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ABSTRACT: In this paper, we apply homotopy perturbation method for the numerical solution of three 
dimensional second-order partial differential equation which occurred in a plate vibration behavious. The MAPLE 
18 Mathematical software was used to develop a four steps algorithm based on homotopy perturbation method 
(HPM). Three test cases are considered to verify the reliability and efficiency of the method. The suggested 
algorithm is quite efficient and practically well suited for use in these problems. The approximated solutions are 
in good agreement with analytical solutions for the tested problems Moreover, the approximate solutions obtained 
proved that the proposed method is easy, efficient, and accurate. 
  
Keywords: Second-Order Partial Differential Equation, Homotopy Perturbation Method, MAPLE 18 
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1. INTRODUCTION 

 
Modal analysis of plate vibration is important engineering analysis that relates to the safe design 
of this type of structures because many such structures are expected to survive cyclic load 
applications. Such situation is vulnerable to structural failures in resonant vibration should the 
frequency of the applied cyclic loads coincides with any natural frequencies of the plate found 
in the modal analysis. Solutions for these natural frequencies of plates of given geometry and 
material properties requires the solution of the shape of the deformed plates at various modes, 
and it will also provide engineers with possible shapes of the plate under each of these modes 
of vibration. Solids of plane geometry, such as thin plates are common appearance in machines 
and structures. Thin plates can be as small as printed electric circuit boards with micrometers 
in size or as large as floors in building structures. Like flexible cables, thin flexible plates are 
normally flexible and be vulnerable to transverse vibration. In some cases, these plates may 
rupture due to resonant vibrations, resulting in significant loss of property, and even human 
lives. 
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Figure 1. A free-body diagram of forces in an element of vibrating membrane 

This section will derive appropriate partial differential equations (PDEs) that allow engineers 
to assess the amplitudes in free vibration of thin plates that are flexible enough to be simulated 
to thin membranes Ran [1] 

 

Figure 2. Plan view of a flexible thin plate undergoing a transverse vibration 

The magnitudes of a transverse vibrating thin plate such as a computer mouse pad, induced by 
a slight instantaneous disturbance in the z-direction in Figure 2. We will have the following 
PDE and the given appropriate initial condition for the solution of the magnitudes of the 
vibrating plate at given time t, i.e. 𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) as second order partial differential equations which 
describe rate of change in three coordinate directions of function 𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑡𝑡) of the form: 
 
𝜕𝜕2𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑡𝑡2
= 𝜆𝜆2 �

𝜕𝜕2𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑦𝑦2
�                                                                                                 (1) 

 
subject to initial conditions 
 

�
𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑡𝑡)𝑡𝑡=0 = 𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝜕𝜕 𝑡𝑡=0
= 𝑔𝑔(𝑥𝑥,𝑦𝑦)

                                                                                                                                       (2) 

 

Where  𝜆𝜆 = �𝑃𝑃𝑃𝑃
𝑚𝑚

     in which P = tension in the cable and m = mass per unit length which needs 

to be computed with given conditions. The mass per unit length of the cable is 𝑚𝑚 = 𝑀𝑀
𝐿𝐿

  where 
M = total mass of the cable with M = ρV with V being the volume of the cable. Function 𝑓𝑓(𝑥𝑥,𝑦𝑦)  



Iyanda, et al. International Journal of Engineering and Innovative Research 2:2 (2020) 92-101 

94 
 

describes the cable at the initial position before the vibration take place while 𝑔𝑔(𝑥𝑥, 𝑦𝑦) describes 
the velocity of the plate across the plane of the plate at the inception of the vibration. 
 
