

On Fuzzy Ideals Of Subtraction Semigroups

Zekiye Çiloğlu¹, Yılmaz Çeven^{1,*}

¹Department of Mathematics, Süleyman Demirel University, Isparta-TURKEY *Correspending author e-mail: yilmazceven@sdu.edu.tr

Received: 07 February 2014, Accepted: 30 April 2014

Abstract: In this paper, we introduce the notion of fuzzy interior ideal, fuzzy bi-ideal, intuitionistic fuzzy interior ideal and intuitionistic fuzzy bi-ideal of a subtraction semigroup. We characterize a non-empty subset of a subtraction semigroup X through intuitionistic fuzzy ideal, intuitionistic fuzzy bi-ideal and intuitionistic fuzzy interior ideal. We give some equivalent conditions related to these notions.

Key words: Subtraction semigroups, fuzzy interior ideal, fuzzy bi-ideal, intuitionistic fuzzy interior ideal, intuitionistic fuzzy bi-ideal.

AMS Mathematics Subject Classification (2000): 20M12, 03E72, 03F55, 03G25, 06B10, 06D99

Çıkarma Yarıgruplarda Bulanık İdealler Üzerine

Özet: Bu makalede, çıkarma yarıgruplarında bulanık iç ideal, bulanık bi-ideal, sezgisel bulanık iç ideal ve sezgisel bulanık bi-ideal kavramlarının tanımları verilmiştir. Bir X çıkarma yarıgrubunun boş olmayan bir alt kümesinin bulanık iç ideal, bulanık bi-ideal, sezgisel bulanık iç ideal ve sezgisel bulanık bi-ideal olması için bazı karakterizasyonlar verilmiştir. Ayrıca bu kavramlarla ilgili bazı denk koşullar elde edilmiştir.

Anahtar kelimeler: çıkarma yarıgruplar, bulanık iç ideal, bulanık bi-ideal, sezgisel bulanık iç ideal, sezgisel bulanık bi-ideal

1. Introduction and Preliminaries

B. M. Schein ([11]) considered systems of the form $(\Phi;\circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi;\circ)$ is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi; \backslash)$ is a subtraction algebra in the sense of [3]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka ([14])discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun, H. S. Kim and E. H. Roh ([6]) introduced the notion of ideals in subtraction algebras and discussed characterizations of ideals. In [7], Y. B. Jun and H. S. Kim established the ideal generated by a set and discussed related results.

After the introduction of fuzzy sets by Zadeh ([13]), several researchers were conducted on the generalizations of the notion of fuzzy set. The concept of intuitionistic fuzzy set was introduced by Atanassov [1,2] as a generalization of the notion of fuzzy set. In [12], Williams introduce a notion of fuzzy ideals in near-subtraction semigroups, and studied their related properties. In [5], Dheena and Mohanraj introduced the notion of fuzzy ideal, fuzzy weak ideal, fuzzy weakly prime left ideal and fuzzy prime left ideal system of a near-subtraction semigroup and discussed some related results. In this paper, we introduce the concepts of fuzzy interior ideal, fuzzy bi-ideal, intuitionistic fuzzy interior ideal and intuitionistic fuzzy bi-ideal in a subtraction semigroup and give some related properties.

Definition 1.1. An algebra (X;-) with a single binary operation "-" is called a subtraction algebra if for all x,y,z \in X the following conditions hold:

(1) x-(y-x)=x, (2) x-(x-y)=y-(y-x), (3) (x-y)-z=(x-z)-y.

The subtraction determines an order relation on X : $a \le b \Leftrightarrow a-b=0$, where 0=a-a is an element that doesn't depend on the choice of $a \in X$.

In a subtraction algebra, the following are true [6,7]:

(a1) (x-y)-y=x-y,
(a2) x-0=x and 0-x=0,
(a3) (x-y)-x=0,
(a4) (x-y)-(y-x)=x-y,
(a5) x≤y implies x-z≤y-z and z-y≤z-x for all z∈X.

Definition 1.2. A non-empty subset S of a subtraction algebra X is said to be a subalgebra of X if $x-y \in S$ whenever $x,y \in S$.

Definition 1.3. Let X be a semigroup. By a subsemigroup of X, we mean a non-empty subset S of X such that $xy \in S$ for all $x, y \in S$.

