

# Second Type Chebyshev Polynomial Approximation to Linearly Anisotropic Neutron Transport Equation in Slab Geometry

Muhammet Karataşlı<sup>1</sup>, Tahsin Özer<sup>2,\*</sup>, Ahmet Varinlioğlu<sup>3</sup>

<sup>1</sup> Cukurova University, 01330, Adana, Turkey <sup>2</sup> Osmaniye Korkut Ata University. Bahçe MYO, 80000, Osmaniye, Turkey <sup>3</sup> Cekmece Nuclear Research and Training Center, 34303, Küçükçekmece, İstanbul, Turkey \*corresponding author e-mail: tahsinozer@osmaniye.edu.tr

Received: 05 October 2015, Accepted: 22 October 2015

**Abstract:** In one-dimensional slab geometry, the neutron transport equation was solved in one-speed and linearly anisotropic scattering by implementing the method of separation of variables. The part which depended on the position selected as an exponential function on the other hand the part that was relied upon the angle was chosen as Legendre polynomials or Chebyshev polynomials. The approximation we used is called as  $U_N$  method because in the method second type Chebyshev polynomials were used. To solve these differential equations, an exponential function was suggested in both  $P_N$  and  $U_N$  method. By using the suggested function in differential equations, analytical equations in which v eigenvalues can be calculated were obtained. These analytical equations were solved and v eigenvalues calculated for different values ( $0 \le c_1 < 2: c_0 = 0, c_0 = 0.25, c_0 = 0.50, c_0 = 0.75, c_0 = 0.99$ ) of  $c_0$  and  $c_1$  (where c is the number of secondary neutrons per collision) and the results were presented in the same tables for comparison.

Key words: Slab geometry, neutron transport equation, Chebyshev polynomials

# Slab Geometride Lineer Anizotropik Nötron Transport Denklemine İkinci Tip Chebyshev Polinom Yaklaşımı

**Özet:** Tek boyutlu dilim geometride, tek hızlı ve lineer anizotropik saçılmalı durumda nötron transport denklemi değişkenlere ayırma yöntemi kullanılarak çözülmüştür. Konuma bağlı kısım eksponansiyel bir fonksiyon, açıya bağlı kısım ise Legendre veya Chebyshev Polinomları olarak seçilmiştir. Chebyshev Polinomlarının II. tipi kullanıldığından U<sub>N</sub> yaklaşımı olarak adlandırıldı. Bu diferansiyel eşitliklerin çözümü için hem P<sub>N</sub> hem de U<sub>N</sub> yönteminde eksponansiyel bir fonksiyon önerilmiştir. Önerilen fonksiyon diferansiyel eşitliklerde kullanılarak öz değerlerinin hesaplanabileceği birbirine bağlı analitik denklemler elde edilmiştir. Bu analitik denklemler çözülmüş c<sub>0</sub> ve c<sub>1</sub>'in (çarpışma başına ortaya çıkan nötron sayıları) farklı değerler için ( $0 \le c_1 < 2: c_0=0, c_0 = 0.25, c_0 = 0.50, c_0 = 0.75, c_0 = 0.99$ ) v öz değerleri hesaplanmış ve karşılaştırma yapmak için tablolar sunulmuştur.

Anahtar kelimeler: Slab geometri, nötron transport denklemi, Chebyshev polinomları

## 1. Introduction

Per each fission reaction is revealed about 2-3 neutron. These neutrons can trigger the other core to fission. For this reason it has to be controlled chain reaction. The thermal neutrons causing fission are slowed by placing into the reactor moderator. The reaction speed can be controlled by the reactor control rods suspended from [1].

The reactor must remain constant the number of neutrons in the division for the safe operation. Remain constant number of neutrons is called critical. Subcritical case the reactor damped. The neutron movement and amount successive fission reactions resulting from reaction are important for continuity.

The transport equation, under certain approaches having regard to only the position dependence of the neutron is achieved to neutron diffusion equation. Troubles design of

#### M. Karataşlı vd.

nuclear reactors and the neutron flux distribution in the reactor to operate must be known exactly. Many methods have been developed for this purpose. The most commonly used  $P_N$ , Legendre polynomial [2] approximation, is a method. In this method, neutron transport equation is solved by opening the series in terms of Legendre polynomials. In applied science, orthogonal polynomials such as Legendre, Chebyshev etc. have a great importance. Legendary polynomials [3] have a special place in neutron transport theory.

In this study, an alternative to other methods, in order to solve neutron transport equation, angular flux function  $\psi$  (x, y) is expanded series of the second type Chebyshev polynomials. This method was called the U<sub>N</sub>. Conkie (1959) has first time suggested [4], the neutron transport equation can be solved with Chebyshev polynomials.

To solve the resulting differential equations, exponential functions proposed a similar method to  $P_N$ . This proposed exponential function used in the differential equations and analytical equations obtain the eigenvalues can be calculated. These interconnected analytical equations are solved. The number of neutrons per collision occurring ( $c_0$  and  $c_1$ ) given the possible values and assessments were made about the v.

