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Abstract

The main purpose of this paper is to consider convex contraction of Istratescu’s type in various generalized
metric spaces (partial metric spaces, cone metric spaces, cone b-metric spaces, partial b-metric spaces, and
others). In it, among other things, we generalize, extend, correct and enrich the recent announced results in
existing literature.
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1. Introduction and Preliminaries

Intellectual activity is may be divided into four basic categories: art, science, philosophy and mathematics.
Each of these categories has its own sub-categories and further development has made progress in each of
them in terms of generalization where it is possible. In other words, a so-called hierarchy of concepts and
activities emerged. It can be clearly identified in each of four mentioned categories.
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In this paper we will discuss one small part of one of the categories - mathematics. More specifically,
we will observe mathematical analysis as one of its many sub-categories. Further, nonlinear and functional
analysis are its sub-categories, while the fixed point theory is maybe the main foundation of the latter.

Recall here that the fixed point theory was conceived in the late 19th century by introducing the notion
of an iterative sequence of some mapping starting from a given point x0. In other words, if X is nonempty
set, x0 ∈ X is a given point and T is self-mapping on X, then the sequence {xn}, n ∈ N defined as
xn = Txn−1, n = 1, 2, ... is called Picard sequence. It is actually the sequence:

x0, x1 = Tx0, x2 = Tx1 = T 2x0, ..., xn = Txn−1 = Tnx0, ...

where Tn = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n

. In the fixed point theory (metrical and topological) Picard sequence has a

special significance.
We say that u ∈ X is a fixed point of the mapping T : X → X if Tu = u. It is unique if beside it, there

is no more fixed points in X.
In this paper we will examine a special type of mappings defined on metric space (X, d) introduced and

studied by Istratescu at the beginning of the nineties in the last century. Istratescu’s result is one of the
topics in the fixed point theory that has the potential to be elegantly generalized and applied in wide class
of metric spaces. In this paper we will use quite simple approach to improve and generalize some of results
from the context of metric spaces. Beside that, we will consider this type of mappings in some generalized
metric spaces such as:

• b-metric

• partial metric

• partial b-metric

• cone metric

• G-metric

• Gb-metric

• S-metric

• Sb-metric spaces.

Now, we recall the Istratescu’s notion of the convex contraction mapping of order two from [16] in metric
space (X, d). A mapping T : X → X is a convex contraction of order two if there are non-negative numbers
a, b ∈ R, a+ b < 1 such that for all x, y ∈ X the following is satisfied:

d(T 2x, T 2y) ≤ a · d(Tx, Ty) + b · d(x, y) (1)

where T 2 = T ◦ T . In [16] is showed that if T is a continuous mapping and convex contraction of order two
then it has a fixed point. Recently, Istratescu’s results [16, 17, 18, 19] have again attracted the attention of
many authors, see for example [5, 6, 9, 13, 14, 22, 28]. In [29] one can see more on contractive mappings
summarized.

Here we state definition of k-continuity from [26] and Theorem 2.1. from [8]. Later in the paper we will
show how the proof of this theorem can be simplified and shortened. The k-continuity is recently introduced
weaker form of continuity but strong enough to keep Istratescu’s type contractions valid.

Definition 1.1. [26] A self-mapping T of a metric space X is k-continuous, k = 1, 2, 3, ..., if T kxn → T x̄
whenever {xn} is a sequence in X such that T k−1xn → x̄.
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Theorem 1.2. [8] Let T be a self-mapping of a complete metric space (X, d) such that for each distinct
x, y ∈ X,

0 ≤ p0 + p1 + q1 + q2 + r1 + r2 < 1 (2)
d(T 2x, T 2y) ≤ p0d(x, y) + p1d(Tx, Ty) + q1d(x, Tx) + q2d(Tx, T 2x)

+r1d(y, Ty) + r2d(Ty, T 2y).

Suppose that T is k-continuous for k ∈ N. Then T has a unique fixed point.

