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Abstract. A new family of lifetime distributions is introduced via distribu-
tion of the upper record values, the well-known concept in survival analysis
and reliability engineering. Some important properties of the proposed model
including quantile function, hazard function, order statistics are obtained in a
general setting. A special case of this new family is proposed by considering the
exponential and Weibull distribution as the parent distributions. In addition
estimating unknown parameters of specialized distribution is examined from
the perspective of the traditional statistics. A simulation study is presented
to investigate the bias and mean square error of the maximum likelihood esti-
mators. Moreover, one example of real data set is studied; point and interval
estimations of all parameters are obtained by maximum likelihood and boot-
strap (parametric and non-parametric) procedures. Finally, the superiority of
the proposed model in terms of the parent exponential distribution over other
known distributions is shown via the example of real observations.

1. Introduction

The statistical distribution theory has been widely explored by researchers in
recent years. Given the fact that the data from our surrounding environment follow
various statistical models, it is necessary to extract and develop appropriate high-
quality models. In addition, sometimes it is necessary to provide applications from
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existing models. For more details, see the Samuel et al. (2018) and Ababneh et al.
(2018).
Recently, Alzaatreh et al. (2013) have introduced a new model of lifetime distrib-

utions, which the researchers refer to its special case as generalized−G distribution.
It is based on the combination of one arbitrary CDF F of a continuous random
variable X with the baseline CDF G. The integration form of new CDF H is
stated as

H(x) =
1

F (1)

∫ G(x)

−∞
f(t)dt, x ∈ R, (1)

where f is the corresponding density function of F and F (1) = P (X ≤ 1). This
interesting method attracted the attention of some researchers. Generating new
model based on this method resulted in creating very flexible statistical modeling.
The upper and lower record values, in a sequence of independent and identically

distributed (iid) random variables X1, X2, ..., have applications in different areas of
applied probability and reliability engineering. Let Xi ’s have a common absolutely
continuous distribution G with survival function Ḡ. Define a sequence of record
times U(n), n = 1, 2, ..., as follows:

U(n+ 1) = min {j : j > U(n), Xj > X}, n ≥ 1,

with U(1) = 1. Then, the sequence of upper record values {Rn, n ≥ 1} is defined
by Rn = XU (n), n ≥ 1, where R1 = X1. The survival function of Rn is given by

ḠUn (t) = Ḡ(t)

n−1∑
x=0

[− log Ḡ(t)]x

x!
, t ≥ 0, n = 1, 2....

The corresponding CDF of the random variable Rn is

GUn (t) = 1− Ḡ(t)

n−1∑
x=0

[− log Ḡ(t)]x

x!
, t ≥ 0, n = 1, 2....

Here, we introduce a new family of lifetime distributions by compounding CDF
of upper record values GUn (t) of a parent distribution G and an arbitrary CDF F
with PDF f .
This new model will be denote by G−UR−G(or GURG) distribution. One of

our main motivation to introduce this new category of distributions is to provide
more flexibility for fitting real datasets in comparing with other well-known classic
statistical distributions.
We first derive the fundamental and statistical properties of GURG in a general

setting and then we propose a special case of this model by considering Weibull dis-
tribution instead of the parent distribution G and exponential distribution instead
of the parent distribution F for fixed value n = 2. It is referred to as GURWE
distribution. We provide a comprehensive discussion about the statistical and reli-
ability properties of the new GURWE model. Furthermore, we consider Maximum
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likelihood and bootstrap estimation procedures to estimate the unknown parame-
ters of the new model for complete data set. In addition, the asymptotic confidence
intervals and parametric and non-parametric bootstrap confidence intervals are cal-
culated.