## 2. Materials and Methods

#### 2.1. Legendre polynomials

 $\mu$ =cos $\theta$ , k *is a constant, m is an integer,* 

$$\left(1-\mu^{2}\right)\frac{d^{2}}{d\mu^{2}}\left[P_{n}^{m}(\mu)\right]-2\mu\frac{dP_{n}^{m}(\mu)}{d\mu}+\left(k-\frac{m^{2}}{1-\mu^{2}}\right)P_{n}^{m}(\mu)=0$$
(1)

 $-1 \le \mu \le 1, 0 \le n \le N, -n \le m \le n$ 

Equality, depending Legendre differential equation, the solution of the equation is called the Legendre polynomials connected.

#### 2.2. Chebyshev polynomials

$$(1 - \mu^2)\frac{d^2 y}{d\mu^2} - \mu\frac{dy}{d\mu} + n^2 y = 0$$
(2)

Chebyshev polynomials arise from the differential solution. This differential equation has two independent solutions. Chebyshev polynomials with two independent solutions as I ( $T_N$ ) and II ( $U_N$ ) are known as such I. and II. Series solutions called types are given by;

$$T_{n}(\mu) = \sum_{m=0}^{\lfloor n/2 \rfloor} \frac{(-1)^{m} n!}{(n-m)!(2m)!} (1-\mu^{2})^{m} \mu^{n-2m}$$
(3)

$$U_{n}(\mu) = \sum_{m=0}^{[n/2]} (-1)^{m} \frac{(n-m)!}{m!(n-2m)!} (2m)^{n-2m}$$
(4)

Chebyshev polynomials are special spherical polynomial [5]. II. Type Chebyshev polynomials generating function,



$$\frac{1}{1 - 2\mu t + t^2} = \sum_{n=0}^{\infty} t^n U_n(\mu), \ |\mu| \le 1, \ |t| < 1$$
(5)

These polynomials repetition relation is given by,

$$U_{n+1}(\mu) - 2\mu U_n(\mu) + U_{n-1}(\mu) = 0$$
(6)

 $U_0(\mu)=1$  value using, for various values of  $U_N(\mu)$  can be obtained polynomials. Another way to obtain the second type Chebyshev polynomials is to take the determinant of the matrix below.

$$U_{n}(\mu) = \begin{vmatrix} 2\mu & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 2\mu & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 2\mu & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 2\mu & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \ddots & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2\mu \end{vmatrix}$$
(7)

### 2.3. Neutron Transport Equation

One group and independent transport equation can be written as follows [6].  $\Omega \nabla \psi(r, \Omega) + \sigma_T \Psi(r, \Omega) = \int_{\Omega} \sigma_s(\Omega \Omega') \Psi(r, \Omega') d\Omega' + Q/2$ 

$$\mu \frac{d\Psi(x,\mu)}{dx} + \sigma_T \Psi(\mu) = \int_{-1}^{1} \sum_{n=0}^{\infty} \frac{2n+1}{2} \sigma_{sn} P_n(\mu) P_n(\mu') \Psi(x,\mu') d\mu'$$
(9)

If this equality only held for n = 0,

$$\mu \frac{d\Psi(x,\mu)}{dx} + \sigma_T \Psi(\mu) = \frac{1}{2} \sigma_{so} \int_{-1}^{1} \Psi(x,\mu') d\mu'$$
(10)

In equation 9, unit of the  $\sigma_{s0}$ ,  $\sigma_{s1}$  and  $\sigma_T$  are quantity cm<sup>-1</sup>. In this study, all the numerical calculations were.  $\sigma_T = 1 \text{ cm}^{-1}$ .

## 2.4. Legendre polynomials Approach: P<sub>N</sub> Method

Angular flux function  $\psi(x, \mu)$  expand the series in terms of Legendre polynomials; can be expressed as follows by using matrix algebra.

(8)

#### M. Karataşlı vd.

$$\begin{bmatrix} \upsilon(1-c_0) & 1 & 0 & 0 & \cdots & 0 \\ 1 & 3\upsilon(1-c_1) & 2 & 0 & \cdots & 0 \\ 0 & 2 & 5\upsilon & 3 & \cdots & 0 \\ 0 & 0 & 3 & 7\upsilon & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & (2n+1)\upsilon \end{bmatrix} x \begin{bmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \\ \vdots \\ A_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
(11)

This  $(N + 1) \times (N + 1)$  square matrix determinant equalized to zero and v values can be calculated. Giving various values to  $c_0$  and  $c_1$  for the  $P_2$ ,  $P_5$ ,  $P_6$  and  $P_{10}$  approaches have been calculated for v values. $c_0$  and  $c_1$  same values have been used to calculate for v in  $U_N$  and  $P_N$  approaches. The v values obtained from both methods for the same number of  $c_0$  and  $c_1$  are presented in the same table together. v values are used to calculate the flux moments.

