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1. Introduction

Throughout this paper w,?_, {;, ¢ andc.denote the spaces of all, bounded, absolutely
summable, convergent and null sequences x = (xk) with complex terms respectively.

The notion of difference sequence space was introduced by Kizmaz [ 1], who studied the
difference sequence spaces /_(A), ¢(A) and ¢, (A), where

Z(A)={x=(x)ew:(Ax,)eZ},
where Ax = (Ax, ) = (x, —x,,, ) and A’x, = x, for all k, for Z=¢_, c andc, .
An Orlicz function M :[0,0)—>[0,0) 1is a function, which is continuous,

non-decreasing and convex with M(0)=0,M(x)>0, for x>0 and M(x) > x,
as x > o,

An Orlicz function M can always be represented in the following integral form:
M) = p(t)dt,
0

where p, known as kernel of M, is right differentiable for #>0, p(0) =0, p(#) >0 for
t>0, pisnon-decreasing, and p(f) > as t—> ©.
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Consider the kernel p(¢) associated with the Orlicz function M(), and let

q(s) =sup{t: p(r) <s }
Then g possesses the same properties as the function p. Suppose now

®(x)=[q(s)ds

Then @ is an Orlicz function. The functions M and @ are called mutually
complementary Orlicz functions.

Now we state the following well known results which can be found in [2]
Let M and F are mutually complementary Orlicz functions. Then we have (Young’s
inequality)

(i) Forx, y >0, xy < M(x) +D(y) (1)
We also have

(ii) For x> 0, xp(x) = M(x) + ®(p(x)) )

(iii) M(hx) < AM(x) 3)

for all x>0 and A with 0< A<l1.

An Orlicz function M is said to satisfy the A;-condition for small x or at 0 if for each
>0 there exist R >0 and x>0 such that

M(kx) < RiM(x)
for all xe (0, x].
Moreover an Orlicz function M is said to satisfy the A,-condition if and only if
. M (2x)
limsup———< .

x—0 M (X)

Two Orlicz functions M; and M, are said to be equivalent if there are positive constants
a, f and xo such that
Mi(ax)< Ma(x) < Mi(Bx) 4)

for all x with 0 <x <xq

Lindenstrauss and Tzafriri [3] used the Orlicz function and introduced the sequence
space /,, as follows:

l,, ={(xk)ew:iM[Mj<oo,forsomep>0}
k=1

Yo,

For more details about Orlicz functions and sequence spaces associated with Orlicz
functions one may refer to [2-5].

Let A = (1) be a sequence of non-zero scalars. Then for a sequence space E, the
multiplier sequence space E(A), associated with the multiplier sequence A is defined as

E(N) = {(x,)ew:(2,x,)e E}.
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The scope for the studies on sequence spaces was extended by using the notion of
associated multiplier sequences. Goes and Goes [6] defined the differentiated sequence

space dE and integrated sequence spaceJE for a given sequence space E, using the

multiplier sequences (k') and (k) respectively. A multiplier sequence can be used to
accelerate the convergence of the sequences in some spaces. In some sense, it can be
viewed as a catalyst, which is used to accelerate the process of chemical reaction.
Sometimes the associated multiplier sequence delays the rate of convergence of a
sequence. Thus it also covers a larger class of sequences for study. In the present article
we shall consider a general multiplier sequence A = (k) of non-zero scalars.

The notion of duals of sequence spaces was introduced by K&the and Toeplitz [7]. Later
on it was studied by Kizmaz [ 1], Kamthan [§] and many others.

Let £ and F be two sequence spaces. Then the F dual of E is defined as

E'={(x)ew: (xp)eF foralln)eE }.
For F = £y, the dual is termed as K6the-Toeplitz or a-dual of E and denoted by E*. More
precisely, we have the following definition of Kothe Toeplitz dual of £:

E“ ={a =(ak):2|akxk| < oo, for all er}.
k

It is known that if X 1 v , then Y* — X° If E™"=E, where E™"= (E")", then E is said to be
F-reflexive or F-perfect. In particular, if E**= E, then E is also said to be a Kothe space.