2. New general model and its properties

In this section, we provide the structure of our new model and some of its main
properties in a general setting. Motivated by the idea of Alzaatreh et al. (2013),
a new class of statistical distributions is proposed. The new model is constructed
by implementing Alzaattreh idea to the upper record value distribution GUn (t). Let
the non-negative random variable X have CDF and PDF F and f , respectively.
In view of (1), the CDF of new general class of lifetime distributions is defined as:

H(x, n) =
1

F (1)

∫ GUn (x)

0

f(t)dt

=
F (GUn (x))

F (1)
, x ≥ 0, n = 1, 2... (2)

The (PDF ) is

h(x, n) =
gUn (x)

F (1)
f(GUn (x)), x > 0, n = 1, 2... (3)

where gUn (x) is the PDF of the n− upper record value distribution and

gUn (x) = g(x)
[− log Ḡ(x)]n−1

(n− 1)!
, x > 0, n = 1, 2... (4)

Using (2) and (4), the survival H̄(x, n) and the hazard rate r(x, n) functions for
GURG distribution are given, respectively, by:

H̄(x, n) = 1− F (GUn (x))

F (1)

and

r(x, n) =
gUn (x) f(GUn (x))

F (1)− F (GUn (x))
, x > 0, n = 1, 2....

The pth quantile xp of the GURG distribution can be obtained from

xp = GU
−1

n

(
F−1(F (1)p)

)
,

where GU
−1

n is the inverse function of CDF GUn .
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3. Special case based on the parent Weibull and Exponential
Distributions

Let G(x) = 1− e−αxβ , F (x) = 1− e−λx and n = 2. From (2) we have:

H(x) = H(x, n = 2)

=
1

F (1)

∫ G(x)+Ḡ(x) log Ḡ(x)

−∞
f(t)dt

=
1

1− e−λ [1− e−λ(G(x)+Ḡ(x) log Ḡ(x))]

=
1

1− e−λ e
−λ

(
1−e−αx

β
(1+αxβ)

)
, x ≥ 0. (5)

The corresponding PDF is :

h(x) =
α2βλ

1− e−λx
2β−1e−αx

β

e−λ(1−e−αx
β

(1+αxβ)),

where x > 0, α, λ, β > 0.

Figure 1. Plots of the GUREW (α, β, λ) density (left) and failure rate
function (right) for selected values of α, β, λ.

The survival and hazard rate functions are

H̄(x) = 1− 1

1− e−λ

(
1− e−λ

(
1−e−αx

β
(1+αxβ)

))
,

and

r(x) =
h(x)

H̄(x)
=

α2βλ
1−e−λx

2β−1e−αx
β

e−λ(1−e−αx
β

(1+αxβ))

1− 1
1−e−λ

(
1− e−λ(1−e−αxβ (1+αxβ))

) ,
respectively.
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Figure 2. Plots of failure rate function for selected values of the parameters.

3.1. Some properties of the GUREW distribution. In this section, we obtain
some properties of the GUREW distribution, such as quantiles, moments, mo-
ment generating function and order statistics distribution. The characterizations
of GUREW distribution are presented in subsection 3.5.

3.2. Quantiles. For the GUREW distribution, the pth quantile xp is the solution
of H(xp) = p, hence

xp =

(
− 1

α
− 1

α
W−1

(
−e−1

(
1 +

1

λ
log(1− (1− e−λ)p)

)))1/β

, 0 ≤ p ≤ 1,

which is the base of generating GUREW random variates, where W−1 denotes the
negative branch of the Lambert function.

3.3. Moments and Moment generating function. In this subsection, moments
and related measures including coeffi cients of variation, skewness and kurtosis are
presented. Tables of values for the first six moments, standard deviation (SD),
coeffi cient of variation (CV ), coeffi cient of skewness (CS) and coeffi cient of kurtosis
(CK) are also presented. The rth moment of the GUREW distribution, denoted
by µ

′
r , is

µ
′
r = E(Xr) =

∞∑
k=0

k∑
t=0

t∑
j=0

(−1)k(−1)t
(
k
t

)(
t
j

)
αj+1λk+1

(1− e−λ)(t+ 1)
EXW [Xr+(j+1)β ],
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where XW ∼Weibull(α(t+ 1), β) and EXW [Xr+(j+1)β ] =
Γ(1+ r+jβ+jβ

β )
(α(t+1))r+(j+1)β

.
The variance, CV , CS, and CK are given by

σ2 = µ
′
2 − µ2, CV =

σ

µ
=

√
µ
′
2 − µ2

µ
=

√
µ′2
µ2
− 1, (6)

CS =
E[(X − µ)3]