Definition 1.4. A semigroup X is said to be regular if, for each $a \in X$, there exists a $x \in X$ such that a=axa.

Definition 1.5. A non-empty set X together with the binary operations "-" and "." is said to be a subtraction semigroup if it is satisfies the following properties:

(SS1) (X,-) is a subtraction algebra, (SS2) (X,.) is a semigroup, (SS3) x(y-z)=xy-xz and (x-y)z=xz-yz for all $x,y,z \in X$.

It is clear that, in a subtraction semigroup X, we have 0x=0 and x0=0 for all $x \in X$.

Definition 1.6. (X,-,.) be a subtraction semigroup. A non-empty subset I of X is called

(I1) a left ideal if I is a subalgebra of (X,-) and $xi\in I$ for all $x\in X$ and $i\in I$,

(I2) a right ideal if I is a subalgebra of (X,-) and $ix \in I$ for all $x \in X$ and $i \in I$,

(I3) an ideal if I is both a left and a right ideal.

Example 1.7. Let (X,-,.) be a subtraction semigroup and $a \in X$. (i) $A_a = \{x \in X: ax=0\}$ is a right ideal of X.

(ii) $aX = \{ax: x \in X\}$ is a right ideal of X.

Definition 1.8. Let X be a non-empty set. A mapping $\mu: X \rightarrow [0,1]$ is called a fuzzy set of X.

Definition 1.9. The level set of a fuzzy set μ of X is defined as U=U(μ ;t)={x\in X : $\mu(x)\geq t$ } for all $0\leq t\leq 1$.

Definition 1.10. An intuitionistic fuzzy set (IFS) A in a non-empty set X is an object having the form

 $A=\{(x,\mu(x),\gamma(x)): x\in X\}$

where the functions $\mu: X \rightarrow [0,1]$ and $\gamma: X \rightarrow [0,1]$ denote the degree of membership and the degree of nonmembership, respectively, and

 $0 \le \mu(x) + \gamma(x) \le 1$

for all x \in X. For the sake of simplicity, we shall use the symbol A=(μ , γ) for the IFS

 $A=\{\ (x,\mu(x),\gamma(x)): x\in X\}.$

In what follows, let X be a subtraction semigroup, unless otherwise specified.

2. Fuzzy Interior Ideals and Fuzzy Bi-ideals

Definition 2.1.

(i) A subset Y of X is called an interior ideal of X if Y is a subalgebra of X and $XYX \subseteq Y$.

(ii) A subset Y of X is called a bi-ideal of X if Y is a subalgebra of X and $YXY \subseteq Y$. *Example 2.2.* Let $X = \{0,a,b,c\}$ in which "-" and "." are defined by the following table:

_	0	а	b	c		0	а	b	c
0	0	0	0	0	$\overline{0}$	0	0	0	0
а	a	0	а	а	a	0	0	0	0
b	b	b	0	b	b	0	0	0	a
c	c	c	c	0	c	0	0	a	b

Then it is easily seen that (X;-,.) is a subtraction semigroup and $I=\{0,b\}$ is both an interior ideal and a bi-ideal of X. But I is not an ideal of X.

Theorem 2.3.
(i) Every ideal of X is an interior ideal.
(ii) If X contains an identity element then every interior ideal of X is an ideal.
(iii) Any left (right, two-sided) ideal of X is a bi-ideal.

Proof. It is clear by the definitions.

If I is a single side ideal of a subtraction semigroup X then I is not an interior ideal of X. For example, the sets A_a and aX in Example 1.7 are not interior ideals generally.

Definition 2.4. For a fuzzy set μ in X, consider the following axioms:

(i) $\mu(x-y) \ge \min{\{\mu(x), \mu(y)\}},$ (ii) $\mu(xy) \ge \min{\{\mu(x), \mu(y)\}}$

for all x,y \in X. Then μ is called a fuzzy subalgebra of X if it satisfies (i), and μ is called a fuzzy subsemigroup of X if it satisfies (ii).

Let A be a non-empty subset of X and μ_A be a fuzzy set in X defined by

$$\mu_{A}(x) = \begin{cases} s, & \text{if } x \in A \\ t, & \text{if } x \notin A \end{cases}$$
(2.1)

for all $x \in X$ and $s,t \in [0,1]$ with s > t.