Let A = (/) be a sequence of non-zero scalars. Then we define the following spaces.
Definition 1.1. Let M be any Orlicz function. Then we define
‘. (A,A)= {x ew: Sy (M,x)= ZM(|A/1kxk|) < oo},
k=1

where A4 x, =A,x, —4,,x,,, forallk>1.
We can write 7, (AO,A)Z 7, (A) and if 4= 1 for all k> 1, then we write

0y (A A) =1,
Similarly we can define 7,, (V,A), whereVA,x, = A4, x, —4,_x,_, forallk>1.
Definition 1.2. Let M and ® be mutually complementary functions. Then we define

Cy(AAN)= {x eEw: Z(Aﬂkxk )y, converges for all y e/, } .
k=1

We call this sequence space as Orlicz difference sequence space associated with the
multiplier sequence A = ().

We can write 7, (AO,A)Z ¢,,(A) and if 4= 1 for all k> 1, then we write
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L (A A) =2,
Similarly we can define /,, (V,A) whereVA,x, = 4,x, = 4,_x,_, forall k> 1.

One can easily observe in the special case M(x) = x” with 0<p<co and
A=(/1k)=(l,1,1,...) =e, the sequence space /,, (V,A) is reduced in the case 1< p<oo

to the Banach space bv, introduced by Basar and Altay [9] and is reduced in the case
0< p<I1 to the p-normed complete space bv, introduced by Altay and Basar [10],

where bv, denotes the space of all sequences x = (x;) such that
Vx = (xk —xk_l) el,.

2. Main Results
In this section we investigate the main results of this article.

Proposition 2.1. For any Orlicz function M,
() 7, (AA) = 2, (AA),
(i) 7,, (V,A) < £, (V,A).

Proof. (i) Letxe 7, (A,A). TheniM(|A/1kxk|) < 0. Now using (1), we have
k=1

Z (A4 x, )y,
=

for every y =(w) with ye 7, . Thus xe £, (A, A).

<>\ ALx )y <> M (A4 x )+ Y@ (|y,|) <o,
k=1 k=1

k=1

(i) Since the proof is similar to the proof of part (i), we omit it.

0

Z(A/Il.xi)yl.‘ :5(@,y)< 1}< o0,

i=1

Proposition 2.2. (i) For eachxe £, (A,A), sup{

0

z(v/lixi)yi‘ : 5((1),)/) < 1}< o0,

i=1

(i) For eachxe ¢, (V,A), sup{

Proof. (i) Suppose that the result is not true. Then for each n >1, there exists y" with
5(CD,y”)£ 1 such that

o0

Z (Aﬂ“ixi)yin

i=1

Without loss of generality we may assume that(A4x,), y" > 0. Now, we can define a

> 2"

sequence z = {z;} by
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By the convexity of @,

2 /
[Z—y,J_%F(y})w(% y’ 2h|s. <22incb<y,

n=1

and hence, using the contlnuity of @, we have

S(®,2)= ZCD ZZ (yi")szzin:

tlnl n=1

But for every [ >1,

PNCYRIED JUVRS) JENTEY 3) VRREAEY!
i=1 i=1 n=1

n=1 i=1

HenceZ(AZixi)zi diverges and this implies that x¢ ¢,, (A, A). This contradiction leads
i=1
us to the required result.

(if) Proof is similar to that of part (7).

The preceding result encourage us to introduce the following norms||.||j4 and ||||;
2y, (A,A) and /7, (V,A) , respectively.

Proposition 2.3.
(i) £,, (A,A) is a normed linear space under the norm ||||j4 defined by

b sl s Svanys oo <1 ©

(i) £,,(V,A) is a normed linear space under the norm ||||:4 defined by

o0
V —_—
Il = S“P{
i=1

5(<I>,y)£1}. (6)

Proof. (i) It is easy to verify that ¢, (A,A) is a linear space. Now we show that ||||; is
anormon /, (A,A).