In the next section we will also use the following well known Lemma (see [27]) :

Lemma 1.3. Let (X, d) be a metric space and let {xn}, n ∈ N be a sequence in X such that lim
n→∞

d(xn, xn+1)→
0. If {xn} is not a Cauchy sequence, then there exist two sequences of integer numbers {nk} and {mk} such
that the limit of all of the sequences d(xnk+a, xmk+b), where a, b ∈ {−1, 0, 1}, is ε+ when k →∞.

2. Main results

The first new result we present in this paper is the following Lemma:

Lemma 2.1. For a given point x0 ∈ X the Picard sequence of the convex contraction mapping T : X → X
(satisfying (1)) is a Cauchy sequence.

Proof. Suppose that xk 6= xk−1 for all k ∈ N, since the case xk = xk−1 for some k ∈ N is trivial. Replacing
x = xk, y = xk−1 into (1) we obtain:

d(xk+2, xk+1) ≤ a · d(xk+1, xk) + b · d(xk, xk−1). (3)

To prove that {xn} is Cauchy, it is enough to prove that the following sequence

Sn = d1 + d2 + ...+ dn−1 + dn, dn = d(xn+1, xn)

is convergent. Starting from (3) for k = 1, 2, ..., n− 1, n, we get:

d(x3, x2) ≤ a · d(x2, x1) + b · d(x1, x0)

d(x4, x3) ≤ a · d(x3, x2) + b · d(x2, x1)

...

d(xn+1, xn) ≤ a · d(xn, xn−1) + b · d(xn−1, xn−2)

d(xn+2, xn+1) ≤ a · d(xn+1, xn) + b · d(xn, xn−1).

Summing up the previous inequalities, we obtain:

Sn − d1 + dn+1 ≤ a · Sn + b · (Sn − dn + d0)

and further
Sn(1− a− b) ≤ d1 + bd0 − dn+1 − bdn ≤ d1 + bd0.

Since a+ b < 1 we conclude that Sn is bounded from above and also increasing, so there exists lim
n→∞

Sn. �

Remark 2.2. The presented proof of the Lemma 2.1 is elementary, unlike the corresponding proof in [16].

Remark 2.3. If we release the assumption that T is continuous from [16] and replace it by the assumption
that T is 2−continuous, we again obtain that Istratescu’s theorem is valid. Really, from xn → x̄, n→∞ we
get also

xn+1 = Txn → x̄ and T 2xn = xn+2 → x̄, n→∞.

But since T is 2−continuous we get that xn+2 = T 2xn → T x̄, n→∞. Now, from the uniqueness of the limit,
we finally conclude that T x̄ = x̄. The uniqueness of the fixed point x̄ follows from (1).
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Remark 2.4. Similar as in Remark 2.3 we can additionally release that assumption that T is k-continuous
for k > 2 instead of it suppose that T is 2-continuous.

Now, let us look back at Theorem 2.1. from [8]. The proof that the Picard sequence {xn = Tnx0} is
a Cauchy follows easily from the previous Lemma 2.1. Namely, replacing x = xn, y = xn−1 into (2) and
denoting by dn = d(xn+1, xn), we get

(1− q2)dn+1 ≤ (p1 + q1 + r2) · dn + (p0 + r1) · dn−1.

Hence,
dn+1 ≤ a · dn + b · dn−1,

where a =
p1 + q1 + r2

1− q2
, b =

p0 + r1
1− q2

. Since a+ b < 1, from Lemma 2.1 we conclude that {xn = Tnx0} is a

Cauchy. Notice here that the proof we just carried is much simpler and shorter than the one in [8].

Remark 2.5. The assumption ”for each distinct x, y ∈ X” in Theorem 1.2 is not necessary and the theorem
remains valid without it.