Theorem 2.5. Let A be a non-empty subset of X and μ_A be a fuzzy set in X defined in (2.1). Then

(i) A is a subalgebra of X if and only if μ_A is a fuzzy subalgebra of X
(ii) A is a subsemigroup of X if and only if μ_A is a fuzzy subsemigroup of X.

Proof. (i) Let $x,y \in X$. If $x,y \in A$, then $\mu_A(x-y)=s=\mu_A(x)=\mu_A(y)$ since $x-y \in A$. If $x \notin A$ or $y \notin A$, then $\mu_A(x)=t$ or $\mu_A(y)=t$. Hence $\mu_A(x-y)\ge t=\min\{\mu_A(x), \mu_A(y)\}$ by the definition of μ_A . Hence μ_A is a fuzzy subalgebra of X. Conversely, let $x,y \in A$. Then since $\mu_A(x-y)\ge \min\{\mu_A(x), \mu_A(y)\}=s$, we have $\mu_A(x-y)=s$ and so $x-y \in A$.

(ii) Similar to the proof of (i).

Definition 2.6. [12] A fuzzy set μ in X is called a fuzzy ideal of X if it satisfies the following axioms:

(FI1) $\mu(x-y) \ge \min{\{\mu(x),\mu(y)\}},$ (FI2) $\mu(xy) \ge \mu(y),$ (FI3) $\mu(xy) \ge \mu(x)$ for all x, y $\in X$.

Note that μ is called a fuzzy left ideal of X if it satisfies (FI1) and (FI2), and μ is called a fuzzy right ideal of X if it satisfies (FI1) and (FI3).

Example 2.7. Let X={0,a,b,c} in which "-" and "." are defined by the following table:

-	0	a	b	c		0	a	b	c
0	0	0	0	0	$\overline{0}$	0	0	0	0
a	а	0	а	0	a	0	а	0	a
b	b	b	0	0	b	0	0	b	b
c	c	b	а	0	с	0	а	b	c

Then (X;-,.) is a subtraction semigroup ([4]). Let μ be a fuzzy set on X defined by $\mu(0)=0.8$, $\mu(a)=0.5$, $\mu(b)=0.3$, $\mu(c)=0.1$. Then it is easy to see that μ is a fuzzy ideal of X.

Proposition 2.8. Let μ be a fuzzy ideal in X. Then $\mu(0) \ge \mu(x)$ for all $x \in X$.

Proof. Using (FI2), we have $\mu(0)=\mu(0x)\geq\mu(x)$ for all $x\in X$.

For the sake of completeness, we give the following theorems which are special cases of the Theorem 3.3 and Theorem 3.4 in [12].

Theorem 2.9. Let μ be a fuzzy left (right) ideal in X. Then the set $I_{\mu} = \{x \in X : \mu(x) = \mu(0)\}$ is a left (right) ideal of X.

Theorem 2.10. The subset A of X is an ideal of X if and only if μ_A defined by in (2.1), is a fuzzy ideal of X. Moreover $I_{\mu_A} = A$.

Corollary 2.11. Let μ be a fuzzy subset in X. If a non-empty level subset U of μ is an ideal of X, then μ_{II} is a fuzzy ideal of X.

Theorem 2.12. [5] Let μ be a fuzzy subset in X. μ is a fuzzy ideal of X if and only if any non-empty level subset U of μ is an ideal of X.

Definition 2.13. For a fuzzy set μ in X, consider the following axiom:

(FII2) $\mu(xay) \ge \mu(a)$

for all x,y,a \in X. μ is called a fuzzy interior ideal (FII) of X if it satisfies FI1 and FII2.

Proposition 2.14. Every FI of X is a FII.

Proof. By (FI2) and (FI3), we have $\mu(xay)=\mu((xa)y)\geq\mu(xa)\geq\mu(a)$ for all x,y,a \in X.

Theorem 2.15. A is an interior ideal of X if and only if μ_A is a fuzzy interior ideal of X.