Many researchers published some works in solving this type of classical differential equation, 
Irvine [2] describes the in-plane and out-of-plane small amplitude free vibration of a suspended 
elastic cable with small sag, Leonard [3] present the finite element method has also been used 
for forced vibration response analysis, Rega [4] parametric analysis of large amplitude free 
vibrations of a suspended cable was considered, Ni et all. [5] developed a hybrid pseudo-
force/Laplace transform method for transient response of suspended cables. Homotopy 
Perturbation Method (HPM) has been a promising numerical technique in solving partial 
differential equations which describe different fields of science, physical phenomena, 
engineering, mechanics and soon. homotopy perturbation method was proposed by He [6] for 
solving linear and nonlinear differential equations and integral equations. Many researchers 
used HPM to approximate the solutions of partial differential equations and integral equations. 
Vahidi et all. [7] solved nonlinear DEs, which yields the Maclaurin series of the exact solution, 
Chang and Liou [8] developed a third-order explicit approximation to find the roots of the 
dispersion relation for water waves that propagate over dissipative media, Zhou and Wu [9] 
solved the nonlinear PB equation describing spherical and planar colloidal particles immersed 
in an arbitrary valence and mixed electrolyte solution, Özi and Akçı [10] obtained periodic 
solutions for certain non-smooth oscillators using iterated homotopy perturbation method 
combined with modified Lindstedt Poincaré technique, Yazdi [11] solved nonlinear vibration 
analysis of functionally graded plate. Al-Saif and Abood [12] used homotopy perturbation 
method for solving K (2, 2) equations, Aswhad and Jaddoa [13] obtained the approximate 
solutions of Newell whitehead segel and fisher equations using the Adomian decomposition 
Method, Babolian et all. [14] solved advection problem, vibrating beam equation linear and 
nonlinear PDEs and the system of nonlinear PDEs and Adil et all.[15] studied general second-
order partial differential equations using homotopy perturbation method. However, the fact that 
the HPM solves many applied mathematical problems without any transformation, 
discretization or restrictive assumptions can be considered as a clear advantage of this technique 
over the some numerical methods was estaiblished by Mohyud and Noor [16]. Moreover, 
several techniques including the method of characteristic, Riemann invariants, combination of 
waveform relaxation and multi-grid, periodic multi-grid wave form, variational iteration e.t.c 
encounter the inbuilt deficiencies and involve huge computational work. Thus, the homotopy 
perturbation algorithm was formulated to address the computational shortcoming while 
efficiency and accuracy are still mentained He [17]. 
 
In this work, we examimed the feasibility of employing the HPM to formulate four steps 
algorithm for the numerical solution of three dimentional second-order PDE that occurred in a 
plate vibration and to investigate the behavious of functions 𝑓𝑓(𝑥𝑥, 𝑦𝑦) which describe the cable 
at the initial position couple with 𝑔𝑔(𝑥𝑥, 𝑦𝑦) that describes the velocity of the plate across the plane 
of the plate at the inception of the vibration. 
 
2.  HOMOTOPY PERTURBATION METHOD (HPM) 
 
In this section, we present a brief description of the HPM, to illustrate the basic ideas of the 
homotopy perturbation method, this method is a coupling between the traditional perturbation 
method and homotopy, which is a highly interesting and useful concept in topology, and 
deforms continuously to a simple problem which is easily solved. We consider the following 
differential equation employed in Chun and Sakthivel [18]. 
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 𝐴𝐴(𝑢𝑢) − 𝑓𝑓(𝛾𝛾) = 0        𝛾𝛾 ∈ Ω                                                                                                                                (3) 
 
with boundary conditions: 

𝐵𝐵 �𝑢𝑢,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0            𝛾𝛾 ∈ Ω                                                                                                                                 (4) 

 
where A is general differential operator, B is a boundary operator, 𝑓𝑓(𝛾𝛾)  a known analytic 
function and 𝜕𝜕𝜕𝜕  is the boundary of the domain Ω. The operator A can be generally divided into 
two parts of L and N where L is linear part, while N is the nonlinear part in the DE, Therefore 
Eq.(3) can be rewritten as follows: 
 
𝐿𝐿(𝑢𝑢) +𝑁𝑁(𝑢𝑢) − 𝑓𝑓(𝛾𝛾) =                                                                                                                                         (5) 
 