We keep focusing our attention on [8], now the Theorem 2.2. which claims that the self-mapping T :
X → X has a unique fixed point if next to (2) for all x, y ∈ X it satisfies

d(Tx, Ty) ≤ φ
(

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

})
(4)

where φ : [0,+∞)→ R+ is such that φ(t) < t for each t > 0.
We think that the assumption of continuity of function φ is missing in order the proof in [8] be correct.
Then, let us also note that the condition (4) itself is sufficient to prove that Picard sequence {xn = Tnx0}
is a Cauchy, using the Lemma 1.3. Namely, since d(xn, xn+1)→ 0 when n→∞, if {xn} is not Cauchy then
exist two sequences {nk} and {mk} such that all limits form the Lemma 1.3 are ε+. Then, we easily obtain
contradiction by replacing x = xmk

, y = xnk
into (4):

d(xmk+1, xnk+1) = d(Txmk
, Txnk

)

≤ φ (max {d(xmk
, xnk

), d(xmk
, Txmk

), d(xnk
, Txnk

),

d(xmk
, Txnk

) + d(xnk
, Txmk

)

2

})
.

Remark 2.6. Note that proof of Lemma 2.1 can not be applied in the context of b-metric spaces (X, d, s > 1).
Indeed, consider the complete b-metric space X = R with d(x, y) = |x − y|p, p > 1. Then, for the sequence
xn = 1 + 1

2 + · · · + 1
n , the sum

∑∞
n=1 d(xn+1, xn) is convergent, but {xn} is not the Cauchy sequence. We

easily obtain:

d(xn+m, xn) =

(
1 +

1

2
+ · · ·+ 1

n+m
− 1− 1

2
− · · · − 1

n

)p

=

(
1

n+ 1
+ · · ·+ 1

n+m

)p

.

If we put m = n into the previous relation, we obtain

d(x2n, xn) =

(
1

n+ 1
+ · · ·+ 1

2n

)p

≥ 1

2p
,

and it does not converge to 0 when n → ∞. Therefore, in b-metric case Istratescu’s theorem for convex
contraction can not be proven using the Lemma 2.1.

But also note that, from condition (1) we obtain

d(xn+2, xn+1) ≤ max{d(x1, x0), d(x2, x1)}(a+ b)n/2,
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for all n ∈ N. So, from Lemma 2.2 in [24] we can conclude that {xn} is Cauchy. Further with the assumption
of continuity of T immediately follows that in b-metric spaces convex contraction satisfying (1) has a unique
fixed point. Note here that this is a more general result than [10], namely in b-metric and in metric spaces
the contraction condition is the same: a+ b < 1. Note also that the same result is obtained in [23] but by a
different approach.

2.1. Partial case
In 1986 Matthews introduced the partial metric spaces as the generalization of usual metric ones, see

[21]. The following Matthews’ definitions and results will be needed in the sequel.

Definition 2.7. A partial metric on a non-empty set X is a function p : X ×X → [0,∞) such that for all
x, y, z ∈ X :

(p1) x = y if and only if p (x, x) = p (x, y) = p (y, y) ,
(p2) p (x, x) ≤ p (x, y) ,
(p3) p (x, y) = p (y, x) ,
(p4) p (x, y) ≤ p (x, y) + p (y, z)− p (y, y) .
A partial metric space is a pair (X, p) such that X is a non-empty set and p is a partial metric on X.
Each partial metric p on X generates a T0 topologfy τp on X with a base of the family of open p−balls

{Bp (x, ε) : x ∈ X, ε > 0} , where Bp (x, ε) = {y ∈ X : p (x, y) < p (x, x) + ε} for all x ∈ X and ε > 0.