If x = 6, then obviously ||x||j4 =0. Conversely assume ||x||; =0. Then using the definition

of norm, we have

|ilxl|+sup{ 3 (Alixl.)yi‘:é(d),y)ﬁl}zo.

i=1
This implies
[4x[=0 (7)

and

Z(Mixi)yi‘ :5(D,y)< 1} =0.

sup {

i=1
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This implies that

D (Adx) yl.‘ = 0 for all y such that 5(®, y)<1.
i=1

Now considering y ={e;} if ®(1)<1 otherwise considering y ={ei/ox1)} so that

AAx,=0 for all i>1. (8)

Combining (7) and (8), we have x; = 0 for all >1, since (l) is a sequence of non-zero
scalars and thus x = 0.

It is easy to show

A _ A d n A < A n A
e, =la [l and]x-+ v, <[], + ]l

(if) Let x = 6, then obviously ||x||; =0. Conversely assume ||x||; =0. Then using

the definition of norm, we have
sup{ .‘:5((D,y)£l}=0.

i=1
Z(Viixi)yi‘ = 0 for all y such that 5(®, y) <1.

This implies

i=1

Now considering y ={e;} if ®(1)<1 otherwise considering y ={ei/o1)} so that

VA,x,=0 for all i>1.
Taking i=1, we have
VAx=Ax, = Ax,=
This implies A;x; = 0, by taking xo=0. Proceeding in this way we have 4, x,=0 for all >1

and so x;= 0 for all >1, since (Ax) is a sequence of non-zero scalars. Thus x = 6.
It is easy to show

Jeextl, =led Jxl, ande+ 1, <l + [,
This completes the proof.

Remark. Z(A/lkxk)yk <o forall ye Zq) if and only if Z(Vﬂkxk )y, <oo forallye zq)

k=1 k=1

Also it is obvious that the norms ||||Z and ||||:4 are equivalent.

Proposition 2.4. (i) {,, (A, A) is a Banach space under the norm |. ||A

(ii) £,, (V,A) is a Banach space under the norm |. ||
Proof. We shall give proof of part (7). Proof of part (i7) is easy than part (7).

Let (x') be any Cauchy sequence in / Iy (A,A). Then for any ¢ > 0, there exists a positive

integer ng such that
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iR
=1, <.
M

for all i, j > ny. Using the definition of norm, we get

A —x5>\+sup{ S (04 5 — 5

:5((D,y)£1}<8,

for all i, j > no. This implies that‘/L(xf —x/ )‘< g, for all i, j > ny. Thus(&xf) is a Cauchy

sequence in C and hence it is a convergent sequence in C.

Let
lim A,x| = z1. )

i—o0

Again we have

S (04 (L~ 5,

k=1

:5(<D,y)£1}<8

for all i, j > ny and so

0

2 (AL (xp = x))y,

sup {
k=1

for all y with §(®, y) <1 and i, j > no .

<g

Now considering y ={e;} if ®(1)<1 otherwise considering y ={ei/o)} wWe have(Aﬂkx,i)

is a Cauchy sequence in C for all A>1 and hence it is a convergent sequence in C for all
k>1.

Let
lim A2, x, = y« (10)
for all k>1. Using (9) and (10) we have lim A, x, exists for each k=1 and so limx, =xx,

say exists for each A>1.

Now
lim| 2, — /)| =[x} ~x)|< &
for all i > ng. Also we can have
sup { Z (AL (3, = %)),
k=1
for all > ny as j— oo. Thus

it-soon

for all 2> ny and as j— co. It follows that (x'-x)e /,, (A,A) and ¢, (A,A) is a linear

:5(CD,y)S1}<8

i(Alk(x,i X))V, :5((I),y)£1}< 2¢

space and hence x=(xi) € £, (A,A).
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b i A . . l
From above proof we can easily conclude that Hx’ HM —0 implies that x, -0 for each

i>1. Hence we have the following Proposition.

Proposition 2.5. 1, (A, A) and 7, (V,A) are BK spaces under the norms defined by (5)
and (6), respectively.

Our next aim is to show that 7, (A,A) and ¢, (V,A) can be made BK spaces under

different but equivalent norms.