By using homotopy technique, one can construct a homotopy  
 
 𝑍𝑍(𝛾𝛾,𝑚𝑚):Ω Χ [0,1] ↦ 𝑅𝑅                                                                                                                                       (6)  
  
which satisfies 
 
𝐻𝐻(𝑧𝑧,𝑚𝑚) = (1−𝑚𝑚)[𝐿𝐿(𝑧𝑧) − 𝐿𝐿(𝑢𝑢0)] +𝑚𝑚[𝐿𝐿(𝑧𝑧) + 𝑁𝑁(𝑧𝑧) − 𝑓𝑓(𝛾𝛾)] = 0                                                        (7)  
 
or              
 
 𝐻𝐻(𝑧𝑧,𝑚𝑚) = 𝐿𝐿(𝑧𝑧) − 𝐿𝐿(𝑢𝑢0) +𝑚𝑚𝑚𝑚(𝑢𝑢0 +𝑚𝑚[𝑁𝑁(𝑧𝑧) − 𝑓𝑓(𝛾𝛾)]) = 0                                                                   (8) 
 
where m ∈ [0, 1], τ ∈ Ω  and m is called homotopy parameter and 𝑢𝑢0 is an initial approximation 
for the solution of Eq.(3) which satisfies the boundary conditions obviously, using Eq.(7) or 
Eq.(8), we have the following equation: 
 
𝐻𝐻(𝑧𝑧, 0) = 𝐿𝐿(𝑧𝑧) − 𝐿𝐿(𝑢𝑢0) = 0                                                                                                                              (9) 
 
𝐻𝐻(𝑧𝑧, 1) = 𝐿𝐿(𝑧𝑧) + 𝑁𝑁(𝑧𝑧) − 𝑓𝑓(𝛾𝛾) = 0                                                                                                (10) 
 
Assume that the solution of (7) or (8) can be expressed as a series in m as follows: 
 

𝑍𝑍 = 𝑧𝑧0 + 𝑚𝑚𝑧𝑧1 + 𝑚𝑚2𝑧𝑧2 +𝑚𝑚3𝑧𝑧3 +⋯ = �𝑚𝑚𝑖𝑖𝑧𝑧𝑖𝑖

∞

𝑖𝑖=0

                                                                                       (11) 

set m → 1 results in the approximate solution of (3). 

Consequently, 

𝑢𝑢(𝛾𝛾) = lim
𝑚𝑚→1

𝑍𝑍 = 𝑧𝑧0 + 𝑧𝑧1 + 𝑧𝑧2 + 𝑧𝑧3 + ⋯ = �𝑧𝑧𝑖𝑖       (12)
∞

𝑖𝑖=0

 

It is worth to note that the major advantage of He’s homotopy perturbation method is that the 
perturbation equation can be freely constructed in many ways and approximation can also be 
freely selected   
 
It is well known that series (12) is convergent for most of the cases and also the rate of 
convergence is dependent on 𝐿𝐿(𝑧𝑧). The comparisons of equal powers of 𝑚𝑚 give solutions of 
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various orders. In sum, according to Liu [19], He’s HPM considers the solution 𝑢𝑢(𝑥𝑥) of the 
homotopy equation in a series of 𝑚𝑚 as 

𝑧𝑧(𝑥𝑥) = �𝑚𝑚𝑖𝑖𝑧𝑧𝑖𝑖 = 𝑧𝑧0 +𝑚𝑚𝑧𝑧1 +𝑚𝑚2𝑧𝑧2 +𝑚𝑚3𝑧𝑧3 + ⋯                                                                                    (13)
∞

𝑖𝑖=0

 

 
and the method considers the nonlinear 𝑁𝑁(𝑧𝑧) as 
 

𝑁𝑁(𝑢𝑢) = �𝑚𝑚𝑖𝑖𝐻𝐻𝑖𝑖 = 𝐻𝐻0 + 𝑚𝑚𝐻𝐻1 +𝑚𝑚2𝐻𝐻2 +𝑚𝑚3𝐻𝐻3 +⋯                                                                              (14)
∞

𝑖𝑖=0

 

 
Where 𝐻𝐻𝑛𝑛  are the so-called He’s polynomials [17] which can be calculated by using the formula 
 

𝐻𝐻𝑛𝑛(𝑧𝑧0, 𝑧𝑧1 … 𝑧𝑧𝑛𝑛) =
1
𝑛𝑛!