Definition 2.8. ([27], Definition 1.2). Let (X, p) be a partial metric space. Then
(a) A sequence {xn} in (X, p) converges to x ∈ X if and only if p (x, x) = limn→∞ p (xn, x) ;

(b) A sequence {xn} in (X, p) is called a Cauchy if and only if there exist (and is finite) limn,m→∞ p (xn, xm) ;
(c) A partial metric space (X, p) is sad to be complete if every Cauchy sequence {xn} in X converges,

with respect to τp, to a point x ∈ X such that p (x, x) = limn,m→∞ p (xn, xm) ;
(d) A sequence {xn} in (X, p) is called 0-Cauchy if and only if

lim
n,m→∞

p (xn, xm) = 0.

We say that (X, p) is 0-complete if every 0-Cauchy sequence in X converges, with respect to τp, to a point
x ∈ X such that p (x, x) = 0;

(e) A mapping f : X → X is said to be continuous at x0 ∈ X, if for every ε > 0, there exists δ > 0 such
that f (Bp (x0, δ)) ⊆ Bp (fx0, ε) .

Our first result on convex contraction in the frame of partial metric spaces is the following:

Theorem 2.9. Let T be a continuous convex contraction of order two defined on a 0-complete partial metric
space (X, p) . Then T has a unique fixed point (say) x and p (x, x) = 0.

Proof. If x0 is an arbitrary point in X, then for the Picard’s sequence xn+1 = Txn, n ∈ {0} ∪ N initiated
with x0 we get

p (xn+2, xn+1) ≤ a · p (xn+1, xn) + b · p (xn, xn−1) , for each n ∈ N.

Denote pn = p (xn+1, xn) , n ∈ N, then analogous to Lemma 2.1 we obtain that the sequence

Pn = p1 + p2 + · · ·+ pn

converges. This means that the sequence {xn} is a 0-Cauchy. Since (X, p) is a 0-complete there exists x ∈ X
such that

lim
n→∞

p (xn, x) = lim
n,m→∞

p (xn, xm) = 0 = p (x, x) .
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For more details see [20], [21], [33]. Further, if we suppose that x 6= Tx, from the continuity of the mapping
T , we get that p (x, Tx) = p (Tx, Tx) . Indeed, by (p4) we have

p (x, Tx) ≤ p (x, xn+1) + p (Txn, Tx)− p (xn+1, xn+1)

≤ p (x, xn+1) + p (Txn, Tx)→ p (x, x) + p (Tx, Tx)

= p (Tx, Tx) , as n→∞.

Now according (p2) follows the result, i.e. p (x, Tx) = p (Tx, Tx) .
Recall here an usual metric dp introduced in [15] with

dp (x, y) =

{
0, if x = y
p (x, y) , if x 6= y.

For the metric dp see also [12] and references therein. Finally, the last equality implies that dp (x, Tx) = 0,
i.e., x = Tx which is a contradiction. Hence, we proved that x is a unique fixed point of T. �

Remark 2.10. From the condition

p
(
T 2x, T 2y

)
≤ a · p (Tx, Ty) + b · p (x, y)

where a, b ≥ 0 and a+ b < 1, for all x, y ∈ X, immediately follows the next contractive condition:

dp
(
T 2x, T 2y

)
≤ a · dp (Tx, Ty) + b · dp (x, y) .

Proof. Indeed, for all x, y ∈ X by the definition of the function dp we have

dp
(
T 2x, T 2y

)
≤ p

(
T 2x, T 2y

)
≤ a · p (Tx, Ty) + b · p (x, y) .

Now, if Tx 6= Ty then x 6= y and we obtain that

dp
(
T 2x, T 2y

)
≤ a · p (Tx, Ty) + b · p (x, y) = a · dp (Tx, Ty) + b · dp (x, y) .

If Tx = Ty then either x = y or x 6= y. In both cases we have that

a · p (Tx, Ty) + b · p (x, y) = a · 0 +

{
b · 0 = 0, if x = y
b · p (x, y) , if x 6= y

= a · dp (Tx, Ty) + b · dp (x, y) .

