

values of the nominator or denominator.  

 

ε (T →∞)  

ε= 0 (UO2, MnO2) average: ε=-0.068±0.045  

ε=-2/4 (MnTe, MnO, CoF2, NiF2, FeF2) average: 

ε=-0.479±0.035 

ε=-3/4 (CuF2, Cr-metal) average: ε=-0.783±0.060 

ε=-4/4 (MnF2,) 

ε=-5/4 (CrCl2, VCl3, NiCl2, CoCl2) average: ε=-

1.182±0.041 

ε=-6/4 (EuS) 

 

ε=-2/3 (CrF2, VF2, Cr2O3) average: ε=-

0.669±0.022 

ε=-4/3 (CrCl3, MnCl2) average: ε=-1.358±0.086 

 

ε=-1/5 (NpO2, EuO) average: ε=-0.202±0.038 

ε=-2/5 (Fe3Se4) 

ε=-4/5 (Gd-metal)
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α(T>Tc) 

α=0 (RbMnF3, EuO, EuS, CrCl2, Gd) average: 

α=0.003±0.037 

α=-1/4 (EuTe) 

α=-2/4 (MnS, MnTe, FeCl2‧4H2O) average: α=-

0.503±0.070 

α=-3/4 (CoCl2, FeF2, Fe3Se4) average: α=-

0.741±0.070 

α=-4/4 (MnF2, GdCu2, CoO, NiO, TiCl3, CrF2) 

average: α=-1.058±0.071 

α=-5/4 (CoF2) 

 

α=-1/3 (NiF2) 

α=-1/5 (NiCl2‧6H2O, Cr2O3) average: α=-

0.188±0.027 

α=-2/5 (GdS) 

 

α(T<Tc) 

α=1/2 (CoCl2, MnO, NiF2, Cr2O3) average: 

α=0.510±0.018 

α=1/3 (EuO, CoO, CoF2) average: α=0.344±0.027 

α=1/4 (EuS, MnTe, MnF2, CrF2, NiCl2‧2H2O) 

average: α=0.254±0.035 

α=1/5 (TiCl3, Gd) average: α=0.209±0.019 

α=1/6 (FeF2) 

 

α=2/3 (GdCu2, MnS, NiCl2, Fe3Se4, CuF2, 

Mn2O3, CrCl2) average: α=0.660±0.032 

α=2/5 (GdS, RbMnF3) average: α=0.411±0.011 

α=4/5 (NiO) 

α=3/4 (CuCl2) 
 

 

6. Conclusions 

    Identification of a clear systematic in the here 

fitted critical exponents was not possible on the 

basis of the limited number of the investigated 

materials. Too many and difficult to estimate 

parameters influence the exponents of the heat 

capacity. Continuing studies of more materials 

appear highly desirable in order to substantiate the 

rather preliminary conclusions of this work. 

However, the general importance of boson fields 

for the dynamics of solids could further be 

demonstrated, by the here investigated magnetic 

solids. In a preceding publication this was 

demonstrated for the non-magnetic solids [27]. 

Quite generally, in the solids we have to 

distinguish between the bosons of the elastic, 

magnetic, electric and metallic degrees of 

freedom. The excitation spectra of these bosons 

exist in addition to the well-known atomistic 

excitations (phonons, magnons, electronic band 

states…), and cannot be neglected when 

discussing the dynamics, for instance, the heat 

capacity. The two types of (quasi)particles and 

their excitation spectra are distinguished by 

different translational symmetries (continuous and 

discrete-periodic). Symmetry conservation implies 

that the two excitation systems become relevant 

for the dynamics alternately only. This, however, 

requires a finite interaction between them in order 

that thermal energy can change from one to the 

other system. Only in the metals it is observed that 

at low-temperatures the heat capacities of the 

Debye bosons (~T3) and of the bosons of the 

metallic continuum (~T) superimpose. This is 

because the two boson types do not interact [26].  

    Most of the mentioned bosons and their sources 

are not yet clearly specified. Only the bosons of the 

continuous elastic solid are well known from 

practical experience as sound waves. The bosons 

of the continuous magnetic solid are essentially 

magnetic dipole radiation generated by the 

precessing spins [3]. We have every reason to 

assume that the bosons of the ferroelectric 

insulators are essentially electric dipole radiation 

[74]. The bosons of the continuous metallic solids 

are completely unexplored. All what we know is 

that the heat capacity of these bosons is a linear 

function of temperature [25]. Note that the up to 

know exclusively discussed electronic band states 

of the metals are the excitations of the discrete 

translational symmetry of the atomic lattice [75]. 

By chance, the band theories of the metals also 

predict a linear-in-T heat capacity for the 

electronic band states [41,75]. However, the 

observed low-temperature linear-in T heat 

capacity is bosonic in character and has a much 

larger pre-factor than the ~T heat capacity of the 

band states that occurs at higher temperatures only 

where the atomistic band states are the relevant 

excitations.  