𝜕𝜕𝑛𝑛

𝜕𝜕𝑚𝑚𝑛𝑛 �𝑁𝑁 ��𝑚𝑚𝑖𝑖𝑧𝑧𝑖𝑖

∞

𝑖𝑖=0

��

𝑚𝑚=0

                                                                          (15) 

  
where   𝑛𝑛 = 0,1,2,3, … 
 
2.1. Homotopy Perturbation Algorithm (HPA) 

In this section, we consider Eq. (1) and Eq. (2) couple with Eq. (15). We formulate a four steps 
algorithm using MAPLE 18 Mathematical software command to solve Eq. (1) as follows: 
 

restart: 
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏:  𝑧𝑧(𝑥𝑥,𝑦𝑦, 0) ≔ 𝑓𝑓(𝑥𝑥, 𝑦𝑦); 
𝑧𝑧𝑡𝑡(𝑥𝑥, 𝑦𝑦, 0) ≔ 𝑔𝑔(𝑥𝑥,𝑦𝑦); 
𝑧𝑧0 ≔ 𝑧𝑧(𝑥𝑥, 𝑦𝑦, 0) + 𝑡𝑡 ∗ 𝑧𝑧𝑡𝑡(𝑥𝑥,𝑦𝑦, 0); 
𝑁𝑁 ≔ ℝ+; 

𝜆𝜆 ≔ �𝑃𝑃
𝑚𝑚

  ; 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟐𝟐:   𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 0 𝑡𝑡𝑡𝑡 0 𝑑𝑑𝑑𝑑   
𝐴𝐴 ≔ �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑧𝑧0, [𝑡𝑡, 𝑡𝑡]) + 𝜆𝜆 ∗ �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑧𝑧0, [𝑥𝑥,𝑥𝑥]) +𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑧𝑧0, [𝑦𝑦,𝑦𝑦])�� ;    
𝐵𝐵 ≔ −𝐼𝐼𝐼𝐼𝐼𝐼(𝐴𝐴, 𝑡𝑡, 𝑡𝑡);                                                                                                                                           (16) 
𝑧𝑧𝑖𝑖+1 ≔ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐵𝐵);                                                                                                                                  
end do 
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟑𝟑:  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 1 𝑡𝑡𝑡𝑡 𝑁𝑁 𝑑𝑑𝑑𝑑   
𝐴𝐴 ≔ �𝜆𝜆 ∗ �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑧𝑧𝑖𝑖 , [𝑥𝑥,𝑥𝑥]) +𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑧𝑧𝑖𝑖 , [𝑦𝑦,𝑦𝑦])�� ;                                                                 
𝐵𝐵 ≔ −𝐼𝐼𝐼𝐼𝐼𝐼(𝐴𝐴, 𝑡𝑡, 𝑡𝑡); 
𝑧𝑧𝑖𝑖+1 ≔ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐵𝐵); 
end do 
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟒𝟒:  𝑍𝑍 ≔ 𝑠𝑠𝑠𝑠𝑠𝑠�𝑧𝑧𝑗𝑗 , 𝑗𝑗 = 0,1, …𝑁𝑁 + 1�; 
𝑧𝑧(𝑥𝑥,𝑦𝑦) ≔ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑍𝑍, 𝑡𝑡 = 0); 
𝑧𝑧(𝑥𝑥, 𝑡𝑡) ≔ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑍𝑍,𝑦𝑦 = 0); 
𝑧𝑧(𝑡𝑡,𝑦𝑦) ≔ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑍𝑍,𝑥𝑥 = 0); 
output: see tables (1,2,3) 

 
where N is the computational length.  
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3. NUMERICAL EXPERIMENT 

In order to assess the accuracy of the formulated algorithm (16) for the numerical solution of  
the three dimentional second-order PDE that occurred in a plate vibration, we have introduced 
three test cases to investigate the nature of function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) and subject to initial condition in 
[1] when vibration of the pad induced by a slight instantaneous disturbance lateral to the pad 
from a static equilibrium condition (i.e.,zero velocity) in which 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 0 and compare the 
approximate solutions with the analytical solutions. 
 