[E(X − µ)2]3/2
=
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
, (7)

and

CK =
E[(X − µ)4]

[E(X − µ)2]2
=
µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
, (8)

respectively. Table 1 lists the first six moments of the GUREW distribution for
selected values of the parameters, when α = 3. Table 2 lists the first six moments
of the GUREW distribution for selected values of the parameters, when β = 0.5.
These values can be determined numerically using R.
The moment generating function of the GUREW distribution is given by

E(etX) =

∞∑
k=0

k∑
t=0

t∑
j=0

(−1)t(−1)k λk+1
(
k
t

)(
t
j

)
Γ(j + 2)

k!(t+ 1)j (1− e−λ)
EXG [etX

1/β

],

where XG ∼ Gamma (j + 2, α(t+ 1)).

Table 1. Moments of the GUREW distribution for selected pa-
rameter values when α = 3.

µ′r β = 0.5, λ = 0.5 β = 0.5, λ = 1.5 β = 1.5, λ = 0.5 β = 1.5, λ = 1.5

µ′1 0.5671076 0.3992706 0.6760747 0.5884041
µ′2 1.179537 0.709571 0.5688418 0.4399216
µ′3 5.38217 3.07405 0.5671076 0.3992693
µ′4 42.7557 24.04752 0.6488483 0.4256478
µ′5 521.4693 291.9992 0.832901 0.519231
µ′6 9033.24 5051.822 1.179537 0.709571
SD 0.9262429 0.7417237 0.3343124 0.3061082
CV 1.6332755 1.8576967 0.4944904 0.5202346
CS 4.706703 5.762384 0.8405167 1.051078
CK 44.17227 65.22099 3.881779 4.575555
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Table 2. Moments of the GUREW distribution for selected pa-
rameter values when β = 0.5.

µ′r α = 0.5, λ = 0.5 α = 1, λ = 1 α = 1.5, λ = 1.5 α = 2, λ = 2

µ′1 20.33652 4.299195 1.597077 0.7470063
µ′2 1478.852 74.72371 11.35314 2.721693
µ′3 218312 2993.463 196.7392 25.74113
µ′4 48809999 212208.3 6156.162 449.2581
µ′5 13959548045 23124985 299005.4 12245.5
µ′6 4.637651e+12 3540458803 20691289 476369.5
SD 32.638596 7.499375 2.966898 1.470943
CV 1.604925 1.744367 1.857705 1.969118
CS 4.168103 5.189165 5.762391 6.433476
CK 30.14692 53.11153 65.221 81.28218

3.4. Order statistics. Order statistics play an important role in probability and
statistics. In this subsection, we present the distribution of the ith order statistic
from the GUREW distribution. The PDF of the ith order statistic from the
GUREW PDF , fGUREW (x), is given by

fi:n(x) =
n!

(i− 1)!(n− i)! fGUREW (x) [FGUREW (x)]
i−1

[1− FGUREW (x)]
n−i

=
n!

(i− 1)!(n− i)! fGUREW (x)

n−i∑
m=0

(
n− i
m

)
(−1)m [FGUREW (x)]

m+i−1
.

Using the binomial expansion

[1− FGUREW (x)]
n−i

=

n−i∑
m=0

(
n− i
m

)
(−1)m [FGUREW (x)]

m
,

we have

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
m=0

(
n− i
m

)
(−1)m [FGUREW (x)]

m+i−1
fGUREW (x)

3.5. Characterization Results. This section is devoted to the characterizations
of the GUREW distribution in different directions: (i) based on the ratio of two
truncated moments; (ii) in terms of the reverse hazard function and (iii) based
on the conditional expectation of certain function of the random variable. Note
that (i) can be employed also when the cdf does not have a closed form. We
would also like to mention that due to the nature of GUREW distribution, our
characterizations may be the only possible ones. We present our characterizations
(i) − (iii) in three subsections.
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3.5.1. Characterizations based on two truncated moments. This subsection deals
with the characterizations of GUREW distribution based on the ratio of two trun-
cated moments. Our first characterization employs a theorem due to Glänzel (1987),
see Theorem 1 of Appendix A . The result, however, holds also when the interval
H is not closed, since the condition of the Theorem is on the interior of H.
Proposition 3.5.1. Let X : Ω → (0,∞) be a continuous random variable

and let q1 (x) = x−βe
λ
(

1−e−αx
β
(1+αxβ)

)
and q2 (x) = q1 (x) e−αx

β

for x > 0. The
random variable X has PDF (6) if and only if the function ξ defined in Theorem
1 is of the form

ξ (x) =
1

2
e−αx

β

, x > 0.