Proposition 2.6.
(i) £,, (A,A) is a normed linear space under the norm ||||(AM) defined by

||x||(AM)=|ﬂ1xl|+inf{p>O:iM[MJS1}, (11)
k=1 P
(ii) £, (V,A) is a normed linear space under the norm ||.||(VM) defined by
||x||(VM)=inf{p>O:iM(M]Sl}. (12)
k=1 P

Proof. (i) Clearly ||x||(AM) =0 if x=6. Next suppose ||x||(AM) =0. Then from (11) we have

|4x,|=0 and so A4,x, =0. (13)

e AL
Again inf { p>0: ZM [MJ < 1}20. This implies that for a givene >0, there
k=1 P

exists some p,(0< p, < &) such that

supM(Mj <I.
k P

D |A/”thk|
This implies that M | —— |<1 for all &> 1. Thus
Pe
AP

& P.

for all &> 1.
‘A/In_xn_‘
Suppose A4 x, #0, for some i. Let £ =0, then —— —>oo. It follows that
1 1 g
‘Aﬁ’n xn . . . .
M|*————|—> o as ¢ = 0 for somen, € N . This is a contradiction. Therefore
&
A4, x, =0 (14)
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for all £~ 1. Thus, by (13) and (14), it follows that A, x,=0 for all &~ 1. Hencex=26,
since (Ax) 1s a sequence of non-zero scalars.

Let x = (xi) and y = () be any two elements of ¢, (A, A). Then there existp,, p,>0

such that
Alkxk| |A/’tkyk|

supM[|—J <1 and supM[—J <l1.
k P k P>

Let p = p, + p, . Then by convexity of M, we have

sup M ‘Alk(xkijk)‘ < P supM(|A;kak|}+ P supM(—|Alkyk|j£1.
e P Ptpy ok P Ptpy ok P>

Hence we have

)c+yA =4 (x,+y)|+infs p>0:sup M w <1
(M) /’i’l 1 1 i p

1

AL
+inf p2>0:supM(| kyk|]£l .
e P>

) |A/1kxk|
g|ﬂ1xl|+mf p,>0:supM <1 +|ﬂ1y1|
k P

This implies ||x + y”(AM) < ”x”(Am * ||x ”(AM) '

Finally, let v be any scalar. Then

||Vx||(AM) =|v/11)c1 | +inf {p >0: supM(MJ < 1}
k

P
= |v||/11x1| +inf{r|v| >0:supM {M] < 1}
k r
=l
wherer = ﬁ . This completes the proof.
1%

(if) Proof is easy than part (7).

A
(M)

v
(M)

and |||| are equivalent.

Remark. 1t is obvious that the norms ||||

Proposition 2.7. Forxe (, (V,A) , we have
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ZM[M]I

Afl
k=1 l| x H(M)

Proof. Proof is immediate from (12).

\%

\4 . .
o) and ||||M are equivalent. To prove this some other

Now we show that the norms ||||

results are required. First we prove those results.

Proposition 2.8. Let xe(,(V,A) with ||x||:4§1. Then {p(|V/”Lnxn )} el, and
5(@,{p(|V;tnxn )})51.
Proof. For any ze ch , We may write
) v 1
z(m%)zj‘g{nxnﬂl ifo(@,2) <1 as)
p S(®,2)| x|}, if 6(D,z) >1

Let now xe £, (V,A) with [« <I. Also x™ = (x,... xa, 0,0, ....) € £,, (V,A) for n>1.
We observe that

v
[l > . n2l

Z (V/Iixi)yi(n)
=)

=2 (VAx")y,
i=1

for every ye ZD with o(®, y)<1 and thus

< <t

Since
Zn: ) (p (|V/Il.xl. |)) = Z ) (p (‘Vﬂixf”)
i=1 i=1

We find that { P (‘V/Iixl.(”)

)

)} e?, foreachn>1.Let/>1 be an integer such that

®(p(IVAx|))>1.

!
i=1
Then i(l) (p (‘Vﬁﬁ.xf”‘)) >1. Using (2), we have
im1
o ( p(‘Vﬂ,ifo)‘)) <M ([Vix"[)+ ( p(\v/lixf”\))

- o2 p{[v)
for all i, />1. So by (15), we get

i:(l)(p(‘Vﬂixfl>‘))<|| Pl 5(@,{p(‘Vi,.xf‘)}).
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This implies that || x ||}, >1, a contradiction. This contradiction implies that

Z:@(p(wﬂixil))ﬂ

for all / >1. Hence{p(|V/1ixi|)} el, and 5(@,{p(|V;tixi|)})§l.