#### 2.5. Chebyshev Polynomial Approach: U<sub>N</sub> Method

Angular flux function  $\psi(x, \mu)$  expand the series in terms of second type Chebyshev polynomial terms, can be expressed as follows by using matrix algebra.

$$\begin{bmatrix} \upsilon(1-c_0) & 1 & 0 & 0 & \cdots & 0 \\ 1 & 2\upsilon(1-c_1) & 1 & 0 & \cdots & 0 \\ \frac{2}{2} & 1 & 2\upsilon & 1 & \cdots & 0 \\ 0 & \frac{4}{5}\upsilon c_1 & 1 & 2\upsilon & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \begin{bmatrix} 1+(-1)^n \\ n+1 \end{bmatrix} & \frac{3}{2} \begin{bmatrix} (n+1)[1-(-1)^n] \\ n(n+2) \end{bmatrix} & 0 & 0 & \cdots & 2\upsilon \end{bmatrix} x \begin{bmatrix} G_0 \\ G_1 \\ G_2 \\ G_3 \\ \vdots \\ G_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
(12)

This  $(N + 1) \times (N + 1)$  square matrix determinant equalized to zero and v values can be calculated. Giving various values to  $c_0$  and  $c_1$  for the  $U_2$ ,  $U_5$ ,  $U_6$ , and  $U_{10}$  approaches have been calculated for v values.

#### 3. Results and Discussion

Maple9 computer program was used to calculate the value of v in the P<sub>N</sub> and U<sub>N</sub> approach. Results for the calculation were rounding up to the fifth decimal place. For N even, A<sub>N</sub>( $v_j$ )=0 and G<sub>N</sub>( $v_j$ )=0 gives symmetric eigenvalues as  $\pm v$ . These values are symmetrical with respect to the origin point. For this reason positive  $v_j$  eigenvalues are shown in Tables.



|     |      | N = 1   |         | N =     | - 4     | N =     | = 5     | N       | = 9     |
|-----|------|---------|---------|---------|---------|---------|---------|---------|---------|
|     |      | $U_N$   | $P_N$   | $U_N$   | $P_N$   | $U_N$   | $P_N$   | $U_N$   | $P_N$   |
|     |      | 5.00000 | 5.77350 | 7.75164 | 7.75338 | 7.75337 | 7.75338 | 7.75338 | 7.75339 |
|     |      |         |         | 0.55860 | 0.62933 | 0.69363 | 0.76634 | 0.90216 | 0.93437 |
|     | 0.99 |         |         | 0.00    | 0.00    | 0.23242 | 0.24760 | 0.71583 | 0.73996 |
|     |      |         |         |         |         |         |         | 0.43348 | 0.45845 |
|     |      |         |         |         |         |         |         | 0.14397 | 0.15027 |
|     |      | 1.11803 | 1.29099 | 1.75992 | 1.76942 | 1.76829 | 1.76972 | 1.76975 | 1.76976 |
|     |      |         |         | 0.55016 | 0.61663 | 0.68553 | 0.75577 | 0.89885 | 0.93166 |
| 0   | 0.80 |         |         | 0.00    | 0.00    | 0.23057 | 0.24595 | 0.70980 | 0.73422 |
| 0.C |      |         |         |         |         |         |         | 0.43076 | 0.45473 |
| Ξ.  |      |         |         |         |         |         |         | 0.14366 | 0.15001 |
| 0   |      | 0.70710 | 081649  | 1.14663 | 1.16675 | 1.16274 | 1.17085 | 1.17213 | 1.17265 |
|     |      |         |         | 0.53405 | 0.59144 | 0.66799 | 0.73044 | 0.88891 | 0.92253 |
|     | 0.50 |         |         | 0.00    | 0.00    | 0.22759 | 0.23427 | 0.69578 | 0.72060 |
|     |      |         |         |         |         |         |         | 0.42580 | 0.44787 |
|     |      |         |         |         |         |         |         | 0.14316 | 0.14959 |
|     |      | 0.50000 | 0.57735 | 0.86602 | 0.90617 | 0.90096 | 0.93246 | 0.95949 | 0.97390 |
|     |      |         |         | 0.50000 | 0.53846 | 0.62348 | 0.66120 | 0.84125 | 0.86506 |
|     | 0.00 |         |         | 0.00    | 0.00    | 0.22252 | 0.23861 | 0.65486 | 0.67941 |
|     |      |         |         |         |         |         |         | 0.41541 | 0.43339 |
|     |      |         |         |         |         |         |         | 0.14231 | 0.14887 |

**Table 1.** For co =0 and  $0 \le c_1 < 1$ , Comparison of U<sub>N</sub> and *P<sub>N</sub>Approach* 

As seen in Table 1 for  $c_0 = 0$  and  $c_1 = 0$  all of eigenvalues v is smaller than 1. One of the eigenvalues for  $c_0 = 0$  and  $c_1 > 0$ , also may be larger than 1.