Proof. Suppose the random variable X has PDF (6), then

(1− F (x))E [q1 (X) | X ≥ x] =
αλ

1− e−λ e
−αxβ , x > 0,

and

(1− F (x))E [q2 (X) | X ≥ x] =
αλ

2(1− e−λ)
e−2αxβ , x > 0.

Further,

ξ (x) q1 (x)− q2 (x) = −q1 (x)

2
e−αx

β

< 0 , for x > 0.

Conversely, if ξ is of the above form, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
= αβxβ−1, x > 0,

and consequently
s (x) = αxβ , x > 0.

Now, according to Theorem 1, X has density (6) .
Corollary 3.5.1. Let X : Ω → (0,∞) be a continuous random variable and

let q1 (x) be as in Proposition A.1. The random variable X has PDF (6) if and
only if there exist functions q2 and ξ defined in Theorem 1 satisfying the following
differential equation

ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
= αβxβ−1, x > 0.

Corollary 3.5.2. The general solution of the differential equation in Corollary
3.5.1 is

ξ (x) = eαx
β

[
−
∫
αβxβ−1e−αx

β

(q1 (x))
−1
q2 (x) dx+D

]
,

where D is a constant. We like to point out that one set of functions satisfying the
above differential equation is given in Proposition 3.5.1 with D = 0. Clearly, there
are other triplets (q1, q2, ξ) which satisfy conditions of Theorem1.
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3.5.2. Characterization in terms of reverse hazard function. The reverse hazard
function, rF , of a twice differentiable distribution function, F , is defined as

rF (x) =
f (x)

F (x)
, x ∈ support of F.

In this subsection we present a characterization of GUREW distribution in terms
of the reverse hazard function.

Proposition 3.5.2. Let X : Ω → (0,∞) be a continuous random variable.
The random variable X has PDF (6) if and only if its reverse hazard function
rF (x) satisfies the following differential equation

r′F (x) + αβxβ−1rF (x) = α2βλ (2β − 1)x2(β−1)e−αx
β

, x > 0.

Proof. If X has PDF (6) , the clearly the above differential equation holds.
Now, if this equation holds, the

d

dx

{
eαx

β

rF (x)
}

= α2βλ
d

dx

{
x2β−1

}
, x > 0.,

from which we obtain the reverse hazard function corresponding to the PDF (6).

3.5.3. Characterization based on the conditional expectation of certain function of
the random variable. In this subsection we employ a single function ψ of X and
characterize the distribution of X in terms of the truncated moment of ψ (X) . The
following proposition has already appeared in Hamedani’s previous work (2013), so
we will just state it here which can be used to characterize GUREW distribution.
Proposition 3.5.3. Let X : Ω→ (e, f) be a continuous random variable with

cdf F . Let ψ (x) be a differentiable function on (e, f) with limx→f− ψ (x) = 1.
Then for δ 6= 1 ,

E [ψ (X) | X ≤ x] = δψ (x) , x ∈ (e, f)

implies that

ψ (x) = (F (x))
1
δ−1

, x ∈ (e, f) .

Remark 3.5.1. For (e, f) = (0,∞) , ψ (x) = 1

(1−e−λ)1/λ
e
−
(

1−e−αx
β
(1+αxβ)

)
and δ = λ

λ+1 , Proposition 3.5.3 provides a characterization of GUREW.

4. Inference procedure

In this section, we consider estimation of the unknown parameters of the
GUREW (α, β, λ) distribution via maximum likelihood method and bootstrap es-
timation.
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4.1. Maximum likelihood estimation. Let x1, . . . , xn be a random sample from
the GUREW distribution and ∆ = (α, β, λ) be the vector of parameters. The log-
likelihood function is given by

L = L(∆) =2n logα+ n log β + n log
λ

1− e−λ + (2β − 1)

n∑
i=1

log xi

− α
n∑
i=1

xβi − λ
n∑
i=1

(
1− e−αx

β
i (1+αxβi )

)
.