Proposition  2.9. Let xe(,(V,A) with ||x||;§1. Then xe/,(V,A) and
SH (M, x) <A .

Proof. Let y={ p(|V/11.xl.|) / sgn(inl.xl.)} . Then from Proposition 2.8, ye ch and
5(<1),y)§1. By (2), we get

;M ([VAx])< ZM ([VAx])+ Z@(p(|v/1ixi|))
=i|v/1ixi|p(|Vlixi|)
i=1

(VAx,)y,

i=l1

<
= )CM.

This implies that 52 (M, x) <[x| .
o |V/1 xk|
Proposition 2.10. For xe / (V A) we have ZM IxIF <1.
k=1 X M
Proof. Proof is immediate from Proposition 2.9.

Theorem 2.11. Forxe (,, (V,A), ||x||(VM)§ I x||Z4§2||x||(VM).

Proof. We have

o,

x|" =inf p>0: wM M <1;.
(M) =

Then using Proposition 2.10, we get

1 16y < 113 -
Let us suppose that xe ¢, (V,A) with ||x||(VM) <l.Thenxe 7, (V,A) and 53 (M,x)<l.
Indeed,

-1 i=l ||x||(M)

S (vanl)< S ['V“'} )

by Proposition 2.7.
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Thus Lve . (V,A) with & M,LV <l. We further observe that for an
Il x”(M) xH(M)

arbitrary ze /,, (V.A),

IIZIILZSHP{

i(wizi)yi‘v(@,y)él} < 1+87 (M, 2)

i=1

using (1). Hence taking z :LV , we have

| x”(M)
S [ ]
” ; (HXH(M)

by Proposition 2.7. Thus || x|y, < 2|| x ||;},, - This completes the proof.

||x||(M)

Proposition 2.12. For any Orlicz function M, ¢, (V,A)=(},(V,A), where

f/ (V A)—{xew ZM[WA xk|

<o, forsomep>0;.
k=1 P

Proof- Proof follows from Proposition 2.10.
In view of above Proposition we give the following definition.

Definition 2.13. For any Orlicz function M,

h,, (V A)—{xew Z (|V/ka|j<oo, foreachp>0}.

k=1 P

Clearly h,, (V,A) is a subspace of /,,(V,A). Henceforth we shall write ||| instead of

||||(VM) provided it does not lead to any confusion. The topology of #,, (V, A) is the one it

inherits from ||.||.

Proposition 2.14. Let M be an Orlicz function. Then (7,, (V,A) |I-I) 1s an AK-BK space.

Proof. First we show that #,, (V,A) is an AK space. Let xe h,, (V,A) . Then for each ¢,

0< e <1, we can find an ny such that

ZM(MJSI

izng &

Hence for n > ny,

[pe-x™)| = inf{p >0: ) M[M] < I}Sinf{p >0: ZM[W""J] < 1} <e.
intl P i>n P
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Thus we can conclude thath,, (V,A) is an 4K space.
Next to show A, (V,A) is an BK space it is enough to show %, (V,A) is a closed
subspace of /,, (V,A). For this let {x"} be a sequence in %,, (V,A) such that
[lx"~x|| 0,
where xe€ h,, (V,A) . To complete the proof we need to show that xe 4,, (V,A) ,l.e.,

ZM(MJ<OO

i>1 P
for every p>0. To p>0 there corresponds an / such that ||x"-x|| < g Then using
convexity of M,
V2., 2|V x| - 2(\%# - |Wl-xi|)
M| =Y M
izl P P>l 2p
2|VAx! 2|VA,(x! - x,)
< lZM +12M
23 P 25 P
2|V A,x, 2|V, (x! —x,
Sle i +12M 1( 2
243 P 243 | x" = x|

by proposition 2.7. Thus x€ h,, (V,A) and consequently %, (V,A) is a BK space.

Proposition 2.15. Let M be an Orlicz function. If M satisfies the A,-condition at 0, then
¢, (V,A) is an 4K space.