Proof. Let A be an interior ideal of X and denote $\mu_A = \mu$. Let x, a, $y \in X$. If $a \in A$, we have xay $\in A$ since A is interior ideal of X. So we get $\mu(xay)=s=\mu(a)$. If $a \notin A$, then by the definition of μ , $\mu(xay)\ge t=\mu(a)$. Since A is also a subalgebra of X, by Theorem 2.5 (i), μ

satisfies (FI1). Conversely, let μ is a FII of X. By Theorem 2.5 (i), A is a subalgebra. Now let xay be any element of XAX. Then since $a \in A$ and μ is FII of X, we have $\mu(xay) \ge \mu(a) = s$ and hence we get $\mu(xay) = s$. So it is obtained that $xay \in A$.

Theorem 2.16. Let μ be a fuzzy set of X. If μ is a FII of X, then each non-empty level set $U=U(\mu;t)$ ($0 \le t \le 1$) of X is an interior ideal of X.

Proof. Let μ be a fuzzy interior ideal of X and U=U(μ ;t)={x \in X : $\mu(x) \ge t$ } for any t where $0 \le t \le 1$ be a level set of μ . For x, y $\in U$, since $\mu(x) \ge t$ and $\mu(y) \ge t$ and μ satisfies (FI1), we get $\mu(x-y) \ge \min\{\mu(x), \mu(y)\} \ge t$. Hence U is a subalgebra of X. For all x, $z \in X$ and $y \in U$ we have $\mu(xyz) \ge \mu(y) \ge t$. So we obtain $xyz \in U$, that is, $XUX \subseteq U$.

Definition 2.17. A fuzzy set μ in X is called a fuzzy bi-ideal (FBI) of X if it satisfies (FI1) and the following condition:

(BI2) $\mu(xyz) \ge \min{\{\mu(x),\mu(z)\}}$ for all x,y,z \in X.

Proposition 2.18. Every FI of X is an FBI of X.

Proof. Let μ be a FI of X. Then we get $\mu(xyz)=\mu((xy)z)\geq\mu(z)$ and $\mu(xyz)=\mu(x(yz))\geq\mu(x)$. Hence we can write $\mu(xyz)\geq\min\{\mu(x),\mu(z)\}$ for all x,y, $z\in X$.

Theorem 2.19. Let Y be a non-empty subset of X and μ_Y be a fuzzy set of X defined by (2.1). Then Y is a bi-ideal of X if and only if μ_Y is a FBI of X.

Proof. Denote $\mu_Y = \mu$. Let x,w,y $\in X$. If x,y $\in Y$, we have xwy $\in Y$ since Y is a bi-ideal. So we get $\mu(xwy) = s = \mu(x) = \mu(y) = \min{\{\mu(x), \mu(y)\}}$. If $x \notin Y$ or $y \notin Y$, then by the definition of μ , we have $\mu(xwy) \ge t = \mu(x) = \min{\{\mu(x), \mu(y)\}}$ (or $\mu(xwy) \ge t = \mu(y) = \min{\{\mu(x), \mu(y)\}}$). Since Y is also a subalgebra of X, by Theorem 2.5 (i), μ satisfies (F11). Conversely, let μ is a FBI of X. By Theorem 2.5 (i), Y is a subalgebra. For all x, $y \in Y$ and $w \in X$, we have $\mu(xwy) \ge \min{\{\mu(x), \mu(y)\}} = s$ and hence we get $\mu(xwy) = s$. So it is obtained that $xwy \in Y$, that is, $YXY \subseteq Y$.

Theorem 2.20. Let μ be a fuzzy set of X. If μ is a FBI of X, then each non-empty level set $U = U(\mu;t)$ ($0 \le t \le l$) of X is a bi-ideal of X.

Proof. Let μ be a FBI of X and U=U(μ ;t)={x \in X : μ (x) \geq t} for any t where 0 \leq t \leq 1 be a level set of μ . We have that U is a subalgebra of X as in the proof of Theorem 2.16. For all x,z \in U and y \in X, we have μ (xyz) \geq min{ μ (x), μ (z)} \geq t. So we obtain xyz \in U, that is, UXU \subseteq U.

3. Intuitionistic Fuzzy Interior Ideals and Intuitionistic Fuzzy Bi-ideals

Definition 3.1. For an IFS $A=(\mu,\gamma)$ in X, consider the following axioms:

(S1) $\mu(x-y) \ge \min{\{\mu(x), \mu(y)\}},$

 $\begin{array}{l} (S2) \ \gamma(x-y) \leq \max \left\{ \gamma(x), \gamma(y) \right\}, \\ (S3) \ \mu(xy) \geq \min \left\{ \mu(x), \mu(y) \right\}, \\ (S4) \ \gamma(xy) \leq \max \left\{ \gamma(x), \gamma(y) \right\}. \end{array}$

Then A is called intuitionistic fuzzy subalgebra (IFSA) of X if it satisfies (S1) and (S2) and A is called intuitionistic fuzzy subsemigroup (IFSS) of X if it satisfies (S3) and (S4).