|           |      | N = 1   |         | N                  | = 4     | N=                 | = 5     | N                             | = 9                           |
|-----------|------|---------|---------|--------------------|---------|--------------------|---------|-------------------------------|-------------------------------|
|           |      | $U_N$   | $P_N$   | $U_N$              | $P_N$   | $U_N$              | $P_N$   | $U_N$                         | $P_N$                         |
|           |      | 5.77350 | 6.66666 | 8.43713            | 8.43848 | 8.43848            | 8.43848 | 8.43848                       | 8.43848                       |
|           |      |         |         | 0.57081            | 0.64351 | 0.70279            | 0.77393 | 0.90398                       | 0.93562                       |
|           | 0.99 |         |         | 0.00               | 0.00    | 0.24337            | 0.26012 | 0.72028<br>0.44143<br>0.14877 | 0.74447<br>0.46647<br>0.15553 |
|           |      | 1.29099 | 1.49071 | 1.90700            | 1.91423 | 1.91339            | 1.91439 | 1.91440<br>1.91441            |                               |
|           |      |         |         | 0.56471            | 0.63433 | 0.69708            | 0.76630 | 0.90156                       | 0.93362                       |
|           | 0.80 |         |         | 0.00               | 0.00    | 0.24197            | 0.25894 | 0.71585                       | 0.74029                       |
| ).25      |      |         |         |                    |         |                    |         | 0.43961<br>0.14855            | 0.46387<br>0.15536            |
| $c_{0}=0$ |      | 0.81649 | 0.94280 | 1.23137            | 1.24649 | 1.24323            | 1.24878 | 1.24931                       | 1.24953                       |
|           |      |         |         | 0.55311            | 0.61609 | 0.68492            | 0.74855 | 0.89486                       | 0.92760                       |
|           | 0.50 |         |         | 0.00               | 0.00    | 0.23971            | 0.25700 | 0.70590<br>0.43633<br>0.14819 | 0.73074<br>0.45913<br>0.15508 |
|           |      | 0.57735 | 0.66666 | 0.91241<br>0,94414 |         | 0.93786            | 0.96217 | 0.97854                       | 0.98827                       |
|           |      |         |         | 0.52783            | 0.5751  | 0,65260<br>0.69615 |         | 0.86028                       | 0.88646                       |
|           | 0.00 |         |         | 0.00               | 0.00    | 0.23582            | 0.25362 | 0.67618<br>0.42949<br>0.14759 | 0.70100<br>0.44913<br>0.15461 |

**Table 2.** For co =0.25 and  $0 \leq c_1 < 1$ , Comparison of U<sub>N</sub> and *P<sub>N</sub>Approach* 



|                  |      | N       | = 1     | N       | = 4     | N       | = 5     | N                  | = 9                |
|------------------|------|---------|---------|---------|---------|---------|---------|--------------------|--------------------|
|                  |      | $U_N$   | $P_N$   | $U_N$   | $P_N$   | $U_N$   | $P_N$   | $U_N$              | $P_N$              |
|                  |      | 7.07106 | 8.16496 | 9.66383 | 9.66473 | 9.66473 | 9.66473 | 9.66473            | 9.66473            |
|                  |      |         |         | 0.58612 | 0.66128 | 0.71469 | 0.78382 | 0.90651            | 0.93733            |
|                  | 0.99 |         |         | 0.00    | 0.00    | 0.25592 | 0.27465 | 0.72611            | 0.75045            |
|                  |      |         |         |         |         |         |         | 0.45104<br>0.15401 | 0.47622<br>0.16132 |
|                  |      | 1.58113 | 1.82574 | 2.17424 | 2.17889 | 2.17838 | 2.17895 | 2.17896            | 2.17896            |
|                  |      |         |         | 0.58252 | 0.65588 | 0.71153 | 0.77934 | 0.90507            | 0.93613            |
|                  | 0.80 |         |         | 0.00    | 0.00    | 0.25502 | 0.27396 | 0.72342            | 0.74797            |
| •                |      |         |         |         |         |         |         | 0.45012            | 0.47476            |
| 0.50             |      |         |         |         |         |         |         | 0.15388            | 0.16123            |
| $c_{0\parallel}$ |      | 1.00000 | 1.15470 | 1.39106 | 1.40044 | 1.39828 | 1.40128 | 1.40140            | 1.40146            |
|                  |      |         |         | 0.57584 | 0.64539 | 0.70511 | 0.76958 | 0.90155            | 0.93300            |
|                  | 0.50 |         |         | 0.00    | 0.00    | 0.25356 | 0.27285 | 0.71776            | 0.74269            |
|                  |      |         |         |         |         |         |         | 0.44848            | 0.47216            |
|                  |      |         |         |         |         |         |         | 0.15367            | 0.16108            |
|                  |      | 0.70710 | 0.81649 | 1.00908 | 1.02887 | 1.02297 | 1.03662 | 1.04104            | 1.04374            |
|                  |      |         |         | 0.56132 | 0.62117 | 0.68835 | 0.74094 | 0.88607            | 0.91623            |
|                  | 0.00 |         |         | 0.00    | 0.00    | 0.25104 | 0.27088 | 0.70195            | 0.72734            |
|                  |      |         |         |         |         |         |         | 0.44517            | 0.46685            |
|                  |      |         |         |         |         |         |         | 0.15331            | 0.16083            |