𝜕𝜕2𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑡𝑡2
= 𝜆𝜆2 �

𝜕𝜕2𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑦𝑦2
�                                                                                             (17) 

 
subject to initial conditions  
 

�
𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑡𝑡)𝑡𝑡=0 = 𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝜕𝜕 𝑡𝑡=0
= 𝑔𝑔(𝑥𝑥,𝑦𝑦)

                                                                                                                               (18) 

 
when the pad has fixed edges with initial sagging that can be described by functions    

 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = �
(10 − 𝑥𝑥2)(5 − 𝑦𝑦2)

10 sin(𝑥𝑥) + 5 cos(𝑦𝑦)    
𝑒𝑒(10𝑥𝑥+5𝑦𝑦)

                         (19)     

 
vibration of the pad induced by a slight instantaneous disturbance lateral to the pad from a static 
equilibrium condition (i.e., zero velocity)     
                               
𝑔𝑔(𝑥𝑥,𝑦𝑦) = 0               (20) 
                                                                      
and  

𝜆𝜆 = �𝑃𝑃𝑃𝑃
𝑚𝑚

= �
(0.5𝑙𝑙𝑏𝑏𝑡𝑡)�32.0𝑓𝑓𝑓𝑓

𝑠𝑠2 �
0.00155𝑙𝑙𝑏𝑏𝑚𝑚

𝑖𝑖𝑛𝑛2
�12𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓
� = 353.05 𝑖𝑖𝑖𝑖/𝑠𝑠                      (21) 

 
Compute the above parameters into algorithm (16), we have the following numerical results 
tables:   

Table 1.  𝑓𝑓(𝑥𝑥, 𝑦𝑦) = (10 − 𝑥𝑥2)(5− 𝑦𝑦2),    𝑔𝑔(𝑥𝑥,𝑦𝑦) = 0 ,  𝜆𝜆 = 353.05    𝑁𝑁 = 3                   Case 1 

𝑧𝑧(𝑥𝑥, 𝑦𝑦). When  𝑡𝑡 = 0 𝑧𝑧(𝑥𝑥, 𝑡𝑡). When  𝑦𝑦 = 0 𝑧𝑧(𝑡𝑡,𝑦𝑦). When  𝑥𝑥 = 0 

x  𝑦𝑦 Analytical 
Solution 

HPA 
Solution 

x  t  Exact 
Solution 

HPA Solution 𝑡𝑡 y Exact 
Solution 

HPA 
Solution 

0 0 50.00000 50.00000 0 0 50.000000 50.000000 0 0 50.000000 50.000000 
0.1 0.1 49.85010 49.85010 0.1 0.1 107.02700 107.02700 0.1 0.1 106.97780 106.97780 
0.2 0.2 49.40160 49.40160 0.2 0.2 327.54200 327.54210 0.2 0.2 327.34200 327.34200 
0.3 0.3 48.65810 48.65810 0.3 0.3 859.84750 859.84740 0.3 0.3 859.39741 859.39741 
0.4 0.4 47.62560 47.62560 0.4 0.4 1951.1134 1951.1133 0.4 0.4 1950.3130 1950.3130 
0.5 0.5 46.31250 46.31250 0.5 0.5 947.37817 947.37812 0.5 0.5 3946.1281 3946.1283 
0.6 0.6 44.72960 44.72960 0.6 0.6 7293.5485 7293.5486 0.6 0.6 7291.7485 7291.7486 
0.7 0.7 42.89010 42.89010 0.7 0.7 12533.399 12533.399 0.7 0.7 12530.949 12530.949 
0.8 0.8 40.80960 40.80960 0.8 0.8 20309.573 20309.573 0.8 0.8 20306.372 20306.372 
0.9 0.9 38.50610 38.50610 0.9 0.9 31363.580 31363.580 0.9 0.9 31359.530 31359.530 
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1.0 1.0 36.00000 36.00000 1.0 1.0 46535.800 46535.800 1.0 1.0 46530.800 46530.800 

 
 
 
 
 
 