Theorem 3.2. Let Y be a non-empty subset of X and $A=(\mu,\gamma)$ be an IFS of X defined by, for all $x \in X$,

$$\mu(x) = \begin{cases} s , & \text{if } x \in Y \\ t , & \text{if } x \notin Y \end{cases}, \quad \gamma(x) = \begin{cases} s , & \text{if } x \notin Y \\ t , & \text{if } x \in Y \end{cases}$$

(3.1)

where $s, t \in [0, 1]$, $0 \le s + t \le 1$ and s > t. Then

- (i) If Y is a subalgebra of X if and only if A is an IFSA of X,
- (ii) If Y is a subsemigroup of X if and only if A is an IFSS of X.

Proof. (i) Let Y be a subalgebra of X and x,y $\in X$. If x,y $\in Y$, then since x-y $\in Y$, we have $\mu(x-y)=s=\min\{\mu(x),\mu(y)\}$ and $\gamma(x-y)=t=\max\{\gamma(x),\gamma(y)\}$. If at least one of x and y does not belong to Y, then by the definition of μ and γ , we have $\mu(x-y)\geq t=\min\{\mu(x),\mu(y)\}$ and $\gamma(x-y)\leq s = \max\{\gamma(x),\gamma(y)\}$. So (S1) and (S2) are satisfied. Conversely, let x,y $\in Y$. Since A satisfies (S2) and $\gamma(x-y)\leq \max\{\gamma(x),\gamma(y)\}=t$, we have $\gamma(x-y)=t$ by the definition of γ . Hence we have x-y $\in Y$.

(ii) Let Y be a subsemigroup of X and x,y $\in X$. If $x,y \in Y$, then since $xy \in Y$, we have $\mu(xy)=s=\min\{\mu(x),\mu(y)\}$ and $\gamma(xy)=t=\max\{\gamma(x),\gamma(y)\}$. If at least one of x and y does not belong to Y, then by the definition of μ and γ , we have $\mu(xy)\ge t=\min\{\mu(x),\mu(y)\}$ and $\gamma(xy)\le s=\max\{\gamma(x),\gamma(y)\}$. So (S3) and (S4) are satisfied. Conversely, let $x,y\in Y$. Since A satisfies (S3) and $\mu(xy)\ge\min\{\mu(x),\mu(y)\}=s$, we have $\mu(xy)=s$ by the definition of μ . Hence we have $xy\in Y$.

Definition 3.3. An IFS A= (μ,γ) in X is called an intuitionistic fuzzy ideal (IFI) of X if it satisfies (S1), (S2) and the following conditions:

 $\begin{array}{l} (S5) \ \mu(xy) \geq \mu(y), \\ (S6) \ \gamma(xy) \leq \gamma(y), \\ (S7)) \ \mu(xy) \geq \mu(x), \\ (S8) \ \gamma(xy) \leq \gamma(x) \\ \text{for all } x, y \in X. \end{array}$

Note that A is an intuitionistic fuzzy left ideal (IFLI) of X if it satisfies (S1), (S2), (S5), (S6) and A is an intuitionistic fuzzy right ideal (IFRI) of X if it satisfies (S1), (S2), (S7), (S8).

Theorem 3.4. Let $A = (\mu, \gamma)$ *be an IFLI of X. Then the set*

$$\mathbf{X}_{\mathsf{A}} = \{ x \in X : \mu(x) = \mu(0), \ \gamma(x) = \gamma(0) \}$$

is a left ideal of X.

Proof. Let x, $y \in X_A$. Then since $\mu(x-y) \ge \min\{\mu(x), \mu(y)\} = \mu(0)$ and $\mu(0) = \mu(0(x-y)) \ge \mu(x-y)$, we get $\mu(x-y) = \mu(0)$. Also, since $\gamma(x-y) \le \max\{\gamma(x), \gamma(y)\} = \gamma(0)$ and $\gamma(0) = \gamma(0(x-y)) \le \gamma(x-y)$, we have $\gamma(x-y) = \gamma(0)$. Hence $x-y \in X_A$.