Our claim is proved. �

Remark 2.11. a) If in the definition of convex contraction of order two we put b = 0 and if TX is a closed
subset in (X, d) , then again the mapping T has a unique fixed point x ∈ TX ⊂ X.

b) Also, let (X, p) be a 0-complete partial metric space and T : X → X be a convex contraction of order
two with a ∈ [0, 1), b = 0. If TX is a closed subset in (X, p) , then T has a unique fixed point z ∈ TX ⊂ X
and p (z, z) = 0.

Proof. a) Indeed since T : X → X it follows that T : TX → TX. By the assumption it is clear that (TX, d)
is a complete metric space. Further, from the condition d

(
T 2x, T 2y

)
≤ a · d (Tx, Ty) , 0 ≤ a < 1, x, y ∈ X

follows that T is a contraction on complete metric space (TX, d) . This follows from the

d (Tu, Tv) = d (T (Tx) , T (Ty)) = d
(
T 2x, T 2y

)
≤ a · d (Tx, Ty) = a · d (u, v) ,

where u = Tx, v = Ty both belong to TX. Hence, T has a unique fixed point (say) x ∈ TX ⊂ X.
b) First we see that (TX, p) is a 0-complete partial metric space and T is a contraction on it. Now, the

result follows according Banach contraction principle in the frame of 0-complete partial metric space.�
In the case of complete partial b-metric space (X, pb, s ≥ 1) we can also conclude that continuous convex

contraction of order two has a unique fixed point. The proof goes directly according to Remark 2.6, since
Theorem 2.4. from [12] proved that partail b-metric case comes down to b-metric case.
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2.2. Cone metric
Let (X, d) be a cone metric space over a solid cone C. Our next aim is to prove that Theorem 1 from [16]

and Theorem 3 from [4] are equivalent. Using that result, as an added benefit we additionally obtain simpler
proof of the Theorem 3 from [4]. In order to make this paper self-readable, Theorem 1 from [16] is stated
in Introduction, while now we paraphrase Theorem 3 from [4] which claims that cone convex contraction
mapping of order two T : X → X has a unique fixed point when (X, d) is a complete cone metric space over
a solid cone.

Theorem 2.12. Theorem 1 from [16] and Theorem 3 from [4] are equivalent.

Proof. First let us start from Theorem 3 in [4], claiming that in a cone metric space (X, d) over an or-
dered Banach space E with a solid cone C, a d-continuous mapping T : X → X satisfying d(T 2x, T 2y) �
a · d(Tx, Ty) + b · d(x, y), for all x, y ∈ X with a, b ≥ 0, a + b < 1 has a unique fixed point. If now we
suppose that E = R, with solid cone C = [0,∞) and || · || = | · |, then the previous contractive condition
becomes Istratescu’s contraction (1) on standard metric space (X, d). Since T already has a fixed point, by
this reasoning we obtain that Theorem 1 from [16] is a special case of Theorem 3 from [4].

Note that previous consideration may be said in one sentence - namely, standard metric space is a special
case of cone metric space, so Istratescu’s Theorem 1 from [16] is a direct consequence of Theorem 3 form [4].

Now, let us prove other implication. Suppose that T : X → X is a d-continuous convex contraction
satisfying d(T 2x, T 2y) � a · d(Tx, Ty) + b · d(x, y) for all x, y ∈ X defined on cone metric space (X, d) over
a solid cone. Recall that according to Proposition 2.2. from [2] we can suppose that (X, d) is a cone metric
space over a normal solid cone with a normal constant K = 1. Then, from contraction condition we obtain

D(T 2x, T 2y) ≤ a ·D(Tx, Ty) + b ·D(x, y)

where a, b ≥ 0, a + b < 1, for all x, y ∈ X and with D = ||d||. So, we get that T is a continuous convex
contraction on complete metric space (X,D) and according to Theorem 1 from [16] it has a unique fixed
point. �

Remark 2.13. From the previous analysis we conclude that results from [4] are not generalization of the
[16] in the case of cone metric spaces.