**Table 3.** For co =0.50 and  $0 \leq c_1 < 1$ , Comparison of U<sub>N</sub> and *P<sub>N</sub>Approach* 

|                |      | N = 1              |       | N       | = 4     | N       | = 5     | N                             | = 9                           |
|----------------|------|--------------------|-------|---------|---------|---------|---------|-------------------------------|-------------------------------|
|                |      | $U_N$              | $P_N$ | $U_N$   | $P_N$   | $U_N$   | $P_N$   | $U_N$                         | $P_N$                         |
|                |      | 10.0000<br>11.5470 |       | 12.6504 | 12.6508 | 12.6508 | 12.6508 | 12.6508                       | 12.6508                       |
|                |      |                    |       | 0.60589 | 0.68419 | 0.73070 | 0.79720 | 0.91021                       | 0.93986                       |
|                | 0.99 |                    |       | 0.00    | 0.00    | 0.27044 | 0.29175 | 0.73402<br>0.46282<br>0.15976 | 0.75868<br>0.48823<br>0.16771 |
|                |      | 2.23606<br>2.58198 |       | 2.83449 | 2.83646 | 2.83626 | 2.83646 | 2.83646                       | 2.83646                       |
|                |      |                    |       | 0.60466 | 0.68235 | 0.72986 | 0.79567 | 0.90973                       | 0.93943                       |
|                | 0.80 |                    |       | 0.00    | 0.00    | 0.27004 | 0.29152 | 0.73300                       | 0.75782                       |
| -0.75          |      |                    |       |         |         |         |         | 0.46261<br>0.15971            | 0.48776<br>0.16768            |
| C <sub>0</sub> |      | 1.41421<br>1.63299 |       | 1.79916 | 1.80279 | 1.80194 | 1.80290 | 1.28091                       | 1.80291                       |
|                |      |                    |       | 0.60248 | 0.67899 | 0.72829 | 0.79271 | 0.90875                       | 0.93852                       |
|                | 0.50 |                    |       | 0.00    | 0.00    | 0.26940 | 0.29116 | 0.73110<br>0.46226<br>0.15962 | 0.75621<br>0.48696<br>0.16764 |
|                |      | 1.00000<br>1.15470 |       | 1.28150 | 1.28829 | 1.28556 | 1.28919 | 1.28934                       | 1.28946                       |
|                |      |                    |       | 0.59811 | 0.67187 | 0.72480 | 0.78562 | 0.90602                       | 0.93582                       |
|                | 0.00 |                    |       | 0.00    | 0.00    | 0.26830 | 0.29051 | 0.72677<br>0.46159<br>0.15948 | 0.75244<br>0.48546<br>0.16756 |

**Table 4.** For co =0.75 and  $0 \leq c_1 < 1$ , Comparison of U<sub>N</sub> and *P<sub>N</sub>Approach* 



|          | N = 1 |         | N                     | =4      | N       | ' = 5   | N       | ' = 9                         |                               |
|----------|-------|---------|-----------------------|---------|---------|---------|---------|-------------------------------|-------------------------------|
|          |       | $U_N$ I | <b>D</b> <sub>N</sub> | $U_N$   | $P_N$   | $U_N$   | $P_N$   | $U_N$                         | $P_N$                         |
|          |       | 50.0000 | 57.7350               | 57.9655 | 57.9655 | 57.9655 | 57.9655 | 57.9655                       | 57.9655                       |
|          |       |         |                       | 0.63121 | 0.71349 | 0.75217 | 0.81527 | 0.91581                       | 0.94369                       |
|          | 0.99  |         |                       | 0.00    | 0.00    | 0.28669 | 0.31131 | 0.74461<br>0.47675<br>0.65822 | 0.76995<br>0.50252<br>0.17449 |
|          |       | 11.1803 | 12.9099               | 12.9615 | 12.9615 | 12.9615 | 12.9615 | 12.9615                       | 12.9615                       |
|          |       |         |                       | 0.63121 | 0.71348 | 0.75220 | 0.81527 | 0.91581                       | 0.94369                       |
|          | 0.80  |         |                       | 0.00    | 0.00    | 0.28668 | 0.31131 | 0.74460                       | 0.76995                       |
| =0.99    |       |         |                       |         |         |         |         | 0.47676<br>0.16582            | 0.50252<br>0.17449            |
| $c_{01}$ |       | 7.07106 | 8.16496               | 8.19765 | 8.19768 | 8.19767 | 8.19768 | 8.19768                       | 8.19768                       |
|          |       |         |                       | 0.63121 | 0.71348 | 0.75224 | 0.81526 | 0.91582                       | 0.94369                       |
|          | 0.50  |         |                       | 0.00    | 0.00    | 0.28666 | 0.31131 | 0.74458<br>0.47677<br>0.16581 | 0.76995<br>0.50252<br>0.17449 |
|          |       | 5.00000 | 5.77350               | 5.79668 | 5.79672 | 5.79671 | 5.79672 | 5.79672                       | 5.79672                       |
|          |       |         |                       | 0.63120 | 0.71346 | 0.75231 | 0.81525 | 0.91583                       | 0.94369                       |
|          | 0.00  |         |                       | 0.00    | 0.00    | 0.28663 | 0.31131 | 0.74454<br>0.47680<br>0.16581 | 0.76994<br>0.50251<br>0.17449 |