(9)

The elements of the score vector are given by

dL

dα
=

2n

α
−

n∑
i=1

xβi − λα
n∑
i=1

x2β
i e
−αxβi = 0,

dL

dβ
=

n

β
+ 2

n∑
i=1

log xi − α
n∑
i=1

xβi log xi

−α2λ

n∑
i=1

x2β
i log xi e

−αxβi = 0,

and
dL

dλ
=
n

λ
− ne−λ

1− e−λ −
n∑
i=1

(
1− e−αx

β
i (1+αxβi )

)
= 0.

respectively.
The maximum likelihood estimate, ∆̂ of ∆ = (α, β, λ) is obtained by solving

the nonlinear equations dL
dα = 0, dLdβ = 0, dLdλ = 0 simultaneously. These equations

do not have closed forms so, the values of the parameters α,λ and β must be
found using iterative methods. Therefore, the maximum likelihood estimate, ∆̂ of
∆ = (α, β, λ) can be determined using an iterative method such as the Newton-
Raphson procedure.

4.2. Bootstrap estimation. The parameters of the fitted distribution can be es-
timated by parametric (resampling from the fitted distribution) or non-parametric
(resampling with replacement from the original data set) bootstraps resampling (see
Efron and Tibshirani, 1994). These two parametric and nonparametric bootstrap
procedures are described as below.

Parametric bootstrap procedure:
(1) Estimate θ (vector of unknown parameters), say θ̂ , by using the MLE

procedure based on a random sample.
(2) Generate a bootstrap sample {X∗1 , . . . , X∗m} using θ̂ and obtain the boot-

strap estimate of θ, say θ̂∗, from the bootstrap sample based on the MLE
procedure.
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(3) Repeat Step 2 NBOOT times.
(4) Order θ̂∗1, . . . , θ̂

∗
NBOOT as θ̂

∗
(1), . . . , θ̂

∗
(NBOOT ) . Then obtain γ-quantiles

and 100(1− α)% confidence intervals for the parameters.

In the case of GUREW distribution, the parametric bootstrap estimators (PBs)
of α, β and λ, are α̂PB , β̂PB and λ̂PB , respectively.

Nonparametric bootstrap procedure
(1) Generate a bootstrap sample {X∗1 , . . . , X∗m} , with replacement from the

original data set.
(2) Obtain the bootstrap estimate of θ with MLE procedure, say θ̂∗, by using

the bootstrap sample.
(3) Repeat Step 2 NBOOT times.
(4) Order θ̂∗1, . . . , θ̂

∗
NBOOT as θ̂

∗
(1), . . . , θ̂

∗
(NBOOT ) . Then obtain γ-quantiles

and 100(1− α)% confidence intervals for the parameters.

In the case of GUREW distribution, the nonparametric bootstrap estimators
(NPBs) of α, β and λ, are α̂NPB , β̂NPB and λ̂NPB , respectively.

5. Algorithm and a simulation study

In this section, we give an algorithm for generating the random data x1, . . . , xn
from the GUREW distribution and hence a simulation study is done to evaluate
the performance of the MLEs.

5.1. Algorithm. Here, we obtain an algorithm for generating the random data
x1, . . . , xn from the GUREW distribution as follows.
The algorithm is based on generating random data from the inverse CDF of the

GUREW distribution.

• Generate Ui ∼ Uniform(0, 1); i = 1, . . . , n,
• set

Xi =

(
− 1

α
− 1

α
W−1

(
−e−1

(
1 +

1

λ
log(1− (1− e−λ)Ui)

)))1/β

,

where W−1 denote the negative branch of the Lambert function.