Open question: Does continuous mapping T : X → X have a unique fixed point if (X, d) is a cone
metric space over Banach algebra A and it satisfies

d(T 2x, T 2y) � a ◦ d(Tx, Ty) + b ◦ d(x, y)

where a, b � θ, r(a+ b) < 1, r is a spectral diameter and ◦ is a multiplication in algebra A.

2.3. G-metric case
In 2004 Mustafa and Sims in [25] introduced a new generalization of metric spaces known as G-metric

spaces. Afterwards, many new results in this kind of spaces were obtained, including various fixed point
results. Here, we continue to consider convex contraction of order two, now in G-metric space. First, we give
remind reader on definition and some properties of G-metric spaces and for more details we refer to [1], [7].

Definition 2.14. Let X be a nonempty set and G : X3 → [0,∞) satisfies the following conditions:

(G1) for all x, y, z ∈ X, x = y = z if and only if G(x, y, z) = 0

(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y

(G3) G(x, x, z) ≤ G(x, y, z) for all x, y ∈ X with z 6= y
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(G4) G(x, y, z) = G(x, z, y) = G(z, y, x) = G(y, x, z) = G(y, z, x) = G(z, x, y)

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all a, x, y, z ∈ X.

Our first result in this subsection is next:

Theorem 2.15. Let (X,G) be a complete G-metric space and T : X → X is a continuous convex contraction
of order two, ie. a mapping that satisfies

G(T 2x, T 2y, T 2z) ≤ aG(Tx, Ty, Tz) + bG(x, y, z) (5)

for all x, y, z ∈ X and a, b ≥ 0 and a+ b < 1. Then T has a unique fixed point x∗ and for all x ∈ X Picard
sequence Tnx converges to x∗.

Proof. From contraction condition (5) we obtain for all x, z ∈ X:

G(T 2x, T 2z, T 2z) ≤ aG(Tx, Tz, Tz) + bG(x, z, z)

and
G(T 2x, T 2x, T 2z) ≤ aG(Tx, Tx, Tz) + bG(x, x, z).

By adding previous inequalities we get

G(T 2x, T 2z, T 2z) +G(T 2x, T 2x, T 2z) ≤ a(G(Tx, Tz, Tz) +G(Tx, Tx, Tz))

+b(G(x, z, z) +G(x, x, z)),

that is
dG(T 2, T 2z) ≤ dG(Tx, Tz) + dG(x, z), for all x, y ∈ X

where dG is a metric obtained from G by dG(p, q) = G(p, p, q) +G(p, q, q). This way, we conclude that T is
convex contraction on complete metric space (X, dG) and from Theorem 1 in [16] follows the conclusion that
T has a unique fixed point x∗ ∈ X.�

Notice here that if we change (G5) into

(Gb5) Gb(x, y, z) ≤ s (Gb(x, a, a) +Gb(a, y, z)) for all a, x, y, z ∈ X

then we get recently introduced Gb-metric spaces and refer the reader to see more on that topic in [7]. As
we can assign corresponding b-metric dGb

to each Gb-metric, then we get following outcome for this class of
generalized metric spaces from already known results for b-metric:

Theorem 2.16. Let (X,Gb) be a complete Gb-metric space and T : X → X continuous convex contraction
of order two. Then, T has a unique fixed point.

We leave out the proof since with corresponding b-metric dGb
(x, y) = Gb(x, x, y) + Gb(x, y, y) the proof

follows from Remark 2.6.

2.4. S-metric case
First we recall some notions, results, and examples needed in this subsection.

Definition 2.17. Let X be a nonempty set. A function S : X3 → [0,∞) is said to be an S-metric on X, if
for each x, y, z, a ∈ X,

(S1) S (x, y, z) = 0 if and only if x = y = z,

(S2) S (x, y, z) ≤ S (x, x, a) + S (y, y, a) + S (z, z, a) .
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The pair (X,S) is called an S−metric space.

Example 2.18. We can easily check that the following examples are S-metric spaces.