**Table 5.** For co =0.99 and  $0 \leq c_1 < 1$ , Comparison of U<sub>N</sub> and *P<sub>N</sub>Approach* 

As seen in Table 1, Table 2, Table 3, Table 4 and Table 5 for  $0 < c_0 < 1$  all eigenvalues are real and one of them also may be larger than 1. Other eigenvalues (-1, 1) are in the range. According to these results, for  $0 < c_0 < 1$ , outside of the range (-1, 1) eigenvalues is seen to be changed at  $1 < v < \infty$  intervals.

|                  |      | N=       | = 1      | N        | = 4      | N        | = 5        | N =                           | - 9                           |
|------------------|------|----------|----------|----------|----------|----------|------------|-------------------------------|-------------------------------|
|                  |      | $U_N$    | $P_N$    | $U_N$    | $P_N$    | $U_N$    | $P_N$      | $U_N$                         | $P_N$                         |
|                  |      | 50.0000i | 57.7350i | 57.5036i | 57.5036i | 57.5036  | 57.5036i   | 57.5036i                      | 57.5036i                      |
|                  |      |          |          | 0.63370  | 0.71636  | 0.75434  | 0.81711    | 0.91642                       | 0.94411                       |
|                  | 0.99 |          |          | 0.00     | 00       | 0.28816  | 0.31311    | 0.74567<br>0.47805<br>0.16635 | 0.77110<br>0.50385<br>0.17508 |
|                  |      | 11.1803i | 12.9099i | 12.8582i | 12.8582i | 12.8582  | 12.8582i   | 12.8582i                      | 12.8582i                      |
|                  |      |          |          | 0.63370  | 0.71636  | 0.75430  | 0.81710    | 0.91641                       | 0.94411                       |
|                  | 0.80 |          |          | 0.00     | 0.00     | 0.28817  | 0.31311    | 0.74568                       | 0.77110                       |
| 1.01             |      |          |          |          |          |          |            | 0.47804<br>0.16635            | 0.50385<br>0.17508            |
| $\mathbf{c}_{0}$ |      | 7.07106i | 8.16496i | 8.13233i | 8.13236i | 8.13236  | i 8.13236i | 8.13236i                      | 8.13236i                      |
|                  |      |          |          | 0.63370  | 0.71635  | 0.75425  | 0.81710    | 0.91640                       | 0.94411                       |
|                  | 0.50 |          |          | 0.00     | 0.00     | 0.28819  | 0.31311    | 0.74570<br>0.47802<br>0.16635 | 0.77110<br>0.50385<br>0.17508 |
|                  |      | 5.00000i | 5.77350i | 5.75049i | 5.75053i | 5.75052i | i 5.75053i | 5.75053i                      | 5.75053i                      |
|                  |      |          |          | 0.63369  | 0.71634  | 0.75416  | 0.81709    | 0.91638                       | 0.94411                       |
|                  | 0.00 |          |          | 0.00     | 0.00     | 0.28822  | 0.31311    | 0.74572<br>0.47800<br>0.16636 | 0.77109<br>0.50385<br>0.17508 |

**Table 6.** For co =1.01 and  $0 \leq c_1 < 1$ , Comparison of U<sub>N</sub> and *P<sub>N</sub>Approach* 



|            | °1   | N=1<br>$U_N$ $P_N$   | N=4<br>$U_N$ $P_N$                                   | N=5<br>$U_N$ $P_N$                                         | N=9<br>$U_N$ $P_N$                                                                                           |
|------------|------|----------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $c_0=1.25$ | 0.99 | 10.0000i<br>11.5470i | 10.3303i<br>10.3310i 0.67008<br>0.75832<br>0.00 0.00 | 10.3310i<br>10.3310i 0.78699<br>0.84495 0.30748<br>0.33707 | 10.3310i<br>10.3310i<br>0.92670<br>0.95129<br>0.76136<br>0.78845<br>0.49550<br>0.52190<br>0.17304<br>0.18264 |
|            | 0.80 | 2.23606i<br>2.58198i | 2.31921i<br>2.32194i 0.66740<br>0.75445<br>0.00 0.00 | 2.32181i<br>2.32196i 0.78288<br>0.84172 0.30753<br>0.33664 | 2.32196i<br>2.32196i<br>0.92504<br>0.95016<br>0.76021<br>0.78669<br>0.49457<br>0.52112<br>0.17305<br>0.18260 |
|            | 0.50 | 1.41421i<br>1.63299i | 1.47449i<br>1.47790i 0.66392<br>0.74966<br>0.00 0.00 | 1.47751i<br>1.47807i 0.77786<br>0.83792 0.30762<br>0.33598 | 1.47806i<br>1.47806i<br>0.92321<br>0.94895<br>0.75877<br>0.78452<br>0.49325<br>0.52003<br>0.17306<br>0.18254 |
|            | 0.00 | 1.00000i<br>1.15470i | 1.04958i<br>1.05308i 0.65951<br>0.74393<br>0.00 0.00 | 1.05229i<br>1.05367i 0.77197<br>0.83365 0.30775<br>0.33497 | 1.05356i<br>1.05359i<br>0.92131<br>0.94772<br>0.75705<br>0.78199<br>0.49135<br>0.51849<br>0.17309<br>0.18244 |

| <b>Table 7.</b> For co =1.25 and $0 \le c_1 < 1$ , C | Comparison of $U_N$ and $P_NApproach$ . |
|------------------------------------------------------|-----------------------------------------|
|------------------------------------------------------|-----------------------------------------|