Proof. In fact we shall show that if M satisfies the Aj-condition at 0, then
0, (V,A)=h, (V,A) and the result follows. Therefore it is enough to show that

l,, (V,A) ch, (V,A) .Letxe ?,, (V,A), then p > 0,

ZM[M]«»

i>1 P
This implies that

M| —— |— 0asi—on. (16)
P

VAix,
Choose an arbitrary / > 0. If p </, then ZM (@] <. Let now / < p and put k=§ )

i>1
Since M satisfies Aj-condition at 0, there exist R = R>0 and r = r > 0 with
M(kx)<RM(x) for all xe (0, r]. By (16) there exists a positive integer n; such that

|V/”tixl.| 1 (1)
M[—p <2rp >
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VAx
for all i > n;. We claim that MS r for all i > ny. Otherwise, we can find j > n; with
o,

‘V/lx‘
0

> r, and thus

VAix ‘ [v4,5) 1 r
M ‘# >| » Ndt>—rpl —

[ » J L/z pt)dt>- p(zj
Is a contradiction. Hence our claim is true. Then we can find that

S

izn izn p

ZM(—W/}XJJ <o

and hence

i>1

for every /> 0. This completes our proof.

Proposition 2.16. Let M; and M, be two Orlicz functions. If M; and M, are equivalent
then 7, (V,A)= o, (V,A) and the identity map

\%

)

v
L (04, (VA ) = (20, (VA).))
Proof. Let M and M, are equivalent and so satisfy (4). Suppose xe £, (V,A) , then

Z (IV IJ

is a topological isomorphism.

for some p > 0. Hence for some />1, |l/1—ixi|§ xo for all i >1. Therefore,
Jo,
i a|V/”tl.xl.| 2 |V/11.xl.|
ZM[ L ]SZM (_p J< -

Thus 7, (V,A)c?,, (V,A). Similarly ¢, (V,A) </, (V,A). Let us abbreviate
here /[, and [, by [f and [{,

, respectively. For xe EMZ (V,A) ,
VAx IJ
M <l1.
S

One can find p >1 with (%jﬂpz(%jzl, where p, is the kernel associated with M,.

oS el )

Hence
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for all i >1. This implies that |Vﬁ|c’| <xo forall i >1. Therefore
Hx

* ( |V/”Lx |]
M 1
=] 5

and so ||x||1 < (ﬁj”x”z Similarly we can show ||x|| , < ﬂy”x”1 by choosing y with yf >1
a

such that yﬂ(%j )2 (%jzl. Thus Ot,u_l“x”lS”x”2 < ,6’]/”36”1 which establishes that / is a

topological isomorphism.

Proposition 2.17. (i)¢,, (A) c/,, (V,A) ,
(i) £y (A) =l (AA).

Proof- (i) Proof follows from the following inequality:

s () )

P pr

(if) Proof is similar to that of part (7).
Proposition 2.18. Let M be an Orlicz function and p the corresponding kernel. If
p(x) = 0 for all x in [0, xo] where xo is some positive number, then £, (V,A) is
topologically isomorphic to /_ (V,A)and h,, (V,A) is topologically isomorphic to
C, (V,A).

Proof. Let p(x) =0 for all x in [0, xo]. If ye ¢_(V,A), then we can find a p > 0 such

that MSxo fori>1, and so iM(MJ< o, giving thus ye /,, (V,A). On
P i=1 P

the other hand let ye EM(V,A), then Z’O:M(|V/1iyi|
0

i=1
|V/1iyi|<oo for all i > 1, giving thus ye /_ (V,A). Hence ye 7 (V,A)if and only if
ye l, (V,A). We can easily find an x; with M(x;) > 1. Let ye ¢, (V,A) and

]< o, for some p > 0 and so

a=|b/||w=sqp(|V/1iyl.|)>0. (It is easy to show that |[y||w=sqp(|V/1l.yl.|) is a norm on

. (V,A)). For every ¢, 0< & < a, we can determine y; with ‘V/ljyj‘ > a-¢ and so

i [IVMM] M(Mj

1 o
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i=1

VA,
Since M is continuous, we find ZM [| y,| ]>l, and so |[y||»< xi|[y||, for otherwise

w Vi,
Z (| || tﬁ ’|J>1 is a contradiction by Proposition 2.7. Again, z M(m] -0
R y i=1 a

and it follows that|| y ||< L || v||,, . Thus the identity map

01: (2 (V.A)J]) = (2. (V. A),

is a topological isomorphism.