1. Let X = Rn and ‖·‖ a norm on X, then S (x, y, z) = ‖y + z − 2x‖+ ‖y − z‖ is an S-metric on X.
In general, if X is a vector space over R and ‖·‖ a norm on X. Then it is easy to see that

S (x, y, z) = ‖αy + βz − λx‖+ ‖y − z‖ ,

where α+ β = λ for every α, β ≥ 1, is an S−metric on X.
2. Let X be a nonempty set and d1, d2 be two ordinary metrics on X. Then

S (x, y, z) = d1 (x, z) + d2 (y, z) ,

is an S-metric on X.
Next result is very useful in consideration some fixed point results in the context of S−metric spaces and

for its’ proof and more details on S-metric spaces see [11].

Proposition 2.19. Let (X,S) be an S−metric space. Then
(
X, d, s ≥ 3

2

)
is a b-metric space, where

d (x, y) = S (x, x, y) ,

for all x, y ∈ X.

Now we can prove Istratescu’s type result for S−metric space. Let us first formulate the next definition:

Definition 2.20. Let (X,S) be a complete S−metric space. The mapping T : X → X is the convex
contraction of order 2 if for all x, y, z ∈ X

S
(
T 2x, T 2y, T 2z

)
≤ a · S (Tx, Ty, Tz) + b · S (x, y, z) (6)

where a, b ≥ 0 and a+ b < 1.

Theorem 2.21. Each continuous convex contraction of order 2 defined on complete S−metric space (X,S)
has a unique fixed point, say u ∈ X and for all x ∈ X the sequence {Tnx}n∈N converges to the fixed point u.

Proof. According to Proposition 2.1. there is
(
X, d, s ≥ 3

2

)
b-metric space, where

d (x, y) = S (x, x, y) (7)

for all x, y ∈ X. Further, (6) implies

S
(
T 2x, T 2x, T 2z

)
≤ a · S (Tx, Tx, Tz) + b · S (x, x, z) (8)

that is
S
(
T 2x, T 2z, T 2z

)
≤ a · S (Tx, Tz, Tz) + b · S (x, z, z) . (9)

Now, by adding (8) and (9) we get

d
(
T 2x, T 2z

)
≤ a · d (Tx, Tz) + b · d (x, z) (10)

The result further follows by Remark 2.6.�
In [32] authors introduced generalization of S−metric spaces as follows:

Definition 2.22. Let X be a nonempty set and b ≥ 1 a given real number. A Sb−metric on X is a function
Sb : X3 → [0,∞) that satisfies the following conditions for all x, y, z, a ∈ X.

(Sb1) 0 < Sb (x, y, z) for all x, y, z ∈ X with x 6= y 6= z 6= x,
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(Sb2) Sb (x, y, z) = 0 if and only if x = y = z,

(Sb3) Sb (x, y, z) ≤ b (Sb (x, x, a) + Sb (y, y, a) + Sb (z, z, a)) for all x, y, z, a ∈ X.

Then Sb is called a Sb−metric and the pair (X,Sb) is called a Sb−metric space.

Remark 2.23. It is clear that each S−metric space is a Sb−metric space with b = 1. While, the conversely
is not true (see [30], [31] and [32]). The next is specially important:

Example 2.24. Let (X,S) be a S−metric space, and Sb (x, y, z) := (S (x, y, z))p , where p > 1 is a real
number. Note that Sb is a Sb−metric with b = 22(p−1), i.e., (X,Sb) is a Sb−metric space associated to given
S−metric space (X,S) .

Open problem: Does the continuous mapping T : X → X has a unique fixed point if (X,Sb) is a
Sb−metric space and it satisfies

Sb
(
T 2x, T 2y, T 2z

)
≤ a · Sb (Tx, Ty, Tz) + b · Sb (x, y, z) ,

for all x, y, z ∈ X where a, b ≥ 0 and a+ b < 1?
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