Table 2. 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 10 sin(𝑥𝑥) + 5cos (𝑦𝑦),    𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 0  and  𝜆𝜆 = 353.05     𝑵𝑵 = 𝟏𝟏𝟏𝟏      Case 2 
𝑧𝑧(𝑥𝑥, 𝑦𝑦). When  𝑡𝑡 = 0 𝑧𝑧(𝑥𝑥, 𝑡𝑡). When  𝑦𝑦 = 0 𝑧𝑧(𝑡𝑡,𝑦𝑦). When  𝑥𝑥 = 0 

x  𝑦𝑦 Analytical 
Solution 

HPA 
Solution 

x  t  Exact 
Solution 

HPA 
Solution 

𝑡𝑡 y Exact 
Solution 

HPA Solution 

0 0 5.0000000 5.0000000 0 0 5.0000000 5.000000 0 0 5.000000 5.000000 

0.1 0.1 5.9733549 5.9733549 0.1 0.1 20.092790 20.09279 0.1 0.1 16.66497 16.66497 

0.2 0.2 6.8870261 6.8870262 0.2 0.2 49.804244 49.80424 0.2 0.2 105.0698 105.0698 

0.3 0.3 7.7318845 7.7318845 0.3 0.3 1116.0813 1116.081 0.3 0.3 670.1484 670.1484 

0.4 0.4 8.4994883 8.4994883 0.4 0.4 8168.9733 8168.973 0.4 0.4 4229.799 4229.798 

0.5 0.5 9.1821681 9.1821681 0.5 0.5 58887.972 58887.97 0.5 0.5 26382.33 26382.33 

0.6 0.6 9.7731028 9.7731029 0.6 0.6 4.191-E05 4.182-E05 0.6 0.6 1.62-E05 1.63-E05 

0.7 0.7 10.266387 10.266388 0.7 0.7 2.931-E06 2.931-E06 0.7 0.7 9.79-E05 9.78-E05 

0.8 0.8 10.657094 10.657095 0.8 0.8 2.002-E07 2.002-E07 0.8 0.8 5.72-E06 5.72-E06 

0.9 0.9 10.941318 10.941319 0.9 0.9 1.313-E08 1.313-E08 0.9 0.9 3.18-E07 3.18-E07 

1.0 1.0 11.116222 11.116223 1.0 1.0 8.117-E08 8.117-E08 1.0 1.0 1.63-E08 1.63-E08 

 
Table 3.           𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑒𝑒(10𝑥𝑥+5𝑦𝑦), 𝑔𝑔(𝑥𝑥,𝑦𝑦) = 0  and  𝜆𝜆 = 353.05                              𝑵𝑵 = 𝟏𝟏𝟏𝟏                Case 3 

𝑧𝑧(𝑥𝑥,𝑦𝑦). When  𝑡𝑡 = 0 𝑧𝑧(𝑥𝑥, 𝑡𝑡). When  𝑦𝑦 = 0 𝑧𝑧(𝑡𝑡,𝑦𝑦). 
 

When  𝑥𝑥 = 0 

x  𝑦𝑦 Analytical 
Solution 

HPA 
Solution 

x  t  Exact 
Solution 

HPA 
Solution 

𝑡𝑡 y Exact 
Solution 

HPA Solution 

0 0 1.000000 1.000000 0 0 1.000000 1.000000 0 0 1.000000 1.000000 
0.1 0.1 4.481689 4.481689 0.1 0.1 6.182-E08 6.182-E08 0.1 0.1 3.75 -E06 3.76 E06 
0.2 0.2 20.08553 20.08554 0.2 0.2 1.571-E17 1.571-E17 0.2 0.2 5.77-E16 5.78-E16 
0.3 0.3 90.01713 90.01714 0.3 0.3 2.331-E23 2.331-E23 0.3 0.3 5.20-E22 5.20-E22 
0.4 0.4 403.4288 403.4289 0.4 0.4 6.933-E27 6.933-E27 0.4 0.4 9.38-E26 9.39-E26 
0.5 0.5 1808.042 1808.042 0.5 0.5 2.492-E31 2.492-E31 0.5 0.5 2.04-E30 2.05-E30 
0.6 0.6 8103.084 8103.084 0.6 0.6 2.376-E34 2.377-E34 0.6 0.6 1.18-E33 1.19-E33 
0.7 0.7 36315.50 36315.51 0.7 0.7 9.107-E36 9.108-E36 0.7 0.7 2.75-E35 2.76-E35 
0.8 0.8 1.628-E05 1.628-E05 0.8 0.8 1.794-E39 1.795-E39 0.8 0.8 3.29-E37 3.28-E37 
0.9 0.9 7.294-E05 7.294-E05 0.9 0.9 2.129-E41 2.128-E41 0.9 0.9 2.36-E39 2.35-E39 
1.0 1.0 3.269-E06 3.269-E06 1.0 1.0 1.694-E43 1.695-E43 1.0 1.0 1.14-E41 1.14-E41 
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4. GRAPHS REPRESENTATION 