/)

For the last part, let ye hy, (V,A),

, | < &x), for all sufficiently
large 7, where x; is some positive number with p(x;) > 0. Hence ye ¢, (V,A). Next let
Vay| 1 : .

ye ¢,(V,A). Then for any p>0, "——<—x, for all sufficiently large i. Thus

M(MJ <oo for all p>0 and so ye h, (V,A).Hence h, (V,A)= ¢,(V,A) and we
P

are done.

Corollary 2.19. Let M be an Orlicz function and p the corresponding kernel. If p(x) =0
for all x in [0, xo] where x¢ 1S some positive number, then /,, (V,A) is topologically

isomorphic to ¢ and #,, (V,A) is topologically isomorphic toc, .

Proof- Let us define the mapping for Z=/_, ¢
T:Z(V,A)—Z
by Tx=(VAx,), forevery xe Z(V,A). Then clearly T'is a linear homeomorphism.

Hence the proof follows from Proposition 2.18.

Lemma 2.20. Let M be an Orlicz function. Thenxe £, (A,A) implies(kil/lkxk ) el,.

Proof. Let xe £, (A,A). Then, one can easily prove that (A4,x, )€ ¢, which gives the
result (k_likxk) el,.

Proposition 2.21. Let M be an Orlicz function and p be the corresponding kernel of M.
If p(x) = 0 for all x in [0, x¢], where x¢ is some positive number, then

(7) Kothe-Toeplitz dual of 7, (A, A) is Dy, where

Dlz{(ak) : ik‘/lk‘lak‘ < oo} :
k=1
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(if) Kothe-Toeplitz dual of D is D,, where

Dy= {(bk) ssupk | 4,b,| < oo} :
k

Proof. (i) Letae Dyandxe ?,, (A,A). Then

Ylax|= D k|ata |k A< s%pk*1|/1kxk|2k\/1,;lak\< .
k=1 k=1 k=1

Hence ae [KM (A,A)]a . Thus, the inclusion D; [KM (A,A)]a holds.
Conversely suppose that ae [EM (A,A)]a. Then i|akxk|< o for every xe £, (A,A).
k=1

So we can takex, =A,'k for all k >1, because then (x)e/,(A,A) and hence

(x)€ £, (A, A) as shown in Proposition 2.18.

Now Zk‘/lk_lak‘ =2|akxk| <o and thus ae D,. Hence, the inclusion [KM (A,A)T c D
k=1 k=1

holds.
(if) Proof follows by similar arguments used in the prove of case (7).

Proposition 2.22. Let M be an Orlicz function and p be the corresponding kernel of M.
If p(x) = 0 for all x in [0, x¢], where x is some positive number, then Kothe-Toeplitz

dual of 4,, (A,A) is Dy, where D; is defined as in Proposition 2.21.

Proof. Letae Dy and xe h,, (A,A). Then
Plax|= D k|a a6 4] < SI:pk‘l APV RARED
k=1 k=1 k=1

Hence ae [hM (A,A)]a , that is the inclusion D; [hM (A,A)]a holds.

Conversely suppose that ae [hM (A,A)]a and a¢ D,. Then there exists a strictly
increasing sequence (n;) of positive integers such that n; <n, <..., such that

iy 1
2 |4l K[>

k=n;+1

Define (xx) by
{0 , 1<k<n

ki 'sgna, /i , n <k<n,

Then (x) € ¢, (A, A) and so by Proposition 2.18, (xi)€ ,, (A, A). Then we have
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® ) Mt
2lax|= Dlax |+ + Y lax|+...
k=1 k=n;+1 k=n;+1

o) 1 Tt
= > kAta s Y ke ] > 1 =
1 L j=n+1

k=n+

This contradicts to a i [hM (A,A)]a . Hence ae D, i.e. the inclusion [hM (A,A)T c D,
also holds. This completes the proof.
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