5.2. Monte Carlo simulation study. Here, we assess the performance of the
MLE’s of the parameters with respect to the sample size n for the GUREW dis-
tribution. The assessment of the performance is based on a simulation study via
Monte Carlo method. Let α̂, β̂ and λ̂ be the MLEs of the parameters α, β and
λ, respectively. We calculate the mean square error (MSE) and bias of the MLE’s
of the parameters α, β and λ based on the simulation results of 2000 independent
replications. Results are summarized in Table 3 for different values of α, β and λ.
From Table 3 the results verify that MSE of the MLE’s of the parameters decrease



1006 O. KHARIZMI, A. SAADATINIK, G.G. HAMEDANI

Table 3. MSEs and Average biases(values in parentheses) of the
simulated estimates.

α = 2 β = 0.5 λ = 0.5

n 30 0.5782 (0.1286) 3.7220 (0.0262) 0.0082 (0.0070)
50 0.5484 (0.1170) 3.7073 (-0.0058) 0.0057 (-0.0058)
100 0.4796 (0.1137) 3.4564 (-0.0365) 0.0040 (-0.0117)
200 0.3955 (0.0774) 3.1149 (0.0061) 0.0030 (-0.0134)

α = 2 β = 1 λ = 1.5

n 30 0.8754 (0.3646) 4.8570 (0.0593) 0.2866 (-0.5077)
50 0.8185 (0.3408) 4.3000 (0.0907) 0.2953 (-0.5256)
100 0.6055 (0.2053) 4.0039 (0.3363) 0.2927 (-0.5301)
200 0.4345 (0.1305) 3.1229 (0.4160) 0.2856 (-0.5276)

α = 1.5 β = 1.5 λ = 1.5

n 30 0.6282 (0.3410) 4.6770 (-0.5706) 0.0650 (-0.0135)
50 0.5480 (0.2777) 4.6123 (-0.3817) 0.0438 (-0.0450)
100 0.4122 (0.1702) 4.1145 (-0.1196) 0.0284 (-0.0428)
200 0.3085 (0.1111) 3.1749 (-0.0368) 0.0188 (-0.0417)

α = 0.5 β = 2 λ = 2

n 30 0.1439 (0.1702) 8.8891 (-0.6927) 0.1047 (-0.0097)
50 0.1472 (0.1552) 5.5487 (-0.5219) 0.0773 (-0.0453)
100 0.1072 (0.1136) 4.2505 (-0.2866) 0.0450 (-0.0544)
200 0.0815 (0.0845) 3.2902 (-0.1761) 0.0296 (-0.0529)

α = 1 β = 1 λ = 1

n 30 0.2922 (0.1631) 4.0435 (-0.2354) 0.0297 (-0.0041)
50 0.2635 (0.1397) 4.1884 (-0.1596) 0.0213 (-0.0189)
100 0.2186 (0.0984) 3.6548 (0.0001) 0.0140 (-0.0253)
200 0.1774 (0.0895) 3.1011 (-0.0176) 0.0100 (-0.0303)

α = 0.5 β = 1.5 λ = 1.5

n 30 0.1469 (0.1499) 4.5239 (-0.5508) 0.0641 (-0.0076)
50 0.1378 (0.1378) 4.3793 (-0.3924) 0.0444 (-0.0400)
100 0.1094 (0.0994) 3.8707 (-0.1563) 0.0289 (-0.0439)
200 0.0675 (0.0696) 2.8043 (-0.1028) 0.0172 (-0.0396)

with respect to sample size n for all the parameters. So, the MLEs of α, β and λ
are consistent estimators.
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6. Practical data application

In this section, we present an application of the GUREW distribution to a
practical data set to illustrate its flexibility among a set of competitive models. In
order to achieve this goal, we consider a real data set corresponding to the remission
times (in months) of a random sample of 128 bladder cancer patients. These data
were previously studied by Lee and Wang (2003). This data set consists of the
following observations:
0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09

2.23 2.26 2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36 3.36 3.48 3.52 3.57
3.64 3.70 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32
5.34 5.41 5.41 5.49 5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39
7.59 7.62 7.63 7.66 7.87 7.93 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06 10.34 10.66
10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07 12.63 13.11 13.29 13.80 14.24 14.76 14.77
14.83 15.96 16.62 17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74 25.82 26.31
32.15 34.26 36.66 43.01 46.12 79.05

Graphical measure: The total time test (TTT ) plot due to Aarset (1987) is
an important graphical approach to verify whether the data can be applied to a
specific distribution or not. According to Aarset (1987), the empirical version of
the TTT plot is given by plotting T (r/n) = [