For all $a \in X$ and $x \in X_A$, since $\mu(ax) \ge \mu(x) = \mu(0)$, $\mu(0) = \mu(0(ax)) \ge \mu(ax)$, $\gamma(ax) \le \gamma(x) = \gamma(0)$ and $\gamma(0) = \gamma(0(ax)) \le \gamma(ax)$, we have $\mu(ax) = \mu(0)$ and $\gamma(ax) = \gamma(0)$. Hence $ax \in X_A$. So X_A is a left ideal of X.

Similarly, the Theorem 3.4 can be proved for the right case.

Theorem 3.5. Let Y be a non-empty subset of X and $A=(\mu,\gamma)$ be an IFS of X defined by (3.1). Then A is an IFI of X if and only if Y is an ideal of X.

Proof. Suppose A is an IFI of X. By Theorem 3.2 (i), Y is a subalgebra of X. For all $y \in Y$ and $x \in X$, since $\gamma(xy) \leq \gamma(y) = t$, we have $\gamma(xy) = t$ by the definition of γ . Hence we have $xy \in Y$. Similarly, it is obtained that $yx \in Y$ for all $y \in Y$ and $x \in X$. So Y is an ideal of X. Conversely, let Y be an ideal of X and $x, y \in X$. By Theorem 3.2, (S1) and (S2) are satisfied. Also, if at least one of x and y belong to Y, since Y is an ideal of X, we have $xy \in Y$ and so we get $\mu(xy) = s \geq \mu(x)$ (or $\mu(y)$) and $\gamma(xy) = t \leq \gamma(x)$ (or $\gamma(y)$). If both x and y does not belong to Y, then we obtain $\mu(xy) \geq t = \mu(x) = \mu(y)$ and $\gamma(xy) \leq s = \gamma(x) = \gamma(y)$. Hence (S5)-(S8) are satisfied, and A is an IFI of X.

Definition 3.6. An IFS A=(μ , γ) in X is called an intuitionistic fuzzy interior ideal (IFII) of X if it satisfies (S1), (S2) and the following conditions:

(II1) $\mu(xay) \ge \mu(a)$, (II2) $\gamma(xay) \le \gamma(a)$ for all x, a, $y \in X$.

Theorem 3.7. Every IFI of X is an IFII.

Proof. Let A=(μ , γ) be an IFI of X. Then A satisfies (S1), (S2) and (S5)-(S8). In (S5) and (S6), if we write ay instead of y and use (S7) and (S8), we have $\mu(xay) \ge \mu(ay) \ge \mu(a)$ and $\gamma(xay) \le \gamma(ay) \le \gamma(a)$.

Theorem 3.8. If X is a regular subtraction semigroup, then every IFII of X is an IFI. Proof. It is clear by (S1), (S2) and Theorem 3.10 in [8].

Theorem 3.9. Let Y be a non-empty subset of X and $A=(\mu,\gamma)$ be an IFS of X defined by (3.1). Then Y is an interior ideal of X if and only if $A=(\mu,\gamma)$ is an IFII of X.

Proof. Let x, a, $y \in X$. If $a \in Y$, we have $xay \in Y$ since Y is an interior ideal. So we get $\mu(xay)=s=\mu(a)$ and $\gamma(xay)=t=\gamma(a)$. If $a \notin Y$, then, by the definition of μ and γ ,

 $\mu(xay) \ge t = \mu(a)$ and $\gamma(xay) \le s = \gamma(a)$. Since Y is also a subalgebra of X, by Theorem 3.2 (i), A satisfies (S1) and (S2). Conversely, let $A = (\mu, \gamma)$ is an IFII of X. By Theorem 3.2 (i), Y is a subalgebra of X. Now let xay be any element of XYX. Then since $a \in Y$ and A is an IFII of X, we have $\mu(xay) \ge \mu(a) = s$ and hence we get $\mu(xay) = s$. So it is obtained that $xay \in Y$.