 
Graph 1. Numerical solution at 𝑧𝑧(𝑥𝑥,𝑦𝑦)       Graph 2. Numerical solution at 𝑧𝑧(𝑥𝑥, 𝑡𝑡)     Graph 3. Numerical solution at 𝑧𝑧(𝑡𝑡,𝑦𝑦). 

for 𝑓𝑓(𝑥𝑥,𝑦𝑦) = (10− 𝑥𝑥2)(5− 𝑦𝑦2).                   for  𝑓𝑓(𝑥𝑥,𝑦𝑦) = (10− 𝑥𝑥2)(5− 𝑦𝑦2).          for  𝑓𝑓(𝑥𝑥,𝑦𝑦) = (10− 𝑥𝑥2)(5− 𝑦𝑦2). 
 

 
Graph 4. Numerical solution at 𝑧𝑧(𝑥𝑥,𝑦𝑦).    Graph 5. Numerical solution at 𝑧𝑧(𝑥𝑥, 𝑡𝑡).    Graph 6. Numerical solution 
at 𝑧𝑧(𝑡𝑡,𝑦𝑦).for 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 10 sin(𝑥𝑥) + 5cos (𝑦𝑦).                   for  𝑓𝑓(𝑥𝑥,𝑦𝑦) = 10 sin(𝑥𝑥) + 5cos (𝑦𝑦)          for  𝑓𝑓(𝑥𝑥,𝑦𝑦) =

10 sin(𝑥𝑥) + 5cos (𝑦𝑦) 
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Graph 7. Numerical solution at 𝑧𝑧(𝑥𝑥,𝑦𝑦).    Graph 8. Numerical solution at 𝑧𝑧(𝑥𝑥, 𝑡𝑡).    Graph 9. Numerical solution at 𝑧𝑧(𝑡𝑡,𝑦𝑦). 

for 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑒𝑒(10𝑥𝑥+5𝑦𝑦)                          for  𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑒𝑒(10𝑥𝑥+5𝑦𝑦)                             for  𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑒𝑒(10𝑥𝑥+5𝑦𝑦) 
 
 
 
5. DISCUSSION AND CONCLUSIONS 
 
5.1. Discussion 
 
Modal shapes of thin plates require numerical solutions of 𝑍𝑍(𝑥𝑥,𝑦𝑦, 𝑡𝑡) which is a very tedious 
job. It will also be a great deal of laborious efforts to obtain numerical solution to graphical 
representations of these shapes. Consequently, the objective of this study is to formulate 
fast,easy, and accuraty algorithm to simulate the task ahead.Thus, the objective was 
accomplished through the formulated algorithm using MAPLE 18 matheamtical software 
inwhich the  plots  are  shown  in  graphs  1  to  9  for  the geometric behaviours of thin plates 
vibration when functions 𝑓𝑓(𝑥𝑥, 𝑦𝑦)  (algebric, trigonometric and exponential) at a static 
equilibrium condition 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 0 which was examined. The corresponding numerical 
solutions for the three test cases are presented in Tables1 to 3. Moreover, the graphs modal 
shapes also indicate where the peak amplitudes of vibration of the flexible plate or the nature 
of frequency of the wave would occur, from which the design engineers should take precaution 
for not placing delicate attachments at these locations to avoid possible damages due to 
excessive deformation of the plate structure. 
   
5.2. Conclusion 
 
In this paper, we formulate a four steps algorithm using homotopy perturbation method for the 
numerical solution of three dimentional second-order PDE which occured in a plate vibration. 
The method is applied in a direct way without any transformation, discretization or restrictive 
assumptions. Also, we have tested the HPA on three different implementations which are shown 
the efficiency and accuracy of the proposed method. The approximate solutions are in good 
agree with analytical solutions (see tables 1 to 3). It may be concluded that the HPA is powerful 
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and efficient in finding the numeric-analytic solutions for a wide class of problems in applied 
sciences and engineering. 
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