## M. Karataşlı vd.

|              |      | 1        | V = 1    | N = 4                       |                             | N = 5                          |                                | N = 9                                                |                                                      |
|--------------|------|----------|----------|-----------------------------|-----------------------------|--------------------------------|--------------------------------|------------------------------------------------------|------------------------------------------------------|
|              |      | $U_N$    | $P_N$    | $U_N$                       | $P_N$                       | $U_N$                          | $P_N$                          | $U_N$                                                | $P_N$                                                |
| $c_{o}=1.50$ | 0.99 | 7.07106i | 8.16496i | 6.33478i<br>0.72769<br>0.00 | 6.33786i<br>0.82442<br>0.00 | 6.33786i<br>0.84192<br>0.33129 | 6.33786i<br>0.89273<br>0.36772 | 6.33786i<br>0.94946<br>0,78513<br>0.51769<br>0.18068 | 6.33786i<br>0.96796<br>0.81633<br>0.54497<br>0.19136 |
|              | 0.80 | 1.58113i | 1.82574i | 1.45079i<br>0.71049<br>0.00 | 1.45939i<br>0.80058<br>0.00 | 1.45959i<br>0.81923<br>0.33057 | 1.45982i<br>0.87253<br>0.36525 | 1.45978i<br>0.93766<br>0.77793<br>0.51377<br>0.18063 | 1.45978i<br>0.95911<br>0.80630<br>0.54113<br>0.19117 |
|              | 0.50 | 1.00000i | 1.15470i | 0.93910i<br>0.69419<br>0.00 | 0.94729i<br>0.78005<br>0.00 | 0.94807i<br>0.80015<br>0.32955 | 0.94925i<br>0.85661<br>0.36185 | 0.94893i<br>0.92975<br>0.77102<br>0.50886<br>0.18055 | 0.94895i<br>0.95352<br>0.79720<br>0.53641<br>0.19088 |
|              | 0.00 | 0.70710i | 0.81649i | 0.67895i<br>0.67895<br>0.00 | 0.68549i<br>0.76224<br>0.00 | 0.68725i<br>0.78401<br>0.32808 | 0.69010i<br>0.84395<br>0.35723 | 0.68901i<br>0.92435<br>0.76474<br>0.50290<br>0.18042 | 0.68913i<br>0.94987<br>0.78932<br>0.53082<br>0.19043 |

**Table 8.** For co =1.50 and  $0 \le c_1 < 1$ , Comparison of U<sub>N</sub> and *P<sub>N</sub>Approach*. (i= $\sqrt{-1}$ )

**Table 9.** For co =1.75 and  $0 \le c_1 < 1$ , Comparison of U<sub>N</sub> and *P<sub>N</sub>Approach*. (i =  $\sqrt{-1}$ )

|           |      | Λ        | V = 1    | N                           | N = 4                       |                                | = 5                            | 1                                                    | V = 9                                                |
|-----------|------|----------|----------|-----------------------------|-----------------------------|--------------------------------|--------------------------------|------------------------------------------------------|------------------------------------------------------|
|           |      | $U_N$    | $P_N$    | $U_N$                       | $P_N$                       | $U_N$                          | $P_N$                          | $U_N$                                                | $P_N$                                                |
| .75       | 0.99 | 5.77350i | 6.66666i | 4.24995i<br>0.82726<br>0.00 | 4.25973i<br>0.93736<br>0.00 | 4.25979i<br>0.94282<br>0.35938 | 4.25974i<br>0.98322<br>0.40561 | 4.25974i<br>1.01042<br>0.81574<br>0.54356<br>0.18907 | 4.25974i<br>1.01880<br>0.85475<br>0.57189<br>0.20101 |
|           | 0.80 | 1.29009i | 1.49071i | 1.03331i<br>0.76081<br>0.00 | 1.04952i<br>0.85071<br>0.00 | 1.05217i<br>0.86096<br>0.35627 | 1.05219i<br>0.90753<br>0.39780 | 1.05183i<br>0.95498<br>0.79671<br>0.53391<br>0.18883 | 1.05183i<br>0.97186<br>0.82785<br>0.56197<br>0.20050 |
| $c_0 = 0$ | 0.50 | 0.81649i | 0.94280i | 0.68955i<br>0.72106<br>0.00 | 0.70159i<br>0.80485<br>0.00 | 0.70749i<br>0.81909<br>0.35224 | 0.70931i<br>0.87195<br>0.38844 | 0.70769i<br>0.93558<br>0.78139<br>0.52331<br>0.18848 | 0.70774i<br>0.95758<br>0.80804<br>0.55133<br>0.19974 |
|           | 0.00 | 0.57735i | 0.66666i | 0.50755i<br>0.69270<br>0.00 | 0.51576i<br>0.77417<br>0.00 | 0.52501i<br>0.79207<br>0.52501 | 0.52916i<br>0.85053<br>0.37745 | 0.52562i<br>0.92632<br>0.76995<br>0.51213<br>0.18794 | 0.52590i<br>0.95124<br>0.79425<br>0.54043<br>0.19859 |