Definition 3.10. An IFS A=(μ,γ) in X is called an intuitionistic fuzzy bi-ideal (IFBI) of X if it satisfies (S1), (S2) and the following conditions:

(BI1) $\mu(xwy) \ge \min{\{\mu(x),\mu(y)\}},$ (BI2) $\gamma(xwy) \le \max{\{\gamma(x),\gamma(y)\}}$ for all x, w, $y \in X$.

Theorem 3.11. Let Y be a non-empty subset of X and $A=(\mu,\gamma)$ be an IFS of X defined by (3.1). Then Y is a bi-ideal of X if and only if $A=(\mu,\gamma)$ is an IFBI of X.

Proof. Let x, w, y∈X. If x, y∈Y, we have xwy∈Y since Y is a bi-ideal. So we get $\mu(xwy)=s=\mu(x)=\mu(y)=\min\{\mu(x),\mu(y)\}$ and $\gamma(xwy)=t=\gamma(x)=\gamma(y)=\max\{\gamma(x),\gamma(y)\}$. If x∉Y or y∉Y, then by the definition of μ and γ , we obtain $\mu(xwy)\geq t=\mu(x)=\min\{\mu(x),\mu(y)\}$ (or $\mu(xwy)\geq t=\mu(y)=\min\{\mu(x),\mu(y)\}$) and $\gamma(xwy)\leq s=\gamma(x)=\max\{\gamma(x),\gamma(y)\}$ (or $\gamma(y)=\max\{\gamma(x),\gamma(y)\}$). Since Y is also subalgebra of X, by Theorem 3.2 (i), A satisfies (S1) and (S2). Conversely, let A=(μ,γ) is an IFBI of X. By Theorem 3.2 (i), Y is a subalgebra. Now let xwy be any element of YXY. Then since x,y∈Y and A is an IFBI of X, we have $\mu(xwy)\geq\min\{\mu(x),\mu(y)\}=s$ and hence we get $\mu(xwy)=s$. So it is obtained that xwy∈Y.

Let Y be a non-empty subset of X and χ be the characteristic function of Y. Then $A=(\chi,\chi')$ where $\chi'=1-\chi$ is special case of A defined by (3.1). Therefore $A=(\chi,\chi')$ satisfies all proved Theorems about A defined by (3.1).

References

[1] Atanassov K.T., 1986. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87-96.

[2] Atanassov K.T., 1994. New operations defined over the intuitionistic fuzzy sets, *Fuzzy Sets and Systems* 61, 137-142.

[3] Abbott J.C., 1969. Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston.

[4] Dheena P., Satheesh Kumar G., 2007. On strongly regular near-subtraction semigroups, *Commun. Korean Math. Soc.* 22, No.3, 323-330.

[5] Dheena P., Mohanraj G., 2012. Fuzzy weakly prime ideals of near-subtraction semigroups, *Annals of Fuzzy Mathematics and Informatics*, Vol.4, No.2, 235-242.

[6] Jun Y.B., Kim H.S., Roh E.H., 2004. Ideal theory of subtraction algebras, *Sci. Math. Jpn. Online* e-2004, 397-402.

[7] Jun Y.B., Kim H.S., 2006. On ideals in subtraction algebras, *Sci. Math. Jpn. Online* e-2006, 1081-1086.

[8] Kim H.S., Jun Y.B., 2002. Intuitionistic fuzzy ideals of semigroups, *Indian J. Pure Appl. Math.*, 33(4), 443-449.

[9] Lee K.J., Park C.H., 2007. Some questions on fuzzifications of ideals in subtraction algebras, *Commun. Korean Math. Soc.* 22, No.3, 359-363.

[10] Öztürk M.A., Çeven Y., Jun Y.B., 2007. Intuitionistic fuzzy sets in semigroups, *Sci. Math. Jpn. Online*, e-2007, 37-42.

[11] Schein B.M., 1992. Difference semigroups, *Communications in Algebra* 20, No.8, 2153-2169.

[12] Williams D.R.P., 2008. Fuzzy ideals in near-subtraction semigroups, *World Academy of Science, Engineering and Technology*, Vol. 2, Issue 1, 39-46.

[13] Zadeh L.A., 1965. Fuzzy Sets, Information and Control 8, No.3, 338-353.

[14] Zelinka B., 1995. Subtraction semigroups, Math. Bohemica 120, No.4, 445-447.

Zekiye Çiloğlu e-mail: zekiyeciloglu@sdu.edu.tr