∑r
i=1 yi:n + (n − r)yr:n]/

∑n
i=1 yi:n

against r/n, where r = 1, . . . , n and yi:n(i = 1, . . . , n) are the order statistics of the
sample. Aarset (1987) showed that the hazard function is constant if the TTT plot
is graphically presented as a straight diagonal, the hazard function is increasing
(or decreasing) if the TTT plot is concave (or convex). The hazard function is
U-shaped if the TTT plot is convex and then concave, if not, the hazard function
is unimodal. The TTT plots for data set is presented in Fig 3. These plots indicate
that the empirical hazard rate functions of the data set is upside-down bathtub
shapes. Therefore, the GUREW distribution is appropriate to fit this data set.

6.1. Bootstrap inference for GUREW parameters. In this section, we obtain
point and 95% confidence interval (CI) estimation of the GUREW parameters by
parametric and non-parametric bootstrap methods. We provide results of bootstrap
estimation in Table 4 for the complete data set. It is interesting to observe the joint
distribution of the bootstrapped values in a scatter plot in order to understand the
potential structural correlation between the parameters. The corresponding plots
of the bootstrap estimation are shown in Fig 4.

6.2. MLE inference and comparison with other models. Now, we fit the
GUREW distribution to a data set and compare it with Lidley, Generalized Lindley
(GL), Gamma Lindley (GaL), Power Lindley (PL), Exponential Lindley (EL),
gamma, generalized exponential, exponential and Weibull distributions. Table 5
shows the MLEs of the parameters, log-likelihood, Akaike information criterion
(AIC), Cramrvon Mises(W ∗), AndersonDarling (A∗) and p − value(P ) statistics
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Figure 3. Scaled-TTT plot of the data set.

Table 4. Bootstrap point and interval estimation of the parame-
ters α, β and λ.

parametric bootstrap non-parametric bootstrap
point estimation CI point estimation CI

α 0.183 (0.055,0.336) 0.172 (0.052,0.313)
β 0.770 (0.602,0.913) 0.765 (0.578,0.906)
λ 3.703 (0.775,46.763) 3.898 (1.100,66.902)

for the data set. The GUREW distribution provides the best fit for the data
set as it shows the lowest AIC, A∗ and W ∗ than other considered models. The
relative histograms, fitted GUREW , Lindley, GL, GaL,EXP , PL, EL, gamma,
generalized exponential and Weibull PDFs for data are plotted in Fig 5. The plots
of the empirical and fitted survival functions, P − P plots and Q−Q plots for the
GUREW and other fitted distributions are displayed in Fig 5 and Fig 6 respectively.
These plots also support the results in Table 5. We compare the GUREW model
with a set of competitive models, namely:
(i) Lindley distribution (Lindley, 1958). The one-parameter Lindley density func-
tion is given by

f(x;β) =
β2

1 + β
(1 + x) e−βx; x > 0,

where β > 0.
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Figure 4. Parametric (left) and non-parametric (right) bootstrapped
values of parameters of the GUREW distribution for the real data.

(ii) Generalized Lindley distribution (GL) (Zakerzadeh and Dolati, 2009) . The
three-parameter GL density function is given by

f(x; θ, α, β) =
θα+1

(θ + β)Γ(α+ 1)
xα−1 (α+ βx) e−θx; x > 0,

where θ > 0, α > 0 and β > 0.
(iii) Exponentiated Lindley distribution (EL) (Nadarajah et al., 2011). The two-
parameter EL density function is given by

f(x; θ, α) =
αθ2

(1 + θ)
(1 + x)e−θx

[
1−

(
1 +

θx

1 + θ

)
e−θx

]α−1

; x > 0,

where θ > 0 and α > 0.
(iv) Power Lindley distribution (PL) (Ghitany et al., 2013). The two-parameter
PL density function is given by

f(x; θ, α) =
α θ2

θ + 1
(1 + xα)xα−1e−θx

α

; x > 0

where α > 0 and θ > 0.
(v) Gamma Lindley distribution (GaL) (Zeghdoudi and Nedjar. 2015). The two-
parameter GaL density function is given by