|            | -    |          | 2.00 un  | <u>u o</u> ,                            | , companio      |                                              |                    |                                                      | )                                                    |
|------------|------|----------|----------|-----------------------------------------|-----------------|----------------------------------------------|--------------------|------------------------------------------------------|------------------------------------------------------|
|            |      | N =      | = 1      | N                                       | = 4             | N =                                          | = 5                | N                                                    | = 9                                                  |
|            |      | $U_N$    | $P_N$    | $U_N$                                   | $P_N$           | $U_N$                                        | $P_N$              | $U_N$                                                | $P_N$                                                |
|            | 0.99 | 5.00000i | 5.77350i | 2.71008i<br>2.74234i                    | 1.03821         | 2.74305i<br>2.74248i                         | 1.16378            | 2.74248i<br>1.19564                                  | 2.74248i<br>1.19693                                  |
| $c_0=2.00$ |      |          |          | 1.16828<br>0.00                         | 0.00            | 1.18945 (<br>0.45101                         | 0.39156            | 0.84265<br>0.57064<br>0.19819                        | 0.88651<br>0.59969<br>0.21162                        |
|            | 0.80 | 1.11803i | 1.29099i | 0.77246i<br>0.79561i<br>0.90043<br>0.00 | 0.81447<br>0.00 | 0.80547i<br>0.80521i<br>0.94415 (<br>0.43272 | 0.90459<br>0.38360 | 0.80352i<br>0.97695<br>0.81400<br>0.55337<br>0.80352 | 0.80349i<br>0.98909<br>0.84824<br>0.58184<br>0.21054 |
|            | 0.50 | 0.70710i | 0.81649i | 0.53509i<br>0.54954i<br>0.82448<br>0.00 | 0.74363<br>0.00 | 0.56578i<br>0.56840i<br>0.88433 (<br>0.41392 | 0.83465<br>0.37434 | 0.56399i<br>0.94066<br>0.78987<br>0.53599<br>0.19676 | 0.56409i<br>0.96114<br>0.81698<br>0.56422<br>0.20898 |
|            | 0.00 | 0.50000i | 0.57735i | 0.40044i<br>0.40949i<br>0.78238<br>0.00 | 0.70263<br>0.00 | 0.43065i<br>0.43585i<br>0.85503 (<br>0.39478 | 0.79775<br>0.36384 | 0.42876i<br>0.92769<br>0.77364<br>0.51944<br>0.19550 | 0.42923i<br>0.95218<br>0.79775<br>0.54790<br>0.20673 |

**Table 10.** For co =2.00 and  $0 \leq c_1 < 1$ , Comparison of U<sub>N</sub> and P<sub>N</sub>Approach. (i =  $\sqrt{-1}$ )

for c  $_0>1$ , as seen in the Table 6, Table 7, Table 8, table 9 and Table 10 is a pair of complex eigenvalues.

## 4. Conclusions

In this study; v eigenvalues have been calculated for one-dimensional, mono energetic neutron transport equation with no external source and with anisotropic scattering, using Legendre and II. type Chebyshev polynomial approaches. The solution of the neutron transport equation with anisotropic scattering can be analyzed with II. type Chebyshev polynomials since their arguments change in the same interval range [-1,1] as the arguments of Legendre polynomials. At first, neutron transport equation opened in series in terms of Chebyshev polynomials. The eigenvalues have been calculated from the equations obtained from the opened series.

The results of the asymptotic solutions derived from  $U_N$  and  $P_N$  methods is increasingly approaching to each other starting from N = 4, as can be seen from careful examination of the tables. The coherence between the results is increasing as N increases as can be expected. The compliance of the eigenvalues calculated with both methods confirms the validity of the  $U_N$  approach.

### References

- [1] Yaşa F., 2002. Solution with green spectral function method of transport equations in spherical geometry, PhD Thesis., Cukurova University, Adana, 62 p.
- [2] Bell W.W., 1967. Special Functions for Scientists and Engineer, D. Van Nostrand Company Ltd., London, 270 p.
- [3] Arfken G., 1970. Mathematical Methods for Physics, 2ed, Academic Press Inc., New York, 815 p.
- [4] Conkie W. R., 1959. Polynomial approximations in neutron transport theory, *Nuclear Science and Engineering*, 6: 260-266.
- [5] Arfken G.B., Weber H.J., 1995. Mathematical methods for physicists, *Academic Press*, London, 4<sup>th</sup> Edition, 1028 p.
- [6] Bell G. I., Glasstone S., 1970. Nuclear Reactor Theory, *Van Nostrand Reinhold Company*, United States of America, 619 p.

Muhammet Karataşlı e-mail: muhammet.karatasli@gmail.com Tahsin Özer e-mail: tahsinozer@osmaniye.edu.tr Ahmet Varinlioğlu e-mail: varinlia@yahoo.com