    Universality of the thermodynamics of boson 

fields means independence of the chemical 

composition of the solid. For instance, the T3 heat 

capacity of the Debye boson field is observed for 

all non-magnetic solids at low temperatures [27]. 

Only the pre-factor of the T3 function is material 

specific.  In the same way, the same Planck 

electromagnetic radiation field is emitted by all 

glowing solids (black bodies) independent of their 

chemical composition. 

    For the ballistic propagating bosons there exists 

no atomic structure. In the elastic case, there is a 

problem associated with this view. In spite of no 

atoms, the elastic continuum has a mass density or 
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specific gravity. Responsible for the specific 

gravity of the elastic continuum are, of course, the 

atoms, that do, however, not occur in the elastic 

continuum. Sound waves, on the other hand, have 

no mass but they are possible in a medium with a 

mass only. The fact that sound waves propagate in 

a completely identical manner in solids, liquids 

and gases shows that they are energy degrees of 

freedom that are completely decoupled from the 

atoms and their thermal motions. 

    The atoms and their electronic structures are, 

however, very important for all boson fields, since 

they have to be identified as the sources of the 

bosons. However, spontaneous generation or 

absorption of bosons by individual atoms are 

completely unexplored processes. Even for the 

magnetic case there is no quantitative theory 

available that would describe the spontaneous 

generation of magnetic dipole radiation 

(Goldstone bosons) by the precessing atomic 

moments. Spontaneous generation or absorption of 

sound waves by individual atoms is completely 

non-understood as well. The sources of the Planck 

electromagnetic radiation field are electric dipoles 

of unclear provenance.    

    The atomistic excitations such as phonons or 

magnons have a finite upper energy limit given by 

the inter-atomic interaction strengths. For the 

dispersion energy of the freely propagating bosons 

there is no general upper energy limit.  For 

instance, the dispersion of the sound waves is a 

monotonically increasing function of wave-vector 

for all energies, up to melting point [27,30]. As a 

consequence, for elevated thermal energies viz. 

temperatures, the dispersion energy of the Debye 

bosons is larger than for the phonons. It is 

intuitively clear that under this condition thermal 

energy is primarily in the atomistic system with the 

lower dispersion energy. The dynamics therefore 

is atomistic. This qualitative argument becomes a 

quantitatively absolute distinction through the 

symmetry selection principle of relevance [1]. 

Because of the different translational symmetries 

of phonons and Debye-bosons, thermal energy can 

be either in one or the other of the two systems 

only. This means, the dispersion relation of the 

sound waves and of the phonons can be populated 

thermally only alternately. At high-temperatures 

the phonons are the relevant excitations because 

they have the lower dispersion energy. However, 

on approaching the critical temperature T=0 a 

crossover occurs at which thermal energy changes 

from the phonon system into the Debye boson field 

[6]. The heat capacity now exhibits the universal 

T3 dependence according to Debye, and the heat 

capacity of the non-excited phonons is zero. This 

example visualizes a general principle: upon 

approaching T=0 or any other finite critical 

temperature, boson fields become generally the 

relevant excitations such that the critical dynamics 

exhibits universality. Probably, all order-disorder 

phase transitions are driven by boson fields 

[76,77]. 

    The interactions between the bosons and the 

atomistic excitations modify the dispersion 

relations of both systems, and thus affect the 

critical exponents. This makes any field theory of 

the dynamics rather complicated. As we have 

shown recently, the Debye bosons modify the 

phonon dispersions [27], and the Goldstone 

bosons modify the magnon dispersions. As a 

consequence, atomistic theories are generally not 

able to describe all experimental details on the 

atomistic length scale correctly. As a consequence 

of these modifications the heat capacity of the 

phonons exhibits a non-intrinsic universal 

temperature dependence, arising from the 

interactions with the bosons. The here discussed 

universality in the heat capacity of the magnetic 

solids has also to be considered as non-intrinsic.  

    At the magnetic ordering transition, the boson 

field orders, and the system decomposes into 

domains, each with a perfect one-dimensional 

order. A two-dimensional or three-dimensional 

global boson field results from the coupling of the 

one-dimensional boson fields of the differently 

oriented domains and can be read from the number 

of inequivalent domain orientations. The perfect 

one-dimensional symmetry within each domain 

provides strong evidence that the bosons get 

generated by stimulated emission and therefore are 

in coherent states. In other words, the generation 

process of the bosons by stimulated emission 

appears to be one mechanism for the phenomenon 

of broken symmetry. Coherence of the bosons is 

the reason for the long-range and perfectly 

coherent atomic or spin order. The inter-atomic 

interactions are not able to stabilize a coherent 

long-range atomic or spin order. 
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