f(x; θ, α) =
θ2

α(1 + θ)
[(α+ αθ − θ)x+ 1]e−θx; x > 0,

where θ > 0 and α > 0.
(vi) The two-parameter Weibull distribution is given by

f(x;α, β) =
α

β
(
x

β
)α−1 e−( xβ )α ; x > 0
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where α > 0 and β > 0.
(vii) The two-parameter Gamma distribution is given by

f(x;α, θ) =
1

θα Γ(α)
xα−1 e−(x/θ); x > 0

where α > 0 and θ > 0 and Γ(α) =
∫∞

0
tα−1 e−tdt.

(viii) The one parameter Exponential distribution is given by

f(x;λ) = λ e−λx

where λ > 0.
(ix) The two-parameter generalized exponential (GE) distribution is given by

f(x;α, λ) = αλ e−λx(1− e−λx)α−1; x > 0

where α > 0 and λ > 0.

Figure 5. Estimated densities and Empirical and Estimated cdf for
the data set.

7. Conclusion

In this article, a new model for the lifetime distributions is introduced and its
main properties are discussed. A special submodel of this family is taken up by con-
sidering exponential distributions in place of the parent distribution F and Weibull
distribution in place of the parent distribution G. We show that the proposed
distribution has variability of hazard rate shapes such as increasing, decreasing
and upside-down bathtub shapes. From a practical point of view, we show that
the proposed distribution is more flexible than some commonly known statistical
distributions for a given data set.
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Figure 6. Q-Q and P-P plots for the data set.

Table 5. Parameter estimates (standard errors), log-likelihood
values and goodness of fit measures

M o d e l MLEs o f p a r am e t e r s ( s . e ) L o g - l ik e l ih o o d AIC BIC A∗ W∗ K.S P

GUREW α̂ = 0.17(0.06) −409.78 825.56 834.12 0.13 0.01 0.03 0.99

β̂ = 0.77 (0.08)

λ̂ = 3.94 (3.02)

Lindley β̂ = 0.19 (0.01) −419.52 841.05 843.91 2.78 0.51 0.11 0.06

GL θ̂ = 1.25e − 01 (1.72e − 02) −413.36 832.73 841.29 0.77 0.13 0.07 0.49
α̂ = 1.71e − 01 (1.30e − 01)

β̂ = 3.03e − 05 (8.38e + 03)

PL θ̂ = 0.29 (0.03) −413.35 830.70 836.41 0.78 0.12 0.06 0.59
α̂ = 0.83 (0.04)

EL θ̂ = 0.16 (0.01) −416.28 836.57 842.27 1.32 0.24 0.09 0.21
α̂ = 0.73 (0.09)

GaL θ̂ = 0.10 (0.02) −414.34 832.68 838.38 1.17 0.17 0.08 0.31
α̂ = 0.09 (0.03) GE

GE α̂ = 1.21 (0.14) −413.07 830.15 835.85 0.71 0.12 0.07 0.51

λ̂ = 0.69 (0.09)

EXP λ̂ = 0.10 (0.009) −414.34 830.68 833.53 1.17 0.17 0.08 0.31

Weibull α̂ = 1.04 (0.06) −414.08 832.17 837.87 0.95 0.15 0.06 0.55

β̂ = 9.56 (0.85)

Gamma α̂ = 1.17 (0.13) −413.36 830.73 836.43 0.77 0.13 0.07 0.49

θ̂ = 0.12 (0.01)

Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b]
be an interval for some d < b (a = −∞, b =∞ might as well be allowed) . Let
X : Ω→ H be a continuous random variable with the distribution function F and
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let q1 and q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] ξ (x) , x ∈ H,
is defined with some real function η. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and
F is twice continuously differentiable and strictly monotone function on the set H.
Finally, assume that the equation ξq1 = q2 has no real solution in the interior of
H. Then F is uniquely determined by the functions q1, q2 and ξ , particularly

F (x) =

∫ x

a

C

∣∣∣∣ ξ′ (u)

ξ (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = ξ′ q1
ξq1−q2 and C

is the normalization constant, such that
∫
H
dF = 1.
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